JPS6117470A - Manufacture of titanium carbide block - Google Patents

Manufacture of titanium carbide block

Info

Publication number
JPS6117470A
JPS6117470A JP59139320A JP13932084A JPS6117470A JP S6117470 A JPS6117470 A JP S6117470A JP 59139320 A JP59139320 A JP 59139320A JP 13932084 A JP13932084 A JP 13932084A JP S6117470 A JPS6117470 A JP S6117470A
Authority
JP
Japan
Prior art keywords
tic
cutting
titanium carbide
compact
lump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59139320A
Other languages
Japanese (ja)
Other versions
JPS647033B2 (en
Inventor
吉村 寛範
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP59139320A priority Critical patent/JPS6117470A/en
Publication of JPS6117470A publication Critical patent/JPS6117470A/en
Publication of JPS647033B2 publication Critical patent/JPS647033B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、高い耐摩耗性を有し、したがってバイトや
プレス金型などの用途に使用できる、結晶粒径が11+
1+++以上の炭化チタンC以下、TiCで示す)単結
晶あるいは多結晶体からなる塊状体の製造法(二関する
Detailed Description of the Invention [Industrial Application Field] This invention has a crystal grain size of 11+, which has high wear resistance and can therefore be used for applications such as cutting tools and press molds.
A method for producing a lump consisting of a single crystal or a polycrystalline body of titanium carbide of 1+++ or more (hereinafter referred to as TiC).

〔従来技術及びその問題点〕[Prior art and its problems]

従来、結晶粒径の大きな単結晶の製造方法としては、溶
融状態の物質をゆっくり回転させながら引き上げて製造
する回転引き上げ法が最も一般的な方法として知られて
いるが、この方法では、TiCのような高融点物質の単
結晶を作ることができなかった。
Conventionally, the most common method for manufacturing single crystals with large grain size is the rotational pulling method, in which a molten material is slowly rotated and pulled up. It was not possible to create a single crystal of such a high melting point substance.

TiCの単結晶を作る方法としては、溶融Fe族金属(
NiやFe)中にTiあるいはTiの化合物とCを添加
して、 Fe族金属中での溶解・析出機構を利用して、
TiC単結晶粗粉末を作るメンストラム法があるが、こ
の方法では、結晶粒径が1咽以上の大きなTICの単結
晶を作るのは工業的に困難であった。
One way to make a single crystal of TiC is to use molten Fe group metal (
By adding Ti or a Ti compound and C to Ni or Fe) and utilizing the dissolution/precipitation mechanism in Fe group metals,
Although there is a menstrum method for producing coarse TiC single crystal powder, it is industrially difficult to produce large TIC single crystals with a crystal grain size of 1 mm or more using this method.

又、一般に、融液凝固による多結晶体の製造法も一部行
われているが、この方法は無機酸化物多結晶体の製造に
限定されていた。
Generally, some methods for producing polycrystals by melt solidification are also used, but this method is limited to the production of inorganic oxide polycrystals.

〔発明の目的及び知見事項〕[Purpose of the invention and findings]

本発明者は、結晶粒径の大きなTie塊状体を作るべく
研究を重ねた結果、上記従来の単結晶製造方法や多結晶
体製造法とは全く異なる極めて工業的な方法であって、
しかも結晶粒径の大きなTiC塊状体を製造する方法を
発見した。
As a result of repeated research to produce a Tie mass with a large crystal grain size, the present inventor has developed an extremely industrial method that is completely different from the conventional single crystal production method and polycrystal production method,
Furthermore, we have discovered a method for producing TiC aggregates with large crystal grain sizes.

即ち、まずTiC粉末をプレス成形して、圧粉体とし、
この圧粉体にレーザービームを当てて、TiC圧粉体全
体を急激に溶融させ、その後凝固させることにより、極
めて短時間で結晶粒径の大きなTiC単結晶あるいは多
結晶体からなる塊状体を製造することができることを見
い出した。
That is, first, TiC powder is press-molded to form a green compact,
A laser beam is applied to this powder compact to rapidly melt the entire TiC powder compact, which is then solidified to produce a lump of TiC single crystal or polycrystalline material with large grain size in an extremely short time. I found out that it can be done.

