【発明の詳細な説明】[Detailed description of the invention]
〔産業上の利用分野〕
この発明は、高い耐摩耗性を有し、したがつて
バイトやプレス金型などの用途に使用できる、結
晶粒径が1mm以上の炭化チタン(以下、TiCで示
す)単結晶あるいは多結晶体からなる塊状体の製
造法に関する。
〔従来技術及びその問題点〕
従来、結晶粒径の大きな単結晶の製造方法とし
ては、溶融状態の物質をゆつくり回転させながら
引き上げて製造する回転引き上げ法が最も一般的
な方法として知られているが、この方法では、
TiCのような高融点物質の単結晶を作ることがで
きなかつた。
TiCの単結晶を作る方法としては、溶融Fe族金
属(NiやFe)中にTiあるいはTiの化合物とCを
添加して、Fe族金属中での溶解・析出機構を利
用して、TiC単結晶粗粉末を作るメンストラム法
があるが、この方法では、結晶粒径が1mm以上の
大きなTiCの単結晶を作るのは工業的に困難であ
つた。
又、一般に、融液凝固による多結晶体の製造法
も一部行われているが、この方法は無機酸化物多
結晶体の製造に限定されていた。
〔発明の目的及び知見事項〕
本発明者は、結晶粒径の大きなTiC塊状体を作
るべく研究を重ねた結果、上記従来の単結晶製造
方法や多結晶体製造法とは全く異なる極めて工業
的な方法であつて、しかも結晶粒径の大きなTiC
塊状体を製造する方法を発見した。
即ち、まずTiC粉末をプレス成形して、圧粉体
とし、この圧粉体にレーザービームを当てて、
TiC圧粉体全体を急激に溶融させ、その後凝固さ
せることにより、極めて短時間で結晶粒径の大き
なTiC単結晶あるいは多結晶体からなる塊状体を
製造することができることを見い出した。
〔発明の構成要件〕
以下、この発明の構成を説明する。
(i) プレス成形工程
プレス成形に用いられるTiC粉末の平均粒径
は0.5〜5.0μmが好ましい。TiC粉末の平均粒径
が0.5μm未満ではTiC中の酸素等の不純物量が
多くなるからであり、5.0μmを越えると圧縮性
が低下し、プレス成形性が悪くなるからであ
る。
そして、プレス成形は成形圧5〜30Kg/mm2で
行なうのが好ましい。
圧粉体の大きさは、溶融・凝固後の塊状体の
大きさをほぼ決定するものであるが、次工程の
レーザービームを当てる関係などから、直径が
30mm以下の大きさが好ましい。
(ii) 溶融・凝固工程
レーザービームは、例えば、波長10.6μmの
赤外線を発生するCO2ガスレーザー装置によつ
て、発生させられる。レーザービームは、圧粉
体上の1点に当てればよい。その1点で溶融が
始まり、体積収縮と融体の対流現象で次々と融
液が発生するのである。前記レーザー装置の出
力は5KJ/nsec以上と大きな出力でなければな
らず、前記の出力で好ましくは0.5〜10分間レ
ーザービームを当てることにより、圧粉体を急
激に溶融させる。そして、TiCの酸化等の好ま
しくない反応を避けるために、Arガスなどの
不活性ガス雰囲気中で溶融を行なうことが望ま
しい。その際の不活性ガス圧力は1気圧が好ま
しい。
そして、凝固はレーザービームを当てるのを
止めた後に自然冷却することにより行われる。
この発明の方法により、結晶粒径が1mm以上の
TiC単結晶あるいはTiC多結晶体からなる塊状体
が製造される。
〔実施例〕
以下、実施例を参考例とともに示すことによ
り、この発明の構成及び効果を詳しく説明する。
実施例 1
平均粒径1.5μmのTiC粉末を10Kg/mm2の圧力で
プレス成形して、外径が15mmで厚みが8mmの円板
状圧粉体を作成し、この圧粉体にAr雰囲気(Ar
ガス圧力:1気圧)中で出力10KJ/nsecのCO2
ガスレーザー装置から発生するレーザービームを
1分間照射した(照射のし方は、圧粉体上の中心
にレーザービームがくるようにするものである)。
この照射により圧粉体全体が溶融した。
その後、自然冷却により凝固させて、6.23gの
球状(直径:約7mm)の塊状体を製造した。
この塊状体の顕微鏡による組織観察とX線回折
を行なつたところ、この塊状体はTiCの単結晶で
あることが確認された。
実施例 2
平均粒径が2.0μmのTiC粉末を湿式粉砕して
1.0μmにした後、15Kg/mm2の圧力でプレス成形し
て、外径が20mmで厚みが20mmの円板状圧粉体を作
成し、この圧粉体にAr雰囲気(Arガス圧力:1
気圧)中で、実施例1と同一のCO2ガスレーザー
装置で、レーザービームを1.5分間照射した。こ
の照射により圧粉体全体が溶融した。
その後、自然冷却により凝固させて、27.69gの
TiC塊状体を製造した。
このTiC塊状体は、直径が約10mmの球状であ
り、TiCの結晶粒径が2.0mmの多結晶体であつた。
参考例 1
実施例1で得られたTiC単結晶からなる塊状体
より、5mm×5mm×3mmの大きさの直方体を切り
出して、これを切削工具用ホルダーにろう付けし
て、切刃形状がJIS表示で0゜、6゜、6゜、6゜、15゜、
15゜、0.4となるような本発明バイトを作成した。
このバイトを用いて、それぞれ下記のような条
件にて、微小切削試験及び一搬切削試験を行なつ
た。
<微小切削試験条件>
被削材:S50C(ブリネル硬さ:210)
切削速度:50m/分
送り:0.01m/rev.
