JPS60121251A - Diamond sintered body for tool and its production - Google Patents

Diamond sintered body for tool and its production

Info

Publication number
JPS60121251A
JPS60121251A JP22795983A JP22795983A JPS60121251A JP S60121251 A JPS60121251 A JP S60121251A JP 22795983 A JP22795983 A JP 22795983A JP 22795983 A JP22795983 A JP 22795983A JP S60121251 A JPS60121251 A JP S60121251A
Authority
JP
Japan
Prior art keywords
diamond
sintered body
less
metal
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22795983A
Other languages
Japanese (ja)
Inventor
Kazuhito Uehara
上原 一仁
Ryo Yamaya
山家 菱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tungaloy Corp
Original Assignee
Toshiba Tungaloy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Tungaloy Co Ltd filed Critical Toshiba Tungaloy Co Ltd
Priority to JP22795983A priority Critical patent/JPS60121251A/en
Publication of JPS60121251A publication Critical patent/JPS60121251A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain a titled sintered body which is easily grindable and is hardly chippable with a process for production in which diamond and a small amt. of a ferrous metal having a solvent-catalyst effect are sintered under and at ultra high pressure and high temp. by regulating the size of diamond particles. CONSTITUTION:A sintered body consists of 0.1-5vol% a metal or alloy consisting principally of >=1 kind among iron, Ni and Co and the balance diamond consisting of 10% the diamond having 0.1-<1mu particle size, 20-30% 1-<2mu, 20- 60% and 10-40% 6-10mu. The diamond particles having the grain size distribution regulated in the above-mentioned way and the thin sheet of the metal or alloy contg. >=1 kind among iron, Ni and Co as principal components are joined to each other and are installed in a vessel made of a high melting metal such as Zr. Such vessel is pressurized and heated under and at the temp. under and at which the thin sheets in the vessel act as a solvent-catalyst with the diamond in the thermodynamically stable region of diamond, etc. The objective diamond sintered body for a tool is thus obtd.

Description

【発明の詳細な説明】 本発明は、切削工具、切断工具及び耐摩耗工具に適する
工具用ダイヤモンド焼結体及びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a cutting tool, a diamond sintered body suitable for a cutting tool, and a wear-resistant tool, and a method for manufacturing the same.

ダイヤモンド焼結体は、硬さが高く、耐摩耗性に富みか
つ天然の単結晶ダイヤモンドよりも靭性が高く形状の自
由度も大きいことから各種の切削工具、線引ダイス、穿
孔工具、耐摩耗工具等に利用されている。このようなダ
イヤモンド焼結体の自焼結体の組織構造は大別して2つ
有り、その1つはダイヤモンド粒子が金属又は金属と高
融点化合物からなるサーメットもしくは高融点化合物か
らなるセラミックスを結合相としてなる焼結体であり、
他の1つは、ダイヤモンド粒子が隣接ダイヤモンド粒子
と直接に結合している焼結体である。
Diamond sintered bodies have high hardness and wear resistance, and have higher toughness and greater freedom of shape than natural single-crystal diamonds, so they are used in various cutting tools, wire drawing dies, drilling tools, and wear-resistant tools. It is used for such things. The self-sintered structure of such diamond sintered bodies can be roughly divided into two types. One is that the diamond particles are made of a metal, a cermet made of a metal and a high-melting point compound, or a ceramic made of a high-melting point compound as a binder phase. It is a sintered body,
The other type is a sintered body in which diamond particles are directly bonded to adjacent diamond particles.

