JPS5891056A - Diamond sintered body for tools and manufacture - Google Patents

Diamond sintered body for tools and manufacture

Info

Publication number
JPS5891056A
JPS5891056A JP56189753A JP18975381A JPS5891056A JP S5891056 A JPS5891056 A JP S5891056A JP 56189753 A JP56189753 A JP 56189753A JP 18975381 A JP18975381 A JP 18975381A JP S5891056 A JPS5891056 A JP S5891056A
Authority
JP
Japan
Prior art keywords
diamond
sintered body
less
tools
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56189753A
Other languages
Japanese (ja)
Inventor
哲男 中井
矢津 修示
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP56189753A priority Critical patent/JPS5891056A/en
Publication of JPS5891056A publication Critical patent/JPS5891056A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 近年、超高圧焼結技術の発達により種々のダイヤモンド
焼結体が製造、販売されている。これらのダイヤモンド
焼結体は単結晶ダイヤモンド工具のように襞間による破
壊が少なく、また大寸法のものが得られるため非鉄金属
の切削、線引ダイスあるいは掘削工具用途として一部に
使用され好評を博している。しかしながらこれらのダイ
ヤモンド焼結体も厳しい条14−下で使用する場合、た
とえば強度の高い岩石の掘削や硬度の高い線材の伸線な
どでは微粒ダイヤモンド焼結体ではダイヤモンド粒子が
脱落して摩耗が多くなり、一方粗粒ダイヤモンド焼結体
ではダイヤモンド粒子の脱落は少ないものの焼結体中の
個々のダイヤモンド粒子−が単結晶体であるため粒子が
襞間して欠損するという問題がある。本発明はこの欠点
を改良することにより耐摩耗性と靭性にすぐれたダイヤ
モンド焼結体を得ようとするものである。まず本発明者
等は粗粒ダイヤモンド焼結体でダイヤモンド粒子の欠損
が少ないものについて検討を加えた。粗粒ダイヤモンド
粒子が単結晶であるために襞間し欠損するならばダイヤ
モンド粒子として単結晶を用いず微aなダイヤモンド粒
子の強固な集合体である多結晶体を用いれば良いと思わ
れた。そこで粒度的0.01 ttrr−の殆んど結合
材を含まない微細ダイヤモンド粒子の集合体で粒度] 
511の衝撃波法により得られたダイヤモンド粒子のみ
を特公昭52−12126に開示されている方法でダイ
ヤモンド焼結体を作成した。このダイヤモンド焼結体の
組織を観察したところ第1図に示す如く多結晶ダイヤモ
ンド粒子が異状な粒成長をし不均一であり、衝撃波法に
より作成したダイヤモンド粒子はこの方法では満足なも
のが得られないことがわかった。
DETAILED DESCRIPTION OF THE INVENTION In recent years, with the development of ultra-high pressure sintering technology, various diamond sintered bodies have been manufactured and sold. Unlike single-crystal diamond tools, these diamond sintered bodies are less prone to breakage due to creases and can be made in large sizes, making them popular for their use in cutting non-ferrous metals, wire drawing dies, and drilling tools. I am making money. However, when these diamond sintered bodies are used under severe conditions, such as when drilling high-strength rocks or drawing hard wire rods, fine-grained diamond sintered bodies tend to wear out due to diamond particles falling off. On the other hand, in the case of a coarse-grained diamond sintered body, although the number of diamond particles falling off is small, since each diamond particle in the sintered body is a single crystal, there is a problem in that the particles become interfolded and chipped. The present invention aims to improve this drawback to obtain a diamond sintered body with excellent wear resistance and toughness. First, the present inventors investigated a coarse-grained diamond sintered body with fewer diamond particle defects. If the coarse diamond grains are single crystals and cause folds and defects, it would be better to use polycrystalline diamond grains, which are strong aggregates of fine diamond grains, instead of using single crystals as the diamond grains. Therefore, the particle size is an aggregate of fine diamond particles containing almost no binder with a particle size of 0.01 ttrr]
A diamond sintered body was produced using only the diamond particles obtained by the shock wave method of No. 511 by the method disclosed in Japanese Patent Publication No. 52-12126. When the structure of this diamond sintered body was observed, as shown in Figure 1, the polycrystalline diamond particles had abnormal grain growth and were non-uniform, and the diamond particles produced by the shock wave method were found to be satisfactory. I found out that there isn't.

