WO2017077829A1 - Cubic boron nitride sintered body tool, cubic boron nitride sintered body used therein and production method for cubic boron nitride sintered body tool - Google Patents

Cubic boron nitride sintered body tool, cubic boron nitride sintered body used therein and production method for cubic boron nitride sintered body tool Download PDF

Info

Publication number
WO2017077829A1
WO2017077829A1 PCT/JP2016/080235 JP2016080235W WO2017077829A1 WO 2017077829 A1 WO2017077829 A1 WO 2017077829A1 JP 2016080235 W JP2016080235 W JP 2016080235W WO 2017077829 A1 WO2017077829 A1 WO 2017077829A1
Authority
WO
WIPO (PCT)
Prior art keywords
sintered body
cbn sintered
boron nitride
tool
cubic boron
Prior art date
Application number
PCT/JP2016/080235
Other languages
French (fr)
Japanese (ja)
Inventor
直樹 渡部
原田 高志
久木野 暁
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to CN201680078032.0A priority Critical patent/CN108541228B/en
Publication of WO2017077829A1 publication Critical patent/WO2017077829A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • B23B27/18Cutting tools of which the bits or tips or cutting inserts are of special material with cutting bits or tips or cutting inserts rigidly mounted, e.g. by brazing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • B23B27/18Cutting tools of which the bits or tips or cutting inserts are of special material with cutting bits or tips or cutting inserts rigidly mounted, e.g. by brazing
    • B23B27/20Cutting tools of which the bits or tips or cutting inserts are of special material with cutting bits or tips or cutting inserts rigidly mounted, e.g. by brazing with diamond bits or cutting inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/28Making specific metal objects by operations not covered by a single other subclass or a group in this subclass cutting tools