〔発明の構成要件〕[Components of the invention]

以下、この発明の詳細な説明する。 The present invention will be explained in detail below.

(1)プレス成形工程 プレス成形に用いられるTiC粉末の平均粒径は0.5
〜5.0μmが好ましい。TiC粉末の平均粒径が0.
5μm未満ではTiC中の酸素等の不純物量が多くなる
からであり、5.0μmを越えると圧縮性が低下し、プ
レス成形性が悪くなるからである。
(1) Press molding process The average particle size of TiC powder used in press molding is 0.5
~5.0 μm is preferred. The average particle size of TiC powder is 0.
This is because if the thickness is less than 5 μm, the amount of impurities such as oxygen in TiC increases, and if it exceeds 5.0 μm, compressibility decreases and press formability deteriorates.

そして、プレス成形は成形圧5〜30Kp/−で行なう
のが好ましい。
The press molding is preferably carried out at a molding pressure of 5 to 30 Kp/-.

圧粉体の大きさは、溶融・凝固後の塊状体の大きさをほ
ぼ決定するものであるが、次工程のレーザービームを当
てる関係などから、直径が30WA以下の大きさが好ま
しい。
The size of the powder compact largely determines the size of the lump after melting and solidification, but it is preferable that the diameter is 30 WA or less, since it will be irradiated with a laser beam in the next step.

(11)溶融・凝固工程 レーザービームは、例えば、波長10.6μmの赤外線
を発生するCO2ガスレーザー装置によって、発生させ
られる。レーザービームは、圧粉体上の1点に当てれば
よい。その1点で溶融が始まり、体積収縮と融体の対流
現象で次々と融液が発生するのである。前記レーザー装
置の出力は5KJ/n+sec以上と大きな出力でなけ
ればならず、前記の出力で好ましくは05〜10分間レ
ーザービームな当てることにより、圧粉体を急激C二溶
融させる。
(11) Melting/solidifying process The laser beam is generated, for example, by a CO2 gas laser device that generates infrared rays with a wavelength of 10.6 μm. The laser beam may be applied to one point on the powder compact. Melting begins at that one point, and melt is generated one after another due to volumetric contraction and convection of the melt. The output of the laser device must be as large as 5 KJ/n+sec or more, and by applying the laser beam at the above output preferably for 0.5 to 10 minutes, the powder compact is rapidly melted by C2.

そして、TiCの酸化等の好ましくない反応を避けるた
めに、Arガスなどの不活性ガス雰囲気中で溶融を行な
うことが望ましい。その際の不活性ガス圧力は1気圧が
好ましい。
In order to avoid undesirable reactions such as oxidation of TiC, it is desirable to perform the melting in an inert gas atmosphere such as Ar gas. The inert gas pressure at that time is preferably 1 atmosphere.

そして、凝固はレーザービームを当てるのを止めた後に
自然冷却することC二より行われる。
Then, solidification is performed by natural cooling after stopping the application of the laser beam (C2).

この発明の方法により、結晶粒径が1論以上のTiC単
結晶あるいはTiC多結晶体からなる塊状体が製造され
る。
By the method of the present invention, a lump of TiC single crystal or TiC polycrystal having a grain size of 1 or more is produced.

〔実施例〕〔Example〕

以下、実施例を参考例とともに示すことにより、この発
明の構成及び効果を詳しく説明する。
Hereinafter, the structure and effects of the present invention will be explained in detail by showing examples together with reference examples.

実施例1 平均粒径1.5μmのTiC粉末を10 Kg/ mj
、の圧力でプレス成形して、外径が15解で厚みが8餌
の円板状圧粉体を作成し、この圧粉体にAr雰囲気(A
rガス圧カニ1気圧)中で出力10 KJ/n5ecの
CO2ガスレーザー装置から発生するレーザービームを
1分間照射した(照射のし方は、圧粉体上の中毛司ニレ
ーザービームがくるようにするものである)。この照射
により圧粉体全体が溶融した。
Example 1 10 Kg/mj of TiC powder with an average particle size of 1.5 μm
, to create a disc-shaped green compact with an outer diameter of 15 mm and a thickness of 8 mm, and this green compact was placed in an Ar atmosphere (A
A laser beam generated from a CO2 gas laser device with an output of 10 KJ/n5ec was irradiated for 1 minute in a vacuum chamber with a gas pressure of 1 atm. ). The entire compact was melted by this irradiation.