このダイヤモンド粒子が異状に粒成長するのは個々のダ
イヤモンド粒子が0.0111m と非常に細かいため
表面エネルギーが高く、焼結時にこれらの多結晶rjJ
の個々の粒子が急速に粒成長して相互に接合しているた
めであろう。そこでこれらの粒子が直接接合するのを防
止すれば粒成長を抑制することができると考えられる。
The reason why these diamond particles grow abnormally is because each diamond particle is extremely fine, measuring 0.0111 m, and has a high surface energy.
This is probably due to the rapid growth of the individual grains and their mutual bonding. Therefore, it is thought that grain growth can be suppressed by preventing these grains from directly joining together.

この直接接合を防止する物質はダイヤモンドと強固に結
合しさらに強度や耐摩耗性に優れる物質でなければなら
ない。
The substance that prevents this direct bonding must be a substance that strongly bonds with diamond and has excellent strength and wear resistance.

この結合材について発明者等は研究を重ねた。The inventors have conducted repeated research on this binding material.

その結果、結合材として1μm以下の微粒ダイヤモンド
粒子と1μ扉以下の周期律表第4a、5a。
As a result, fine diamond particles of 1 μm or less and particles 4a and 5a of the periodic table of 1 μm or less were used as a binder.

6a族の炭化物、窒化物、硼化物あるいはこれらの固溶
体または混合物結晶および鉄族金属、あるいは、1μm
以下の周期律表第4.a、 5a、 6a族の炭化物、
窒化物、硼化物またはこれらの固溶体混合物結晶および
鉄族金属を用いれば粒成長が抑制5− でき、均一な組織を有した焼結体を作成することが可能
であることを発見した。
Group 6a carbides, nitrides, borides or solid solutions or mixtures thereof crystals and iron group metals, or 1 μm
Periodic table number 4 below. a, 5a, 6a group carbides,
It has been discovered that grain growth can be suppressed and a sintered body with a uniform structure can be created by using nitrides, borides, solid solution mixture crystals thereof, and iron group metals.

本発明焼結体の結合材で粒成長抑制の効果があるのは周
期律表第4a、5a、6a族の炭化物、窒化物、硼化物
あるいはこれらの固溶体または混合物である。ダイヤモ
ンド粒子の粒成長はダイヤモンドが安定な高温高圧下で
これを溶解する鉄族金属の存在する場合であり、この溶
解析出現象によるものであるkめ、周期律表第4a、5
a、6a族の炭化物と金属の割合がその共晶組成に相当
するものより炭化物の量を多くしておけば炭化物が固体
で残存し、粒成長抑制効果は良くなる。特に炭化物とし
てWCまたはWCと同一結晶構造を有する( Wo、 
W ) Cがその効果は最も大であった。
The binding materials for the sintered body of the present invention that are effective in suppressing grain growth are carbides, nitrides, and borides of Groups 4a, 5a, and 6a of the periodic table, or solid solutions or mixtures thereof. Grain growth of diamond particles occurs when there is an iron group metal that dissolves the diamond under high temperature and high pressure conditions, and is due to this dissolution precipitation phenomenon.
If the ratio of carbides and metals of groups A and 6a is greater than that corresponding to the eutectic composition, the carbides will remain in solid form and the effect of suppressing grain growth will be improved. In particular, carbides with WC or the same crystal structure as WC (Wo,
W)C had the greatest effect.

本発明の焼結体では衝撃波法により得られた多結晶ダイ
ヤモンド粒子の含有量は容量で20〜85係が良い。多
結晶ダイヤモンドの含有量が20幅未満であるとダイヤ
モンド焼結体の耐摩耗性が急激に低下し実用的でない。
In the sintered body of the present invention, the content of polycrystalline diamond particles obtained by the shock wave method is preferably 20 to 85% by volume. If the content of polycrystalline diamond is less than 20%, the wear resistance of the diamond sintered body decreases rapidly, making it impractical.

また多結晶ダイヤモンド粒子の含有量が85係を越える
と多結晶=6= ダイヤモンド同志が直接接触し粒成長する。
Further, when the content of polycrystalline diamond particles exceeds a coefficient of 85, polycrystalline = 6 = diamonds come into direct contact with each other and grains grow.