この内部音は、結合相の量が多くなる程焼結体の硬さぎ
低下して耐摩耗性が劣ると共に靭性も低下するという問
題がある。これに対して後者は、ダイヤモンド粒子の破
壊を最少にするために前者よりも高硬度で強度もすぐれ
ている。このためにダイヤモンド粒子とダイヤモンド粒
子が直接結合してダイヤモンド粒子以外の物質を最小又
はできれば完全に使用しないようなダイヤモンド焼結体
の開発が行われている。このようなダイヤモンド粒子が
直接結合した焼結体に関しては特公昭47−44322
及び特公昭52−12126で提案されている。8この
内特公昭47−44322によるダイヤモンド焼結体は
、圧力55Kb〜80Kb、温度1600℃〜2000
℃という高圧高温で焼結しなければ緻密な焼結体が得ら
れなく、たとえこのような高圧高温によってダイヤモン
ド焼結体を得たとしてもダイヤモンド粒子とダイヤモン
ド粒子の相互結合強度が弱いために焼結体の強度が劣る
という問題がある。一方特公昭52−12126による
ダイヤモンド焼結体は、70容積%を越える好適には9
0〜99容積%のダイヤモンドと溶媒−触媒作用となる
鉄族金属を45Kbを越える圧力、1400℃〜160
0℃の温度で焼結してなる焼結体が開示されている。こ
の特公昭52−12126によるダイヤモンド焼結体は
、ダイヤモンド粒子の大きさについては特に検討してお
らず、1例として一325メツシュのダイヤモンド粉末
を使用した実施例が開示されている。このように−32
5メツシユ(約45μm)からなるダイヤモンド焼結体
は、ダイヤモンド粒子との粒界に所々鉄族金属がプール
として存在するために切削工具のように局部的に応力が
加わるような用途に使用すると破壊の起源となって欠損
し易くなる。
This internal sound has a problem in that as the amount of the binder phase increases, the hardness of the sintered body decreases, resulting in poor wear resistance and toughness. On the other hand, the latter has higher hardness and strength than the former in order to minimize the destruction of the diamond particles. For this reason, efforts are being made to develop a diamond sintered body in which diamond particles are directly bonded and the use of substances other than diamond particles is minimized or, if possible, completely eliminated. Regarding such a sintered body in which diamond particles are directly bonded, Japanese Patent Publication No. 47-44322
and proposed in Japanese Patent Publication No. 52-12126. 8 Among these, the diamond sintered body according to Japanese Patent Publication No. 47-44322 has a pressure of 55Kb to 80Kb and a temperature of 1600℃ to 2000℃.
A dense sintered body cannot be obtained unless it is sintered at high pressure and high temperature of ℃, and even if a diamond sintered body is obtained by such high pressure and high temperature, the mutual bonding strength between diamond particles is weak and the sintering is difficult. There is a problem that the strength of the structure is poor. On the other hand, the diamond sintered body according to Japanese Patent Publication No. 52-12126 is preferably 90% by volume or more.
0-99% by volume of diamond and solvent-catalytic iron group metal at a pressure exceeding 45Kb, 1400℃-160℃
A sintered body sintered at a temperature of 0°C is disclosed. In the diamond sintered body disclosed in Japanese Patent Publication No. 52-12126, no particular consideration was given to the size of the diamond particles, and an example in which diamond powder of 1325 mesh was used was disclosed. Like this -32
A diamond sintered body consisting of 5 meshes (approximately 45 μm) will break if used in applications where stress is applied locally, such as in cutting tools, because iron group metals exist as pools in some places at the grain boundaries with diamond particles. It becomes the origin of the disease and becomes easily damaged.

又、この特公昭52−12126によるダイヤモンド焼
結体は、粗大なダイヤモンド粒子が混在し【いるために
研削し難く、シャープなエツジに仕上げるのも困難でし
かも靭性が劣るために切削工具として使用するとチッピ
ングし易いという欠点がある。
In addition, the diamond sintered body produced by this Japanese Patent Publication No. 52-12126 is difficult to grind because it contains coarse diamond particles, and it is difficult to finish it with sharp edges, and its toughness is poor, so it is difficult to use it as a cutting tool. It has the disadvantage of being susceptible to chipping.

本発明は、上記のような従来の問題点及び欠点を解決し
たダイヤモンド焼結体であって、焼結体のダイヤモンド
粒子の大きさ及び分布を厳密に調整ししかもダイヤモン
ドに対して溶媒−触媒作用をもつ鉄族金属又は合金を微
量含有させたもので特公昭52−12126に開示のダ
イヤモンド焼結体を改良した工具用ダイヤモンド焼結体
及びその製造方法の提供を目的とする。
The present invention is a diamond sintered body that solves the above-mentioned conventional problems and drawbacks, and in which the size and distribution of diamond particles in the sintered body are strictly controlled, and a solvent-catalytic effect is applied to the diamond. The object of the present invention is to provide a diamond sintered body for tools, which contains a trace amount of an iron group metal or an alloy, and which is an improvement on the diamond sintered body disclosed in Japanese Patent Publication No. 52-12126, and a method for manufacturing the same.

本発明者達は、上記目的を達成すべく研究を重ねた結果
、厳密に調整された粒度分布をもつダイヤモンド粉末と
ダイヤモンドに対して溶媒−触媒作用をもつ鉄族金属又
は合金の薄板を超高圧高温下で焼結すると焼結が非常に
促進されて鉄族金属又は合金からなるプールのない緻密
な焼結体が得られると共にこのようにして得た焼結体が
金属介在相の殆んどないダイヤモンド粒子とダイヤモン
ド粒子の直接結合した高硬度及び高強度の焼結体になる
ことを実験的に確認することによって本発明を完成した
ものである。
As a result of repeated research to achieve the above objective, the present inventors have developed diamond powder with a strictly controlled particle size distribution and a thin plate of an iron group metal or alloy that has a solvent-catalytic effect on diamond under ultra-high pressure. When sintered at high temperatures, sintering is greatly accelerated and a dense sintered body without pools made of iron group metals or alloys can be obtained. The present invention was completed by experimentally confirming that a sintered body with high hardness and high strength is obtained by directly bonding diamond particles to diamond particles.