切込み:0.2mm
切削時間:30時間
<一般切削試験条件>
被削材:SNCM439(ブリネル硬さ:220)
切削速度:180m/分
送り:0.2m/rev.
切込み:1.5mm
切削時間:60分
なお、微小切削試験の比較用として、それぞれ
市販のWC−8%Coの超微粒超硬合金とWC−6
%CoのK10超硬合金を切刃に有し、かつ切刃形
状は本発明バイトと同一のバイト(以下、それぞ
れ従来合金バイト1および2という)を作成し、
これらのバイトを用いて上記条件の微小切削試験
を行なつた。
又、一般切削試験の比較用として、それぞれ市
販のTiC−20%TiN−10%Mo2C−10%Niのサー
メツトとWC−18%TiC−5%TaC−7%Coの
P10超硬合金を切刃に有し、かつ切刃形状は本発
明バイトと同一のバイト(以下、それぞれ従来合
金バイト3および4という)を作成し、これらの
バイトを用いて上記条件の一般切削試験を行なつ
た。
いずれの試験においても切刃のフランク摩耗幅
とクレーター摩耗深さを測定し、その結果を第1
表に示した。
第1表に示されたように、本発明のTiC単結晶
からなるバイトは、従来合金バイト1〜4に比べ
て、極めてすぐれた耐摩耗性を有する。
参考例 2
実施例2で得られたTiCの多結晶体からなる塊
状体より、直径が5mmのベアリングのリテーナー
用のフオーミング金型をダイヤモンド砥石で研削
することで作成した。
この金型を用いて、あらかじめ所定の形状に打
[Industrial Application Field] This invention is directed to titanium carbide (hereinafter referred to as TiC) with a crystal grain size of 1 mm or more, which has high wear resistance and can be used for applications such as cutting tools and press molds. This invention relates to a method for producing a lump consisting of a single crystal or a polycrystal. [Prior art and its problems] Conventionally, the most common method for manufacturing single crystals with large grain size is the rotational pulling method, in which a molten substance is pulled up while being slowly rotated. However, with this method,
It has not been possible to create single crystals of high melting point materials such as TiC. The method of making a TiC single crystal is to add Ti or a Ti compound and C to a molten Fe group metal (Ni or Fe) and utilize the dissolution/precipitation mechanism in the Fe group metal. Although there is a menstrual method for producing coarse crystalline powder, it has been industrially difficult to produce large TiC single crystals with grain sizes of 1 mm or more using this method. Generally, some methods for producing polycrystals by melt solidification are also used, but this method is limited to the production of inorganic oxide polycrystals. [Objectives and findings of the invention] As a result of repeated research to produce TiC agglomerates with large crystal grain sizes, the present inventor has developed an extremely industrial method that is completely different from the conventional single crystal manufacturing method and polycrystalline manufacturing method. This is a method that can produce TiC with large grain size.
We have discovered a method to produce agglomerates. That is, first, TiC powder is press-molded to form a compact, and this compact is irradiated with a laser beam.
We have discovered that by rapidly melting the entire TiC compact and then solidifying it, it is possible to produce a lump of TiC single crystal or polycrystal with large grain size in an extremely short time. [Constituent elements of the invention] The configuration of this invention will be explained below. (i) Press molding process The average particle size of the TiC powder used in press molding is preferably 0.5 to 5.0 μm. This is because if the average particle size of the TiC powder is less than 0.5 μm, the amount of impurities such as oxygen in TiC increases, and if it exceeds 5.0 μm, compressibility decreases and press formability deteriorates. The press molding is preferably carried out at a molding pressure of 5 to 30 kg/mm 2 . The size of the green compact largely determines the size of the lump after melting and solidification, but the diameter may vary due to factors such as the application of the laser beam in the next process.
A size of 30 mm or less is preferable. (ii) Melting/solidifying process The laser beam is generated, for example, by a CO 2 gas laser device that generates infrared rays with a wavelength of 10.6 μm. The laser beam may be applied to one point on the powder compact. Melting begins at that one point, and melt is generated one after another due to volumetric contraction and convection of the melt. The output of the laser device must be as large as 5 KJ/nsec or more, and by applying the laser beam at the above output preferably for 0.5 to 10 minutes, the powder compact is rapidly melted. In order to avoid undesirable reactions such as oxidation of TiC, it is desirable to perform the melting in an inert gas atmosphere such as Ar gas. The inert gas pressure at that time is preferably 1 atmosphere. Then, solidification is performed by natural cooling after stopping the application of the laser beam. By the method of this invention, the crystal grain size is 1 mm or more.