また結合材としては前述した如く耐摩耗性に優れている
必要があるが、結合材に微粒のダイヤモンド粒子を含有
させることによりその耐摩耗性は大巾に向」ニする。含
有させるダイヤモンド粒子の粒度は17tm以下が良い
。ダイヤモンド粒子の粒度が1J11rL以上であると
結合材中に均一に分散されなかったり、結合材の靭性が
低下する。このダイヤモンド粒子の含有量は結合材中の
容積で95係以下が良い。ダイヤモンド粒子の含有量が
95係を越えると結合材が脆くなったり、あるいは周期
律表第4a、5a、6a族の炭化物、窒化物、硼化物等
の含有量が減るため結合材中のダイヤモンド粒子のみな
らず多結晶ダイヤモンド粒子も粒成長し、目標とする性
能を得ることができない。特に結合材の耐摩耗性が必要
な場合、結合材中の微粒ダイヤモンド粒子の含有量を2
0係以上にすれば良い。
Furthermore, as described above, the binder must have excellent wear resistance, and by incorporating fine diamond particles into the binder, the wear resistance is greatly improved. The particle size of the diamond particles contained is preferably 17 tm or less. If the particle size of the diamond particles is 1J11rL or more, the diamond particles may not be uniformly dispersed in the binder or the toughness of the binder may decrease. The content of the diamond particles is preferably 95 or less by volume in the binder. If the content of diamond particles exceeds 95%, the binder becomes brittle, or the content of carbides, nitrides, borides, etc. in groups 4a, 5a, and 6a of the periodic table decreases, resulting in diamond particles in the binder. Not only that, but the polycrystalline diamond particles also grow, making it impossible to obtain the desired performance. In particular, when wear resistance of the binder is required, the content of fine diamond particles in the binder may be increased by 2.
It is better to set it to 0 or more.

本発明の結合材として使用するダイヤモンド粉末は11
1m以下のミクロンパウダーで合成ダイヤモンド、天然
ダイヤモンドのいずれでも良い。
The diamond powder used as the binding material of the present invention is 11
Micron powder with a size of 1 m or less can be either synthetic diamond or natural diamond.

このダイヤモンド粉末と衝撃波法により得られた3μm
以上の多結晶ダイヤモンド粒子および前記lヒ合物粉末
の1種又は2種以」−及びFe、 Co、 Niの鉄族
金属粉末を均一にボールミル等の手段を用いて混合する
。この鉄族金属は予め混合せずに焼結時に溶浸せしめて
も良い。また本発明者等の先願(特願昭52−5138
1号)の如くボールミル時のボットとボールを混入する
炭化物等の化合物と鉄族金属の焼結体で作成しておき、
ダイヤモンド粉末をボールミル粉砕すると同時にボット
とボールから炭化物等の化合物と鉄族金属の焼結体の微
測粉末を混入せしめる方法もある。
3 μm obtained using this diamond powder and shock wave method
The above-mentioned polycrystalline diamond particles, one or more of the above-mentioned arsenide powders, and iron group metal powders of Fe, Co, and Ni are uniformly mixed using a means such as a ball mill. This iron group metal may be infiltrated during sintering without being mixed in advance. In addition, the inventors' earlier application (Japanese Patent Application No. 52-5138
As in No. 1), the bots and balls used in a ball mill are made from a compound such as carbide and a sintered body of iron group metal.
There is also a method in which diamond powder is ground in a ball mill and, at the same time, a compound such as a carbide and a finely measured powder of a sintered body of an iron group metal are mixed in from a bot and a ball.