本発明の工具用ダイヤモンド焼結体は、鉄、ニッケル、
コバルトの少なくとも1種を主成分として含む金属又は
合金0.1〜5容積%と残り粒子径が011μm以上〜
1μm未満のものが10%と1μm以上〜2μm未満の
ものが20〜30%と2μm以上〜6μm未満のものが
20〜60%と6μm以上〜lOμm以下のもの10〜
40%からなるダイヤモンドの焼結体である。このよう
な本発明の工具用ダイヤモンド焼結体は、厳密に調整し
たダイヤモンド粒子が相互に分散して各粒子間が緻密に
充填するために大部分のダイヤモンド粒子が相互に直接
結合した焼結体になる。大部分のダイヤモンド粒子が相
互に直接結合して金属又は合金が極めてわずかでしかも
均一に分布している焼結体であるために粒子間の結合強
度が高く焼結体の硬さ及び耐熱性を高めている。又0.
1μm〜10μmの微細なダイヤモンド粒子からなる焼
結体であるために靭性が高く被研削性にすぐれている。
The diamond sintered body for tools of the present invention includes iron, nickel,
Metal or alloy containing at least one type of cobalt as a main component 0.1 to 5% by volume and remaining particle size of 0.11 μm or more
10% is less than 1 μm, 20-30% is from 1 μm or more to less than 2 μm, 20-60% is from 2 μm or more to less than 6 μm, and 10% is from 6 μm or more to 10 μm or less.
It is a sintered body of 40% diamond. The diamond sintered body for tools of the present invention is a sintered body in which most of the diamond particles are directly bonded to each other so that the precisely adjusted diamond particles are mutually dispersed and the spaces between each particle are densely packed. become. Most of the diamond particles are directly bonded to each other, and the metal or alloy is extremely small and evenly distributed in the sintered body, so the bonding strength between the particles is high and the hardness and heat resistance of the sintered body are improved. It's increasing. Also 0.
Since it is a sintered body made of fine diamond particles of 1 μm to 10 μm, it has high toughness and excellent grindability.

本発明の工具用ダイヤモンド焼結体の製造方法は、粒子
径が0.1μm以上〜Iμm未満のもの10%とIlt
m以上〜2μm未満のもの20〜30%と2μm以上〜
6μm未満のもの20〜60%と6μm以上〜10μm
以下のもの10〜40%とからなるダイヤモンド粉末と
鉄、ニッケル、コバルトの小なくとも1種を主成分とし
て含む金属又は合金からなる薄板とを互いに接してZr
、Mo。
The method for producing a diamond sintered body for tools according to the present invention is to use 10% of particles having a particle size of 0.1 μm or more to less than I μm and Ilt.
20-30% of those with a diameter of m or more and less than 2 μm and those with a diameter of 2 μm or more
20 to 60% less than 6 μm and 6 μm or more to 10 μm
A diamond powder consisting of 10 to 40% of the following and a thin plate consisting of a metal or alloy containing at least one of iron, nickel, and cobalt as a main component are brought into contact with each other and Zr
, Mo.

Ta等の高融点金属製容器内に設置し、この容器を熱力
学的ダイヤモンド安定領域内又はダイヤモンド−黒鉛平
衡線付近の黒鉛安定領域内で容器内の薄板がダイヤモン
ドに対して溶媒−触媒作用する圧力及び温度に加圧加熱
する製造方法である。
The container is placed in a container made of a high melting point metal such as Ta, and the container is placed in the thermodynamic diamond stability region or in the graphite stability region near the diamond-graphite equilibrium line, and the thin plate inside the container acts as a solvent-catalyst on the diamond. This is a manufacturing method that involves heating under pressure and temperature.