その後、自然冷却により凝固させて、6.23fの球状
(直径:約7て)の塊状体を製造した。
Thereafter, it was solidified by natural cooling to produce a 6.23f spherical (diameter: about 7mm) lump.

この塊状体の顕微鏡による組織観察とX線回折を行なっ
たところ、この塊状体はTiCの単結晶であることが確
認された。
When the structure of this lump was observed using a microscope and subjected to X-ray diffraction, it was confirmed that this lump was a single crystal of TiC.

実施例2 平均粒径が2.0μmのTiC粉末を湿式粉砕して1.
0μmにした後、15Kg/−の圧力でプレス成形して
、外径が20咽で厚みが20霜の円板状圧粉体を作成し
、この圧粉体にAr雰囲気(Arガス圧カニ1気圧)中
で、実施例1と同一のCO2ガスレーザー装置で、レー
ザービームな1.5分間照射した。この照射により圧粉
体全体が溶融した。
Example 2 TiC powder with an average particle size of 2.0 μm was wet-pulverized and 1.
After reducing the diameter to 0 μm, press molding was performed at a pressure of 15 kg/- to create a disk-shaped green compact with an outer diameter of 20 mm and a thickness of 20 mm. Atmospheric pressure), laser beam irradiation was performed for 1.5 minutes using the same CO2 gas laser device as in Example 1. The entire compact was melted by this irradiation.

その後、自然冷却により凝固させて、27.692のT
iC塊状体を製造した。
After that, it is solidified by natural cooling and has a T of 27.692.
An iC mass was produced.

このTiC塊状体は、直径が約10mの球状であり、T
iCの結晶粒径が2.0テの多結晶体であった。
This TiC lump is spherical with a diameter of about 10 m, and T
It was a polycrystal with an iC crystal grain size of 2.0 Te.

参考例1 実施例1で得られたTiC単結晶からなる塊状体より、
5 rrrm X 5 m X 3 inの大きさの直
方体を切り出して、これを切削工具用ホルダーにろう付
けして、切刃形状がJIS表示で00,6°、σ、6°
Reference Example 1 From the lump made of TiC single crystal obtained in Example 1,
Cut out a rectangular parallelepiped with a size of 5 rrrm x 5 m x 3 in, and braze it to a cutting tool holder so that the cutting edge shape is 00.6° and σ, 6° in JIS.
.

lf、1f、0.4となるような本発明バイトを作成し
た。
A byte according to the present invention with lf, 1f, and 0.4 was created.

このバイトを用いて、それぞれ下記のような条件にて、
微小切削試験及び一般切削試験を行なった。
Using this byte, under the following conditions,
A micro-cutting test and a general cutting test were conducted.

く微小切削試験条件〉 被削材:550C(ブリネル硬さ:210)切削速度:
50m/分 送り   :0.01て/ rev。
Micro-cutting test conditions〉 Work material: 550C (Brinell hardness: 210) Cutting speed:
50m/min feed: 0.01te/rev.

切込み :0.2mm 切削時間:30時間 く一般切削試験条件〉 被削材:SNCM439(ブリネル硬さ:切削速度:1
80m/分 送り   =0.2諭/ rev。
Depth of cut: 0.2 mm Cutting time: 30 hours General cutting test conditions> Work material: SNCM439 (Brinell hardness: Cutting speed: 1
80m/min feed = 0.2 m/rev.