混合した粉末を超高圧装置に入れ、ダイヤモンドが安定
な条件下で焼結する。このとき使用した鉄族金属と炭化
物等の化合物間に生じる共晶液相の出現温度以」二で焼
結する必要がある。例えば化合物としてTiCを用い、
鉄族金属としてCoを用いた場合は常圧下では約I26
0°Cで液相が生じる。高圧下ではこの共晶温度は数十
°C程度」ユ昇するものと考えられている。従ってこの
場合は1300°C以上の温度で焼結される。焼結体中
のダイヤモンドの結合材となる炭化物等の化合物と鉄族
金属の割合は一義的tζは定められないが、少くとも焼
結時に化合物が固体として存在するだけの量は必要であ
り、例えばWCを化合物として用いCoを結合金属とし
た場合はWCとCo の量的割合は前者を重量で50係
以上含む必要がある。
The mixed powder is placed in an ultra-high-pressure device and sintered under conditions where the diamond is stable. It is necessary to sinter at a temperature higher than the temperature at which a eutectic liquid phase appears between the iron group metal used at this time and a compound such as a carbide. For example, using TiC as a compound,
When Co is used as the iron group metal, it is approximately I26 under normal pressure.
A liquid phase forms at 0°C. Under high pressure, this eutectic temperature is thought to rise by several tens of degrees Celsius. Therefore, in this case, sintering is performed at a temperature of 1300°C or higher. Although the ratio tζ of compounds such as carbides and iron group metals that serve as binding materials for diamond in the sintered body cannot be determined unambiguously, it is necessary that the amount is at least sufficient for the compound to exist as a solid during sintering. For example, when WC is used as a compound and Co is used as a bonding metal, the quantitative ratio of WC and Co must include 50 parts or more by weight of the former.

本発明のダイヤモンド焼結体は高強度の線材を線引きす
る場合、焼結ダイヤモンドダイス内面には高圧力が発生
するが、ダイヤモンド焼結体の外径が小さく肉厚かうす
くなる場合は、伸線中にダイヤモンド焼結体が縦方向に
割れることがある。
When the diamond sintered body of the present invention is used to draw a high-strength wire rod, high pressure is generated on the inner surface of the sintered diamond die. The diamond sintered body may crack in the vertical direction.

このような場合はダイヤモンド焼結体の外周を超硬合金
等の支持体で包囲してダイヤモンド焼結体の外周から予
圧を加えることにより伸線中の縦割れを防IFすること
が可能である。
In such cases, it is possible to prevent vertical cracking during wire drawing by surrounding the outer periphery of the diamond sintered body with a support such as cemented carbide and applying preload from the outer periphery of the diamond sintered body. .

本発明の焼結体の用途としては、ダイスの他に切削工具
や掘削工具にも使用できる。この場合、ダイヤモンド焼
結体の靭性をさらに向上させるた9− め、超硬合金等の支持体に超高圧焼結中に接合させるこ
とも可能である。
The sintered body of the present invention can be used not only for dies but also for cutting tools and excavating tools. In this case, in order to further improve the toughness of the diamond sintered body, it is also possible to bond it to a support such as cemented carbide during ultra-high pressure sintering.

以下実施例により、具体的に説明する。This will be specifically explained below using examples.

実施例1 粒度0.5μの合成ダイヤモンド粉末とWC及びCO粉
末を、W C−Co超硬合金製のボットとボールを用い
て粉砕混合した。得られた混合粉末の組成は、平均粒度
0.3μmの微粒ダイヤモンド80容量係、WCl2容
量係、Co8容量係であった。
Example 1 Synthetic diamond powder with a particle size of 0.5μ and WC and CO powders were pulverized and mixed using a WC-Co cemented carbide bot and ball. The composition of the obtained mixed powder was 80 volumes of fine diamond with an average particle size of 0.3 μm, 2 volumes of WCl, and 8 volumes of Co.

この混合粉末と粒度15μmの衝撃波法により得られた
多結晶ダイヤモンドを容積で4・=6に混合した。この
完成粉末をWC−IQ%co  の容器に詰め、超高圧
装置を用いて先ず圧力を55 Kl〕  加え、引続い
て14・50°Cに加熱して20分間保持した。
This mixed powder and polycrystalline diamond obtained by the shock wave method with a particle size of 15 μm were mixed in a volume of 4·=6. The finished powder was packed in a WC-IQ%co container, and a pressure of 55 Kl was first applied using an ultra-high pressure device, followed by heating to 14.50°C and holding for 20 minutes.

焼結体を取出して組織観察したところ、第2図に示した
如く粒度15μの多結晶ダイヤモンドは粒成長しておら
ず結合材に強固に接合していた。
When the sintered body was taken out and its structure was observed, as shown in FIG. 2, the polycrystalline diamond with a grain size of 15 μm had not grown and was firmly bonded to the binder.