ここで使用する鉄、ニッケル、コバルトの少なくとも1
種を主成分として含む金属又は合金からなる薄板は、焼
結過程でダイヤモンド粉末の粒界に沿って浸透してダイ
ヤモンド粒子を再配列させると共に溶解及び再析出機構
によりダイヤモンド粒子の相互結合を起こさせながら焼
結を促進し緻密な焼結体にする。このときダイヤモンド
粉末の粒度分布が厳密に調整されておりしかも微細な粒
子であることから粒子間が緻密に充填されて粒子間の隙
間がきわめて少なくなる。焼結後の焼結体内に残存する
金属又は合金の量は、主として厳密に調整した出発原料
であるダイヤモンドの粒度分布によってコントロールで
き、その他藩板として使用する金属又は合金の成分及び
結晶形態(非晶質又は結晶質の違い)並びに焼結どきの
圧力及び温度によっても微量のコントロールができる。
At least one of iron, nickel, and cobalt used here
A thin plate made of a metal or alloy containing seeds as a main component penetrates along the grain boundaries of diamond powder during the sintering process, rearranges the diamond particles, and causes the diamond particles to bond with each other through a dissolution and re-precipitation mechanism. while promoting sintering and creating a dense sintered body. At this time, the particle size distribution of the diamond powder is strictly controlled and since it is a fine particle, the spaces between the particles are densely packed and the gaps between the particles are extremely small. The amount of metal or alloy remaining in the sintered body after sintering can be controlled mainly by the particle size distribution of the starting material diamond, which is precisely adjusted, and also by the composition and crystal morphology of the metal or alloy used as the plate. The amount can also be controlled to a small extent by changing the crystallinity (crystallinity or difference in crystallinity) and the pressure and temperature during sintering.

他の製造条件を一定にして出発原料であるダイヤモンド
の粒度分布を厳密に調整しておけば出発原料としての金
属又は合金からなる薄板の量が多い場合でも余分な金属
又は合金は、焼結過程でダイヤモンド粒界に浸透せずに
焼結体の表面に残り、焼結後焼結体の表面に残った金属
又は合金は研削等によって取り除くことにより目的の焼
結体を得ることができる。又、ダイヤモンド粉末と鉄、
ニッケル、コバ7レトの少なくとも1種を主成分として
含む薄板と超硬合金、サーメット等でなる基体を容器内
に設置して同様の高圧高温下で焼結することによつ【本
発明の工具用ダイヤモンド焼結体と基体とが一体化した
複合焼結体が得られる。このように複合焼結体にすると
きにはダイヤモンド焼結体と基体との間にW、Mo、T
a、Nb 等の高融点金属からなる中間層を介在させる
とダイヤモンド焼結体と基体との接着結合強度を向上す
る効果がある。
If the particle size distribution of diamond, which is the starting material, is strictly controlled while keeping other manufacturing conditions constant, even if there is a large amount of thin plate made of metal or alloy as starting material, excess metal or alloy will be removed during the sintering process. The metal or alloy that remains on the surface of the sintered body without penetrating into the diamond grain boundaries and that remains on the surface of the sintered body after sintering can be removed by grinding or the like to obtain the desired sintered body. Also, diamond powder and iron,
By placing a thin plate containing at least one of nickel and nickel as a main component, and a substrate made of cemented carbide, cermet, etc. in a container and sintering it under the same high pressure and high temperature, [the tool of the present invention] A composite sintered body in which the diamond sintered body and the base body are integrated is obtained. When making a composite sintered body in this way, W, Mo, and T are added between the diamond sintered body and the base.
The interposition of an intermediate layer made of a high melting point metal such as a, Nb, etc. has the effect of improving the adhesive bond strength between the diamond sintered body and the substrate.

本発明の工具用ダイヤモンド焼結体の製造方法の内、焼
結方法は出発原料を設置した容器を通常のベルト型又は
ガードル型の高圧高温装置内にセットして40〜60K
bの圧力、1200〜1600℃の温度で焼結すること
ができる。密閉された高圧装置内で焼結する場合、焼結
過程で発生するガスが焼結を阻害する傾向になる。金属
又は合金からなる薄板を出発原料として使用する本発明
の製造方法は、酸化及び吸着水等のガス成分となる付着
物が少ないために焼結過程でのガスの発生を防ぐ効果が
ある。又、容器にZr、Ta等のガス吸収能力のある材
料を使用することは、焼結を促進させ緻密な焼結体にす
るために効果がある。更に、焼結過程でのガスの発生を
防ぐ方法としては出発原料を設置した容器全体を真空中
で焼結温度以下の例えば500℃〜1000℃程度に予
備加熱処理した後上記の条件で焼結すると効果がある。
Among the methods for manufacturing the diamond sintered body for tools of the present invention, the sintering method involves setting a container containing the starting material in an ordinary belt-type or girdle-type high-pressure and high-temperature device at 40 to 60K.
It can be sintered at a pressure of b and a temperature of 1200-1600°C. When sintering in a closed high-pressure apparatus, gases generated during the sintering process tend to inhibit sintering. The manufacturing method of the present invention, which uses a thin plate made of metal or alloy as a starting material, has the effect of preventing the generation of gas during the sintering process because there is less deposits that become gas components such as oxidized and adsorbed water. Furthermore, using a material capable of absorbing gas, such as Zr or Ta, for the container is effective in accelerating sintering and producing a dense sintered body. Furthermore, as a method to prevent the generation of gas during the sintering process, the entire container containing the starting materials is preheated in a vacuum to a temperature below the sintering temperature, for example, about 500°C to 1000°C, and then sintered under the above conditions. Then it works.