A lump consisting of TiC single crystal or TiC polycrystal is produced. [Example] Hereinafter, the configuration and effects of the present invention will be explained in detail by showing examples together with reference examples. Example 1 TiC powder with an average particle size of 1.5 μm was press-molded at a pressure of 10 kg/mm 2 to create a disc-shaped green compact with an outer diameter of 15 mm and a thickness of 8 mm, and this green compact was placed in an Ar atmosphere. (Ar
CO 2 with an output of 10 KJ/nsec in gas pressure: 1 atm)
A laser beam generated from a gas laser device was irradiated for 1 minute (the irradiation method was such that the laser beam was centered on the powder compact).
The entire compact was melted by this irradiation. Thereafter, it was solidified by natural cooling to produce a 6.23 g spherical (diameter: about 7 mm) lump. When the structure of this lump was observed using a microscope and subjected to X-ray diffraction, it was confirmed that this lump was a single crystal of TiC. Example 2 TiC powder with an average particle size of 2.0 μm was wet-pulverized.
After reducing the thickness to 1.0μm, press molding was performed at a pressure of 15Kg/ mm2 to create a disk-shaped green compact with an outer diameter of 20mm and a thickness of 20mm.
Atmospheric pressure), a laser beam was irradiated for 1.5 minutes using the same CO 2 gas laser device as in Example 1. The entire compact was melted by this irradiation. After that, it is solidified by natural cooling and weighs 27.69g.
A TiC mass was produced. This TiC lump had a spherical shape with a diameter of about 10 mm, and was a polycrystalline body with a TiC crystal grain size of 2.0 mm. Reference Example 1 A rectangular parallelepiped with a size of 5 mm x 5 mm x 3 mm was cut out from the TiC single crystal lump obtained in Example 1, and this was brazed to a cutting tool holder so that the cutting edge shape was JIS. Display: 0°, 6°, 6°, 6°, 15°,
A cutting tool according to the present invention was created with an angle of 15° and 0.4. Using this cutting tool, a micro-cutting test and a single-carriage cutting test were conducted under the following conditions. <Micro cutting test conditions> Work material: S50C (Brinell hardness: 210) Cutting speed: 50 m/min Feed: 0.01 m/rev. Depth of cut: 0.2 mm Cutting time: 30 hours <General cutting test conditions> Work material: SNCM439 (Brinell hardness: 220) Cutting speed: 180 m/min Feed: 0.2 m/rev. Depth of cut: 1.5 mm Cutting time: 60 minutes For comparison of micro-cutting tests, commercially available WC-8% Co super Fine grain cemented carbide and WC-6
%Co K10 cemented carbide on the cutting edge, and the cutting edge shape was the same as the cutting edge of the present invention (hereinafter referred to as conventional alloy cutting tool 1 and 2, respectively),
A micro-cutting test was conducted under the above conditions using these bits. In addition, for comparison in general cutting tests, commercially available cermets of TiC-20%TiN-10% Mo2C -10%Ni and WC-18%TiC-5%TaC-7%Co were used.
A cutting tool having a cutting edge made of P10 cemented carbide and having the same cutting edge shape as the cutting edge of the present invention (hereinafter referred to as conventional alloy tool tool 3 and 4, respectively) was prepared, and these tools were used to perform general cutting under the above conditions. I conducted a test. In both tests, the flank wear width and crater wear depth of the cutting edge were measured, and the results were used in the first test.
Shown in the table. As shown in Table 1, the TiC single crystal cutting tool of the present invention has extremely superior wear resistance compared to conventional alloy cutting tools 1 to 4. Reference Example 2 A forming mold for a bearing retainer having a diameter of 5 mm was prepared from the TiC polycrystalline mass obtained in Example 2 by grinding it with a diamond grindstone. This mold is used to stamp into a predetermined shape in advance.
〔発明の総括的効果〕[Overall effect of the invention]
以上のように、この発明は、分単位の極めて短
い時間でTiC多結晶体からなる塊状体を製造する
ことができるし、又、場合によつてはTiC単結晶
をも製造することができる工業上有用な方法であ
る。そして、得られたTiC塊状体は、TiC単味か
らなつているので、TiCの高い硬度ひいては耐摩
耗性を最大限に活かすことができ、極めて有用な
材料である。
As described above, the present invention is an industrial technology that can produce TiC polycrystalline lumps in an extremely short time on the order of minutes, and in some cases can also produce TiC single crystals. This is a very useful method. Since the obtained TiC mass consists of TiC alone, it is possible to take full advantage of TiC's high hardness and wear resistance, making it an extremely useful material.