この焼結体を用いて穴径0.175 柵の焼結ダイヤモ
ンドダイスを作成した。なお比較のため、市販=■〇− の粒度30−60μmの粒度の単結晶ダイヤモンド粒子
をCOで結合したダイヤモンド焼結体のダイスも作成し
た。これらのダイスを用いて線速800m/m i n
、潤滑油中で真鍮メッキした鋼線を伸線した。市販のダ
イヤモンド焼結体より製造したダイスは4.50Ky、
伸線した時点で線表面に縦傷が入り寿命になったのに対
し、本発明焼結体は3000 Np伸線しても未だ線材
表面の傷は少なかった。
A sintered diamond die with a hole diameter of 0.175 was made using this sintered body. For comparison, a diamond sintered die was also prepared in which commercially available single crystal diamond particles having a grain size of 30 to 60 μm were bonded with CO. Linear speed of 800m/min using these dies
, Brass-plated steel wire was drawn in lubricating oil. The die manufactured from a commercially available diamond sintered body is 4.50 Ky,
At the time of wire drawing, vertical scratches appeared on the wire surface and the wire surface reached the end of its service life, whereas in the sintered body of the present invention, even after 3000 Np wire drawing, there were still few scratches on the wire surface.

実施例2 表1に示す結合材を作成した。微粒ダイヤモンドとして
はQ、 5 JirrLのものを用いた。
Example 2 A bonding material shown in Table 1 was prepared. As the fine diamond, one of Q, 5 JirrL was used.

この結合材と粒度3μm以上の多結晶ダイヤモンド粒子
を表2に示す割合で混合して完成粉末を作成した。これ
らの完成粉末を実施例1と同様にして焼結した後組織観
察を行った。焼結体イ及び力はダイヤモンド粒子の粒成
長が観察された。
This binder and polycrystalline diamond particles having a particle size of 3 μm or more were mixed in the ratio shown in Table 2 to prepare a finished powder. These finished powders were sintered in the same manner as in Example 1, and then their structures were observed. Grain growth of diamond particles was observed in the sintered body.

次にこれらの焼結体を用いて、穴径0.25 wmのダ
イスを作成し、線速800m/分潤滑油中で真鍮メッキ
した鋼線を伸線した。その結果も合わせて表2に示す。
Next, a die with a hole diameter of 0.25 wm was prepared using these sintered bodies, and a brass-plated steel wire was drawn in lubricating oil at a linear speed of 800 m/min. The results are also shown in Table 2.

なお比較のため粒度30〜60 timのダ表  1 表  2 □□□□−−−−4 イヤモンド粒子をCoで結合した市販のダイヤモンド焼
結体及び超硬合金のダイスも作成し同時にテストしたと
ころそれぞれ1200KPと4・OOπノであった。
For comparison, a commercially available diamond sintered body with diamond particles bonded with Co and a cemented carbide die with a grain size of 30 to 60 tim were also created and tested at the same time. They were 1200 KP and 4.OOπノ, respectively.

実施例3 表3に示す結合材粉末を作成した。Example 3 A binder powder shown in Table 3 was prepared.

表8 この結合材粉末と粒度3μm以上の衝撃波法により得ら
れた多結晶ダイヤモンド粒子を表4・に示す割合で混合
して完成粉末を作成した。この完成粉−14,− 末をMO製の容器にWC−7%Coの円板を入れた後充
填し、超高圧装置を用いて55Kl)1450°Cで2
0分間焼結した。この焼結体を用いて切削用のバイトを
作成し、−軸圧縮張度1300 K9/an”の花崗岩
を速度35 m/min、切込み1+l1111送り0
.5+nm/回転で切削液を使用し60分間切削した。
Table 8 This binder powder and polycrystalline diamond particles obtained by the shock wave method with a particle size of 3 μm or more were mixed in the proportions shown in Table 4 to prepare a finished powder. This finished powder-14,- powder was filled into an MO container after putting a WC-7% Co disc therein, and heated to 55 Kl at 1450°C using an ultra-high pressure device.
Sintered for 0 minutes. A cutting tool was created using this sintered body, and the granite with a -axial compressive tension of 1300 K9/an was cut at a speed of 35 m/min, depth of cut of 1 + l1111, feed of 0.
.. Cutting was performed using cutting fluid at 5+nm/rev for 60 minutes.