次に実施例に従って本発明の工具用ダイヤモンド焼結体
及びその製造方法について具体的に説明する。
Next, a diamond sintered body for tools and a method for manufacturing the same according to the present invention will be explained in detail according to Examples.

実施例1 内径11ψ間肉厚0.15gのZr製円筒容器の中に0
.1μm以上〜1μm未満が10%、1μm以上〜2μ
m未満が25%、2μm以上〜4μm未満が15%、4
μm以上〜6μm未満が15%、6μm以上〜10μm
以下が35%の粒度分布からなるダイヤモンドの混合粉
末0.25tを詰めて、次に直径lOψ間厚さO,O−
5順のCo円板をダイヤモンド粉末に接して置きzrf
R円板で蓋をしてなる容器2組を高圧装置内にセットし
て45Kbの圧力、1400℃の温度で30分保持した
後圧力は45Kbに保ったまま温度を1000℃以下に
急冷し、しかる後圧力及び温度を常圧、常温まで下げて
焼結体を容器から取り出した。こうして得た焼結体は、
ダイヤモンド粒子が互いに結合してあり、Co相は殆ん
どみられずEPMA による分析の結果Co量は0.5
容積%であった。この焼結体の硬さは、ヌープ硬さで7
800を示した。
Example 1 In a Zr cylindrical container with an inner diameter of 11ψ and a wall thickness of 0.15g,
.. 1 μm or more to less than 1 μm is 10%, 1 μm or more to less than 2 μm
25% is less than m, 15% is 2 μm or more and less than 4 μm, 4
15% is from 6 μm to less than 6 μm, and 15% is from 6 μm to 10 μm
Filled with 0.25t of diamond mixed powder with a particle size distribution of 35%, and then packed with a diameter of lOψ and a thickness of O, O-
Place a 5-order Co disk in contact with diamond powder zrf
Two sets of containers covered with R disks were set in a high-pressure device and held at a pressure of 45 Kb and a temperature of 1400°C for 30 minutes, then the temperature was rapidly cooled to below 1000°C while maintaining the pressure at 45 Kb. Thereafter, the pressure and temperature were lowered to normal pressure and room temperature, and the sintered body was taken out from the container. The sintered body thus obtained is
Diamond particles are bonded to each other, almost no Co phase is observed, and as a result of EPMA analysis, the amount of Co is 0.5.
It was % by volume. The hardness of this sintered body is 7 on the Knoop hardness scale.
It showed 800.

実施例2 実施例1と同様の容器の中に直径11ψ間厚さ1.8關
の超硬合金(WC−10%Co)基体と直径11ψ朋厚
さ0.1 mmのW円板と粒度分布が0.1μm以上〜
1μm未満が10%、1μm以上〜2μm未満が20%
、2μm以上〜4μm未満が20%、4μm以上〜6μ
m未満が30%、6μm以上〜8μm未満が10%、8
μm以上〜10μm以下が10%のダイヤモンド混合粉
末と直径IIψ朋厚さO,I mmのCo円板をこの順
序に重ねて詰めてZr製円板で蓋をした容器2組を高圧
装置内にセットし、50Kbの圧力、1500℃の温度
で10分保持した後圧力は50Kbに保ったまま100
0℃以下に急冷し、しかる後圧力及び温度を常圧、常温
まで下げて焼結体を容器から取り出した。こうして得た
複合焼結体は、ダイヤモンド焼結体とW中間層と超硬合
金基体が強固に接着していた。
Example 2 In a container similar to Example 1, a cemented carbide (WC-10%Co) substrate with a diameter of 11ψ and a thickness of 1.8 mm, a W disk with a diameter of 11ψ and a thickness of 0.1 mm, and a grain size were placed. Distribution is 0.1 μm or more
10% is less than 1 μm, 20% is 1 μm or more and less than 2 μm
, 20% or more and less than 4 μm, 4 μm or more and less than 6 μm
30% is less than m, 10% is 6 μm or more and less than 8 μm, 8
Two sets of containers packed with 10% diamond mixed powder of 10% of the diameter of μm or more and 10 μm or less and Co disks of diameter IIψ and thickness O and I mm and covered with Zr disks are placed in a high-pressure device. After setting the pressure at 50Kb and holding it at a temperature of 1500℃ for 10 minutes, the pressure was kept at 50Kb and the
The sintered body was rapidly cooled to 0° C. or lower, and then the pressure and temperature were lowered to normal pressure and room temperature, and the sintered body was taken out from the container. In the thus obtained composite sintered body, the diamond sintered body, the W intermediate layer, and the cemented carbide base were firmly adhered to each other.