切込み :1.5て 切削時間=60分 なお、微小切削試験の比較用として、それぞれ市販のW
C−S%Coの超微粒超硬合金とWC−6%COのに1
0超硬合金を切刃に有し、かつ切刃形状は本発明バイト
と同一のバイト(以下、それぞれ従来合金バイト1およ
び2という)を作成し、これらのバイトを用いて上記条
件の微小切削試験を行なった。
Depth of cut: 1.5, cutting time = 60 minutes For comparison of micro-cutting tests, commercially available W
C-S%Co ultrafine cemented carbide and WC-6%CO 1
0 cemented carbide on the cutting edge and the cutting edge shape is the same as the cutting edge of the present invention (hereinafter referred to as conventional alloy cutting tools 1 and 2, respectively), and using these tools, micro-cutting was carried out under the above conditions. I conducted a test.

又、一般切削試験の比較用として、それぞれ市販のTi
c −20%TiN −10%MO□C−10%Niの
サーメットとWC−18%TiC−5%TaC−796
COのPIO超硬合金を切刃に有し、かつ切刃形状は本
発明バイトと同一のバイト(以下、それぞれ従来合金バ
イト3および4という)を作成し1、これらのバイトを
用いて上記条件の一般切削試験を行なった。
In addition, for comparison of general cutting tests, commercially available Ti
c -20%TiN -10%MO□C-10%Ni cermet and WC-18%TiC-5%TaC-796
Cutting tools having a cutting edge made of CO's PIO cemented carbide and having the same cutting edge shape as the cutting edge of the present invention (hereinafter referred to as conventional alloy cutting tools 3 and 4, respectively) were prepared 1, and these tools were used to meet the above conditions. A general cutting test was conducted.

いずれの試験においても切刃のフランク摩耗幅とクレー
タ−摩耗深さを測定し、その結果“を第1表に示した。
In each test, the flank wear width and crater wear depth of the cutting edge were measured, and the results are shown in Table 1.

第1表に示されたように、本発明のTiC単結晶からな
るバイトは、従来合金バイト1〜4に比べて、極めてす
ぐれた耐摩耗性を有する。
As shown in Table 1, the TiC single crystal cutting tool of the present invention has extremely superior wear resistance compared to conventional alloy cutting tools 1 to 4.

参考例2 実施例2で得られたTICの多結晶体からなる塊状体よ
り、直径が5mのベアリングのりテーナー用のフォーミ
ング金型をダイヤモンド砥石で研削することで作成した
Reference Example 2 A forming mold for a bearing adhesive retainer having a diameter of 5 m was prepared from the polycrystalline mass of TIC obtained in Example 2 by grinding it with a diamond grindstone.

この金型な用いて、あらかじめ所定の形状に打抜かれた
5US304の薄板(厚み: 0.15 mm )をプ
レスして、リテーナ−を作成し、リテーナ−の寸法が所
定の寸法からはずれた時を寿命とし、寿命になるまでの
加工個数を調べた。
Using this mold, a thin plate of 5US304 (thickness: 0.15 mm), previously punched into a predetermined shape, is pressed to create a retainer, and when the dimensions of the retainer deviate from the predetermined dimensions, The number of pieces processed until the end of the life span was determined.

従来のダイス鋼製の金型では20万個しか加工・できず
、又、K2Oの超硬合金でも100万個しか加工できな
かったものが、本発明のTiC塊状体で作成された金型
な用いることにより、700万個の加工ができた。
With conventional die steel molds, only 200,000 pieces could be machined, and with K2O cemented carbide, only 1 million pieces could be machined, but with the mold made from the TiC lumps of the present invention. By using it, we were able to process 7 million pieces.

〔発明の総括的効果〕[Overall effect of the invention]

以上のように、この発明は、分単位の極めて短い時間で
TiC多結晶体からなる塊状体を製造することができる
し、又、場合によってはTiC単結晶をも製造すること
ができる工業上有用な方法である。そして、得られたT
iC塊状体は、TiC単味からなっているので、TiC
の高い硬度ひいては耐摩耗性・′を最大限に活かすこと
ができ、極めて有用な材料である。
As described above, the present invention is industrially useful because it can produce a lump of TiC polycrystal in an extremely short time on the order of minutes, and can also produce a TiC single crystal in some cases. This is a great method. And the obtained T
Since the iC lump consists of TiC alone, TiC
It is an extremely useful material because it can take full advantage of its high hardness and wear resistance.