その結果も合わせて表4・に示す。なお、比較のため粒
度的100 JttrLのダイヤモンド粒子をCOで結
合した市販の掘削工具用ダイヤモンド焼結体についても
テストしたが11分切削した時点で刃先が欠損してしま
った。
The results are also shown in Table 4. For comparison, a commercially available diamond sintered body for excavation tools in which diamond particles with a grain size of 100 JttrL were bonded with CO was also tested, but the cutting edge broke off after 11 minutes of cutting.

表4゜ 実施例1・ 実施例1で作成した結合材粉末と粒度50μnLの衝撃
波法により得られた多結晶ダイヤモンド粒子を7=3に
混合し、この完成粉末を実施例3と同様にして焼結し、
この焼結体を用いて掘削用ドリルビットを作成し安山岩
を回転速度2 Q m 7分、掘進率10〜15(7)
7分 泥水を用いて掘削した。
Table 4゜Example 1 The binder powder prepared in Example 1 and polycrystalline diamond particles obtained by the shock wave method with a particle size of 50 μnL were mixed in a ratio of 7=3, and this finished powder was sintered in the same manner as in Example 3. Tie,
A drill bit for excavation was made using this sintered body, and the rotation speed of andesite was 2 Q m for 7 minutes, and the drilling rate was 10 to 15 (7).
7 minutes Excavation using muddy water.

比較のため実施例3で用いた市販の焼結ダイヤモンドビ
ットも作成し同条件でテストした。その結果本発明焼結
体は50m掘削できんのに対し市販の焼結ダイヤモンド
ビットは10n′Lしか掘削できなかった。
For comparison, the commercially available sintered diamond bit used in Example 3 was also prepared and tested under the same conditions. As a result, the sintered body of the present invention could not excavate 50 m, whereas the commercially available sintered diamond bit could only excavate 10 n'L.

実施例5 実施例]で作成した結合材粉末と粒度3 lt衝撃波法
により得られた多結晶ダイヤモンド粉末を容量比で60
 : 4.0に混合し、この粉末を′Fa製の容器に詰
めて53 K+)、14.oo′cで10分間超高圧焼
結した。この焼結体を用いて切削用のバイトを作成し、
局−25係S+を速度300 m/m目1、切込み0.
5論、送り0.2町/r c vで60分間切削した。
Example 5 The binder powder prepared in Example] and the polycrystalline diamond powder obtained by the particle size 3 lt shock wave method were mixed in a volume ratio of 60
: Mix 4.0 and pack this powder into a container made of 'Fa.53 K+), 14. Ultra-high pressure sintering was carried out at oo'c for 10 minutes. This sintered body is used to create a cutting tool,
Station -25 S+ at speed 300 m/m 1st, depth of cut 0.
5. Cutting was carried out for 60 minutes at a feed rate of 0.2 towns/rcv.

比較のため、3〜8μ71Lのダイヤモンド粒子をC。For comparison, diamond particles of 3 to 8μ71L were used as C.

で結合した市販のダイヤモンド焼結体についてもテスト
シた。その結果、本発明焼結体で切削した被削面は非常
になめらかであり、逃げ面摩耗中が0、03−mであっ
たのに対し、市販の焼結体は被削面も粗く、逃げ面摩耗
「1]は0.05 mmであった。
Tests were also conducted on commercially available diamond sintered bodies bonded with As a result, the work surface cut with the sintered body of the present invention was extremely smooth, with flank wear of 0.03-m, whereas the work surface of the commercially available sintered body was rough and the flank wear was 0.03-m. Wear "1" was 0.05 mm.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は衝撃波法により得られた多結晶ダイヤモンド粒
子に結合材を溶浸させて作成したダイヤモンド焼結体の
組織写真であり、第2図は本発明のダイヤモンド焼結体
の組織写真である。 17− 芳1図 第2図 0Q
Figure 1 is a photograph of the structure of a diamond sintered body created by infiltrating polycrystalline diamond particles obtained by the shock wave method with a binder, and Figure 2 is a photograph of the structure of the diamond sintered body of the present invention. . 17- Yoshi 1 Figure 2 0Q

Claims (1)