ダイヤモンド焼結体中のダイヤモンド粒子は互いに結合
しており、CO介介在線殆んどみられずEPMAによる
分析の結果Co量は2容積%であった。ダイヤモンド焼
結体の硬さはヌープ硬さで7500を示した。この複合
焼結体をレーザーカットにて切断して超硬合金からなる
CIS基準のDSOX150チップの刃先部にろう付し
て切削工具を作製し、市販のダイヤモンド焼結体を比較
1こ加えて下記の条件で切削試験を行った。
The diamond particles in the diamond sintered body were bonded to each other, almost no intervening lines of CO were observed, and as a result of EPMA analysis, the amount of Co was 2% by volume. The hardness of the diamond sintered body was 7500 on Knoop hardness. This composite sintered body was laser cut and brazed to the cutting edge of a CIS standard DSOX150 tip made of cemented carbide to produce a cutting tool, and one commercially available diamond sintered body was added for comparison as shown below. A cutting test was conducted under the following conditions.

旋削による切削試験条件 被剛材 窒化硅素焼結体 切削速度 20m/min 切込み 0.5 m 送り速度 0.02m1/rev 切削時間 5m1n 切削方式 乾式 試験の結果、本発明の工具用ダイヤモンド焼結体の平均
逃げ面摩耗量は0.35 amに対して比較に加えた市
販のダイヤモンド焼結体の平均逃げ面摩耗量は0.65
mmで切刃に微少チッピングが生じていた。
Cutting test conditions by turning Rigid material Silicon nitride sintered body Cutting speed 20 m/min Depth of cut 0.5 m Feed rate 0.02 m1/rev Cutting time 5 m1n Cutting method Dry test results showed that the diamond sintered body for tools of the present invention The average flank wear amount is 0.35 am, whereas the average flank wear amount of the commercially available diamond sintered body added for comparison is 0.65 am.
Minute chipping occurred on the cutting edge.

実施例3 実施例1と同様の容器の中に実施例1と同様の超硬合金
基体と直径11ψmm厚さ0.1 mmのMo円板と粒
得分布が0.1μm以上〜1μm未満が10%、1μm
以上〜2μm未満が25%、2μm以上〜4μm未満が
25%、4μm以上〜6μm未満が30%、6μm以上
〜8μm未満が5%、8μm以上〜lOμm以下が5%
のダイヤモンド混合粉末と直径11ψ酊厚さ0.06 
mmのNi基非晶質合金(NisI CO23Crto
 Mo7 Fes、513a、s)円板をこの順序に重
ねて詰めてZr製円板で蓋をして10−4朋Hf真空中
700 ’Cで30分保持により予備加熱処理した。こ
のZr製容器を直ちに高圧装置内にセットして50Kb
め圧力、1320℃の温度で10分間保持した後50K
bの圧力の状態で1000℃以下に急冷し、しかる後圧
力、温度を常圧、常温まで下げて焼結体を容器から取り
出した。こうして得た複合焼結体は、ダイヤモンド焼結
体とMo中間層と超硬合金基体が強固に接着していた。
Example 3 In a container similar to Example 1, a cemented carbide substrate similar to Example 1, a Mo disk with a diameter of 11 ψ mm and a thickness of 0.1 mm, and a grain size distribution of 0.1 μm or more to less than 1 μm were placed. %, 1μm
25% is between 2 μm and less than 4 μm, 30% is between 4 μm and less than 6 μm, 5% is between 6 μm and less than 8 μm, and 5% is between 8 μm and less than 10 μm.
Diamond mixed powder with diameter 11ψ and thickness 0.06
mm of Ni-based amorphous alloy (NisI CO23Crto
Mo7 Fes, 513a, s) disks were stacked and packed in this order, covered with a Zr disk, and preheated by holding at 700'C for 30 minutes in a 10-4 Hf vacuum. Immediately set this Zr container in a high pressure device and
pressure, 50K after holding for 10 minutes at a temperature of 1320℃
The sintered body was rapidly cooled to 1000° C. or lower at the pressure shown in b, and then the pressure and temperature were lowered to normal pressure and room temperature, and the sintered body was taken out from the container. In the thus obtained composite sintered body, the diamond sintered body, the Mo intermediate layer, and the cemented carbide base were firmly adhered to each other.