Claims (1)

【特許請求の範囲】[Claims] 炭化チタンの粉末をプレス成形して、圧粉体とし、この
圧粉体にレーザービームを当てて、炭化チタン圧粉体全
体を急激に溶融させ、その後凝固させることを特徴とす
る炭化チタン塊状体の製造法。
A titanium carbide aggregate characterized by press-molding titanium carbide powder into a compact, applying a laser beam to the compact to rapidly melt the entire titanium carbide compact, and then solidifying it. manufacturing method.
JP59139320A 1984-07-05 1984-07-05 Manufacture of titanium carbide block Granted JPS6117470A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59139320A JPS6117470A (en) 1984-07-05 1984-07-05 Manufacture of titanium carbide block

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59139320A JPS6117470A (en) 1984-07-05 1984-07-05 Manufacture of titanium carbide block

Publications (2)

Publication Number Publication Date
JPS6117470A true JPS6117470A (en) 1986-01-25
JPS647033B2 JPS647033B2 (en) 1989-02-07

Family

ID=15242560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59139320A Granted JPS6117470A (en) 1984-07-05 1984-07-05 Manufacture of titanium carbide block

Country Status (1)

Country Link
JP (1) JPS6117470A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62148436A (en) * 1985-11-13 1987-07-02 イーエヌエスアール コーポレーシヨン Removal of pcb from electric appliances and device therefor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60226480A (en) * 1984-04-20 1985-11-11 Agency Of Ind Science & Technol Manufacture of crystal material by laser beam

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60226480A (en) * 1984-04-20 1985-11-11 Agency Of Ind Science & Technol Manufacture of crystal material by laser beam

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62148436A (en) * 1985-11-13 1987-07-02 イーエヌエスアール コーポレーシヨン Removal of pcb from electric appliances and device therefor
JPH0224562B2 (en) * 1985-11-13 1990-05-30 Kuoodoretsukusu Eichi Pii Esu Inc

Also Published As

Publication number Publication date
JPS647033B2 (en) 1989-02-07

Similar Documents

Publication Publication Date Title
EP0004177B2 (en) A method of metal coating of diamond or cubic boron nitride particles and an abrasive tool containing the particles thus coated
CA1074131A (en) Abrasive bodies
EP1347852B1 (en) Method of forming nano-crystalline structures
JPS61250123A (en) Compressed article prepared from heat-treated amorphous lumpy parts
US4762677A (en) Method of preparing a bulk amorphous metal article
US20060278308A1 (en) Method of consolidating precipitation-hardenable alloys to form consolidated articles with ultra-fine grain microstructures
JPH02213428A (en) Manufacture of cutting tool material
US2244052A (en) Method of forming hard cemented carbide products
US4735770A (en) Method for producing an amorphous material in powder form by performing a milling process
JPH01246361A (en) Diamond-coated sintered alloy having excellent release resistance and its production
JPS627149B2 (en)
JPS6117470A (en) Manufacture of titanium carbide block
JP3346117B2 (en) Method for producing cubic boron nitride sintered body having excellent wear resistance
JPS6117471A (en) Titanium carbonitride block and manufacture
JP3318887B2 (en) Fine-grained cemented carbide and method for producing the same
JPS60121251A (en) Diamond sintered body for tool and its production
EP0220964B1 (en) Cubic boron nitride abrasive bodies
JP2954711B2 (en) W-Ti alloy target and manufacturing method
JPS6126571A (en) Manufacture of aluminum oxide block
JPH08336705A (en) Cutting tool made of cubic boron nitride sintered body with cutting face of cutter showing excellent wearing resistance
JPH0426554A (en) Sintering material for tool
JPH01246342A (en) Supermagnetostrictive material and its manufacture
JP2789397B2 (en) High-purity target for producing optical recording film and method for producing the same
JPS6160803A (en) Production of highly brittle alloy sputtering target for thin soft magnetic film
JP2003128466A (en) Sintered boride and method for making the same