【特許請求の範囲】 (J、)粒度3μ雇以上の衝撃波法により得られた多結
晶ダイヤモンド粒子を容量で20係以上85係以下含有
し、残部が1μ島以下の超微粒ダイヤモンド粒子を容量
で20〜95係と1μm以下の周期律第4a、5a、6
a族の炭化物、窒化物、硼化物あるいはこれらの固溶体
または混合物結晶及び鉄族金属から構成される結合材よ
り成る工具用ダイヤモンド焼結体。 (2、特許請求の範囲第1項または第2項記載の焼結体
において、結合材の一部として用いる周期律表第4a、
5a、6a族金属の炭化物と鉄族金属の割合が、その共
晶組成に相当するものより炭化物含有量が多いことを特
徴とする工具用ダイヤモンド焼結体。 (3)結合材の一部として使用する炭化物がWCまたは
これと同一結晶構造を有する( Mo、 W )Cであ
ることを特徴とする特許請求の範囲第1項、第2項また
は第3項記載の工具用ダイヤモンド焼結体。 (4)粒度8μm以」二の衝撃波法により得られた多結
晶ダイヤモンド粉末、1μm以下の超微粒ダイヤモンド
粉末、1μ痛以下の周期律表第4a、 5a。 6a族金属の炭化物、窒化物、硼化物及びこれらの固溶
体または混合物粉末の一種または二種具」−と鉄族金属
の混合粉末を作成し、超高圧高温装置を用いてダイヤモ
ンドが安定な高温、高圧下でホットプレスすることを特
徴とする、粒度3111rL以」−の衝撃波法により得
られた多結晶ダイヤモンド粒子が容量で20係以上85
係を占め、残部が1μm以下の超微粒ダイヤモンドを容
量で20係以上95係以下と、lμnL以下の周期律表
第4.a。 5a、6a族金属の炭化物、窒化物、硼化物あるいはこ
れらの固溶体または混合物結晶及び鉄族金属から構成さ
れる結合材からなる工具用ダイヤモンド焼結体の製造方
法。 (5)特許請求の範囲第4.項記載の製造方法に先・い
て、結合材形成粉末の一部として用いる周期律表第4・
a、5a、Ga族金属の炭化物と鉄族金属の割合がその
共晶組成に相当するものより炭化物の量を多くした混合
粉末を用い、炭化物と鉄族金属の共晶生成温度以」二で
超微粒ダイヤモンドの粒成長を抑制して焼結することを
特徴とする工具用ダイヤモンド焼結体の製造方法。 (6)結合材として使用する炭化物がWCまたはこれと
同一結晶構造を有する(へ4o、 W) Cを用いるこ
とを特徴とする特許請求範囲第44項または第5項記載
の工具用ダイヤモンド焼結体の製造方法。
[Claims] (J,) Contains polycrystalline diamond particles obtained by a shock wave method with a grain size of 3 μm or more, with a volume of 20 to 85 modulus, and the remainder contains ultrafine diamond particles with a volume of 1 μm or less. Sections 20-95 and Periodic Laws 4a, 5a, 6 of 1 μm or less
A diamond sintered body for tools comprising a binder composed of group A carbides, nitrides, borides, solid solutions or mixture crystals thereof, and iron group metals. (2. In the sintered body according to claim 1 or 2, No. 4a of the periodic table used as a part of the binding material,
A diamond sintered body for tools, characterized in that the ratio of carbides of group 5a and 6a metals to iron group metals is higher than that corresponding to the eutectic composition thereof. (3) Claims 1, 2, or 3, characterized in that the carbide used as part of the binder is WC or (Mo, W)C having the same crystal structure as WC. The described diamond sintered body for tools. (4) Polycrystalline diamond powder obtained by the shock wave method with a particle size of 8 μm or less, ultrafine diamond powder with a particle size of 1 μm or less, and particles 4a and 5a of the periodic table with a particle size of 1 μm or less. A mixed powder of 6a group metal carbides, nitrides, borides, and solid solutions or mixtures thereof and iron group metals is prepared, and an ultra-high pressure and high temperature device is used to heat the diamond at a high temperature at which it is stable. Polycrystalline diamond particles obtained by the shock wave method with a grain size of 3111 rL or more, characterized by hot pressing under high pressure, have a volume of 20 modulus or more 85
Ultrafine diamonds with a volume of 20 to 95 and 1μnL or less are ultrafine diamonds with a volume of 20 to 95 and 1 μm or less, and the remainder is 1 μm or less. a. A method for manufacturing a diamond sintered body for a tool, which is made of a binder made of a carbide, nitride, or boride of a group 5a or 6a metal, or a solid solution or mixture crystal thereof, and an iron group metal. (5) Claim 4. Prior to the manufacturing method described in section 4, the periodic table 4.
a, 5a, using a mixed powder in which the ratio of Ga group metal carbide and iron group metal is larger than that corresponding to the eutectic composition, A method for producing a diamond sintered body for tools, characterized by sintering ultrafine diamond while suppressing grain growth. (6) Diamond sintering for tools according to claim 44 or 5, characterized in that the carbide used as the binder is WC or (He4o, W)C having the same crystal structure as WC. How the body is manufactured.
JP56189753A 1981-11-25 1981-11-25 Diamond sintered body for tools and manufacture Pending JPS5891056A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56189753A JPS5891056A (en) 1981-11-25 1981-11-25 Diamond sintered body for tools and manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56189753A JPS5891056A (en) 1981-11-25 1981-11-25 Diamond sintered body for tools and manufacture