ダイヤモンド焼結体中のダイヤモンド粒子は互いに結合
しており、ダイヤモンド焼結体の硬さはヌープ硬さで7
000を示した以上の実施例のようを二本発明の工具用
ダイヤモンド焼結体は、高硬度、高靭性で切削工具とし
て使用した場合従来のダイヤモンド工具の約2倍の寿命
を有するものであり、その製造方法は工業生産が容易な
圧力、温度でしかも短時間で焼結できるものである。
The diamond particles in the diamond sintered body are bonded to each other, and the hardness of the diamond sintered body is 7 on the Knoop hardness scale.
The diamond sintered body for tools of the present invention has high hardness and high toughness, and has about twice the life of conventional diamond tools when used as a cutting tool. The manufacturing method allows sintering to be performed at pressures and temperatures that are easy for industrial production, and in a short period of time.

特許出願人 東芝夕ンガロイ株式会社Patent applicant: Toshiba Yungaroy Corporation

Claims (2)

【特許請求の範囲】[Claims] (1) 鉄、ニッケル、コバルトの少なくとも1種を主
成分として含む金属又は合金0.1〜5容積%と残りダ
イヤモンドからなる焼結体にふいて、該ダイヤモンドの
粒子が0.1μm以上〜1μm未満のもの10%と1μ
m以上〜2μm未満のもの20〜30%と2μm以上〜
6μm未満のもの20〜60%と6μm以上〜10μm
以下のもの10〜40%とからなることを特徴とする工
具用ダイヤモンド焼結体。
(1) A sintered body consisting of 0.1 to 5% by volume of a metal or alloy containing at least one of iron, nickel, and cobalt as a main component and the remainder diamond, and the diamond particles are 0.1 μm or more to 1 μm in size. less than 10% and 1μ
20-30% of those with a diameter of m or more and less than 2 μm and those with a diameter of 2 μm or more
20 to 60% less than 6 μm and 6 μm or more to 10 μm
A diamond sintered body for tools, characterized by comprising 10 to 40% of the following:
(2) 粒子径が0.1μm以上〜1μm未満のもの1
0%と1μm以上〜2μm未満のもの20〜30%と2
μm以上〜6μm未満のもの20〜60%と6μm以上
〜10μm以下のもの10〜40%とからなるダイヤモ
ンド粉末と鉄、ニッケル、コバルトの少なくとも1種を
主成分として含む金属又は合金からなる薄板とを互いに
接して容器内に設置し、該容器を熱力学的ダイヤモンド
安定領域内又はダイヤモンド−黒鉛平衡線付近の黒鉛安
定領域内でかつ前記薄板と前記ダイヤモンド粉末が反応
する温度以上に加圧加熱することを特徴とする工具用ダ
イヤモンド焼結体の製造方法。
(2) Particles with a particle size of 0.1 μm or more and less than 1 μm 1
0% and 1 μm or more to less than 2 μm 20-30% and 2
A thin plate made of a metal or alloy containing at least one of iron, nickel, and cobalt as a main component, and a diamond powder consisting of 20 to 60% of diamond powder of 20 to 60% of diamond powder of μm or more and less than 6 μm and 10 to 40% of diamond powder of 6 μm or more to less than 10 μm. are placed in contact with each other in a container, and the container is heated under pressure to a temperature within the thermodynamic diamond stability region or within the graphite stability region near the diamond-graphite equilibrium line and above the temperature at which the thin plate and the diamond powder react. A method for manufacturing a diamond sintered body for tools, characterized by:
JP22795983A 1983-12-02 1983-12-02 Diamond sintered body for tool and its production Pending JPS60121251A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22795983A JPS60121251A (en) 1983-12-02 1983-12-02 Diamond sintered body for tool and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22795983A JPS60121251A (en) 1983-12-02 1983-12-02 Diamond sintered body for tool and its production

Publications (1)

Publication Number Publication Date
JPS60121251A true JPS60121251A (en) 1985-06-28

Family

ID=16868937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22795983A Pending JPS60121251A (en) 1983-12-02 1983-12-02 Diamond sintered body for tool and its production

Country Status (1)

Country Link
JP (1) JPS60121251A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6324003A (en) * 1986-07-16 1988-02-01 Mitsubishi Metal Corp Composite cutting tip
EP0779129A3 (en) * 1995-12-12 1998-01-14 General Electric Company Method for producing abrasive compact with improved properties
US7866418B2 (en) 2008-10-03 2011-01-11 Us Synthetic Corporation Rotary drill bit including polycrystalline diamond cutting elements
US10287822B2 (en) 2008-10-03 2019-05-14 Us Synthetic Corporation Methods of fabricating a polycrystalline diamond compact
US10507565B2 (en) 2008-10-03 2019-12-17 Us Synthetic Corporation Polycrystalline diamond, polycrystalline diamond compacts, methods of making same, and applications
CN113201675A (en) * 2021-04-20 2021-08-03 深圳西斯特科技有限公司 Metal adhesive scribing knife and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5212126A (en) * 1975-07-16 1977-01-29 Hitachi Chem Co Ltd Process for preparation of methacrylic acid
JPS5792579A (en) * 1980-11-28 1982-06-09 Sumitomo Electric Industries Diamond sintered body for dice and manufacture
JPS5891056A (en) * 1981-11-25 1983-05-30 住友電気工業株式会社 Diamond sintered body for tools and manufacture
JPS5896848A (en) * 1981-12-02 1983-06-09 Sumitomo Electric Ind Ltd High hardness sintered body for tool and its manufacture

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5212126A (en) * 1975-07-16 1977-01-29 Hitachi Chem Co Ltd Process for preparation of methacrylic acid
JPS5792579A (en) * 1980-11-28 1982-06-09 Sumitomo Electric Industries Diamond sintered body for dice and manufacture
JPS5891056A (en) * 1981-11-25 1983-05-30 住友電気工業株式会社 Diamond sintered body for tools and manufacture
JPS5896848A (en) * 1981-12-02 1983-06-09 Sumitomo Electric Ind Ltd High hardness sintered body for tool and its manufacture

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6324003A (en) * 1986-07-16 1988-02-01 Mitsubishi Metal Corp Composite cutting tip
EP0779129A3 (en) * 1995-12-12 1998-01-14 General Electric Company Method for producing abrasive compact with improved properties
US7866418B2 (en) 2008-10-03 2011-01-11 Us Synthetic Corporation Rotary drill bit including polycrystalline diamond cutting elements
US8020645B2 (en) 2008-10-03 2011-09-20 Us Synthetic Corporation Method of fabricating polycrystalline diamond and a polycrystalline diamond compact
US8158258B2 (en) 2008-10-03 2012-04-17 Us Synthetic Corporation Polycrystalline diamond
US9932274B2 (en) 2008-10-03 2018-04-03 Us Synthetic Corporation Polycrystalline diamond compacts
US10287822B2 (en) 2008-10-03 2019-05-14 Us Synthetic Corporation Methods of fabricating a polycrystalline diamond compact
US10507565B2 (en) 2008-10-03 2019-12-17 Us Synthetic Corporation Polycrystalline diamond, polycrystalline diamond compacts, methods of making same, and applications
US10508502B2 (en) 2008-10-03 2019-12-17 Us Synthetic Corporation Polycrystalline diamond compact
US10961785B2 (en) 2008-10-03 2021-03-30 Us Synthetic Corporation Polycrystalline diamond compact
CN113201675A (en) * 2021-04-20 2021-08-03 深圳西斯特科技有限公司 Metal adhesive scribing knife and preparation method thereof

Similar Documents

Publication Publication Date Title
US5468268A (en) Method of making an abrasive compact
CA1275175C (en) Polycrystalline diamond and cbn cutting tools
JPS6121974A (en) Composite polycrystal diamond
US4702649A (en) Polycrystalline diamond and CBN cutting tools
JP2004505786A (en) Manufacturing method of polishing products containing diamond
JPH02160429A (en) Super-abrasive cutting element
WO2009128034A1 (en) Super-hand enhanced hard-metals
JP2004074398A (en) Manufacturing method of abrasive compact
EP0253603B1 (en) Composite diamond abrasive compact
KR20050072753A (en) Method for producing a sintered, supported polycrystalline diamond compact
US4652183A (en) Amorphous boron-carbon alloy tool bits and methods of making the same
JPH0530897B2 (en)
US4626407A (en) Method of making amorphous boron carbon alloy cutting tool bits
JPS60121251A (en) Diamond sintered body for tool and its production
JPH0368938B2 (en)
JP2858600B2 (en) Sintered materials for tools
JP2020059079A (en) Sintered material split body, cutting tool element using sinter material split body, and method of manufacturing the same
JPS6022680B2 (en) Composite sintered body for tools and its manufacturing method
JPS62105911A (en) Hard diamond mass and production thereof
JPH0551261A (en) Sintering material for tool
JPS5916942A (en) Composite diamond-sintered body useful as tool and its manufacture
JPH08336705A (en) Cutting tool made of cubic boron nitride sintered body with cutting face of cutter showing excellent wearing resistance
JPS6146540B2 (en)
JP2003211361A (en) Diamond polished body, single crystal diamond and diamond sintered body obtained by diamond polishing wheel
JPS5818988B2 (en) Sintered body for tools and its manufacturing method