Publications (1)

Publication Number Publication Date
JPS5891056A true JPS5891056A (en) 1983-05-30

Family

ID=16246598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56189753A Pending JPS5891056A (en) 1981-11-25 1981-11-25 Diamond sintered body for tools and manufacture

Country Status (1)

Country Link
JP (1) JPS5891056A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60121251A (en) * 1983-12-02 1985-06-28 Toshiba Tungaloy Co Ltd Diamond sintered body for tool and its production
JP2006167893A (en) * 2004-12-20 2006-06-29 Sodick Co Ltd Electrode for electric discharge machining and electric discharge machining method
US20130333297A1 (en) * 2010-09-17 2013-12-19 Varel Europe S.A.S. High toughness thermally stable polycrystalline diamond

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6411703A (en) * 1987-07-02 1989-01-17 Mitsubishi Metal Corp Twist drill

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6411703A (en) * 1987-07-02 1989-01-17 Mitsubishi Metal Corp Twist drill

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60121251A (en) * 1983-12-02 1985-06-28 Toshiba Tungaloy Co Ltd Diamond sintered body for tool and its production
JP2006167893A (en) * 2004-12-20 2006-06-29 Sodick Co Ltd Electrode for electric discharge machining and electric discharge machining method
JP4575134B2 (en) * 2004-12-20 2010-11-04 株式会社ソディック Electric discharge machining electrode and electric discharge machining method
US20130333297A1 (en) * 2010-09-17 2013-12-19 Varel Europe S.A.S. High toughness thermally stable polycrystalline diamond

Similar Documents

Publication Publication Date Title
US20220411900A1 (en) Superhard constructions & methods of making
US5880382A (en) Double cemented carbide composites
US20100104874A1 (en) High pressure sintering with carbon additives
US8069936B2 (en) Encapsulated diamond particles, materials and impregnated diamond earth-boring bits including such particles, and methods of forming such particles, materials, and bits
US20090000208A1 (en) Composite Material
US20230135812A1 (en) Superhard constructions and methods of making same
GB2315777A (en) Double cemented carbide composites
EP1546423A1 (en) Method for producing a sintered, supported polycrystalline diamond compact
JPH0333675B2 (en)
WO2016107915A9 (en) Superhard components and powder metallurgy methods of making same
KR101468852B1 (en) Super-hard construction and method for making same
US10208542B2 (en) Polycrystalline compacts, earth-boring tools including such compacts, and methods of fabricating polycrystalline compacts
JPH0530897B2 (en)
JPS5891056A (en) Diamond sintered body for tools and manufacture
US20190344350A1 (en) Superhard constructions & methods of making same
JPS58199776A (en) Diamond sintered body for tool and manufacture
US8858665B2 (en) Method for making fine diamond PDC
JPS6350401B2 (en)
JPS6319585B2 (en)
JPS6411703B2 (en)
JPH0377151B2 (en)
JPS58213676A (en) Diamond sintered body for tool and manufacture
JPH0312123B2 (en)
JPS5899169A (en) Diamond sintered body for tool and manufacture
JPS5899168A (en) Diamond sintered body for tool and manufacture