Definitions

  • the present disclosure relates to a cubic boron nitride sintered body tool, a cubic boron nitride sintered body used therefor, and a method for manufacturing a cubic boron nitride sintered body tool.
  • Cubic boron nitride (cBN) sintered bodies are widely used as tools because of their excellent wear resistance and strength.
  • a tool including a cBN sintered body (hereinafter referred to as “cBN sintered body tool”) generally has a structure in which a cBN sintered body is joined to a tool base material via a joining layer.
  • Patent Document 1 discloses that a cBN sintered body is provided with irregularities by removing a binder phase contained in the cBN sintered body from the surface of the cBN sintered body. A technique for increasing the bonding strength between the cBN sintered body and the tool base material by the uneven anchor effect is disclosed.
  • a cBN sintered body tool of the present disclosure includes a tool base material, a joining layer provided on the surface of the tool base material, and a cBN sintered body joined to the tool base material via the joining layer, and cBN.
  • the sintered body has a bonding surface to be bonded to the bonding layer, and at least one of the bonding surfaces has hexagonal boron nitride (hBN), boron (B) (hereinafter referred to as “boron” or “B”).
  • boron alone, does not include boron constituting a compound with other elements), boron oxide (B 2 O 3 ), and boron oxynitride (B 2 ON 3 ) There is an altered portion containing at least one selected from the group consisting of, and the altered portion has a thickness of 0.1 ⁇ m or more and 50.0 ⁇ m or less.
  • the cBN sintered body of the present disclosure is a cBN sintered body used for the cBN sintered body tool.
  • a method of manufacturing a cBN sintered body tool of the present disclosure includes a tool base material, a bonding layer provided on the surface of the tool base material, and a cBN sintered body bonded to the tool base material via the bonding layer.
  • a method of manufacturing a cBN sintered body tool comprising a step of sintering boron nitride (BN) particles to produce a cBN sintered body, a step of laser processing the cBN sintered body with a pulse laser, and a laser Bonding the processed cBN sintered body to a tool base material via a bonding layer, the pulse energy in the pulse laser is 0.01 J or more and 1.5 J or less, and the pulse width is 0.01 msec or more The output is 0.40 msec or less, and the output is 30 W or more and 500 W or less.
  • BN boron nitride
  • FIG. 1 is a plan view showing an example of a cBN sintered body tool according to the first embodiment.
  • FIG. 2 is a front view of the cBN sintered body tool of FIG.
  • FIG. 3 is a partially enlarged view of the cBN sintered body tool of FIG.
  • FIG. 4A is a schematic view showing a state in which the mixed powder is arranged on the support plate.
  • FIG. 4B is a schematic view showing a laminate composed of a support plate and a cBN sintered body.
  • FIG. 4C is a schematic view showing a state where the support plate is removed from the laminate.
  • FIG. 4D is a schematic view showing a state where the cBN sintered body is laser processed.
  • FIG. 1 is a plan view showing an example of a cBN sintered body tool according to the first embodiment.
  • FIG. 2 is a front view of the cBN sintered body tool of FIG.
  • FIG. 3 is a partially enlarged view of the cBN sintered
  • FIG. 5A is a diagram schematically showing a workpiece before being processed by a pulse laser.
  • FIG. 5B is a diagram schematically showing the workpiece after being processed by the pulse laser.
  • FIG. 6 is a plan view showing an example of a cBN sintered body tool according to the second embodiment.
  • FIG. 7A is a plan view schematically showing an outline of how to apply the punching bar when measuring the bonding strength of the cBN sintered body tool.
  • FIG. 7B is a front view schematically showing an outline of how to apply the punching bar when measuring the bonding strength of the cBN sintered body tool.
  • An object of the present disclosure is to provide a cBN sintered body tool in which a cBN sintered body is firmly bonded. [Effects of the present disclosure] According to the present disclosure, it is possible to provide a cBN sintered body tool in which a cBN sintered body is firmly bonded.
  • a cBN sintered body tool of the present disclosure includes a tool base material, a joining layer provided on the surface of the tool base material, and a cBN sintered body joined to the tool base material via the joining layer.
  • the cBN sintered body has a bonding surface to be bonded to the bonding layer, and at least one surface side of the bonding surface is made of hBN, B, B 2 O 3 , and B 2 ON 3
  • the tool base material and the cBN sintered body are firmly bonded to each other and the damage due to the presence of the altered portion is suppressed by providing the altered portion as described above. Can do.
  • a cBN sintered compact will be joined firmly.
  • the altered portion preferably has a thickness of 0.3 ⁇ m or more and 5.0 ⁇ m or less. Thereby, the joint strength of a cBN sintered compact and a joining layer can be raised.
  • the cBN content in the cBN sintered body is preferably 80.0% by volume or more. Thereby, the joint strength of a cBN sintered compact and a joining layer can be raised.
  • the cBN content in the cBN sintered body is preferably 96.0% by volume or more. Thereby, the joint strength between the cBN sintered body and the joining layer can be further increased.
  • an angle formed by two joining surfaces intersecting each other among the joining surfaces is 89.0 ° or more and 91.0 ° or less.
  • the thermal conductivity of the cBN sintered body is preferably 70 W / m ⁇ K or more.
  • the presence of an altered portion having an excessively large thickness is easily suppressed, and as a result, the bonding strength between the cBN sintered body and the bonding layer can be increased. it can.
  • the cBN sintered body of the present disclosure is a cBN sintered body used for the cBN sintered body tool.
  • a cBN sintered body tool in which the cBN sintered body is firmly joined can be provided by being used for a cBN sintered body tool.
  • a method for manufacturing a cBN sintered body tool of the present disclosure includes a tool base material, a joining layer provided on the surface of the tool base material, and a cBN sintered body joined to the tool base material via the joining layer.
  • a method of manufacturing a cBN sintered body tool comprising: a step of sintering a BN particle to produce a cBN sintered body; a step of laser processing the cBN sintered body with a pulse laser; and a laser processing Bonding the cBN sintered body to the tool base material via a bonding layer, the pulse energy in the pulse laser is 0.01 J or more and 1.5 J or less, and the pulse width is 0.01 msec or more and 0 .40 msec or less, and output is 30 W or more and 500 W or less.
  • the altered portion having a thickness of 0.1 ⁇ m or more and 50.0 ⁇ m or less is generated on the processed surface formed by the pulse laser.
  • the above-mentioned cBN sintered body tool in which the bonded body is firmly bonded can be manufactured.
  • the pulse laser is preferably a fiber laser. This is because the processed surface formed by the fiber laser has excellent bonding strength with the bonding layer.
  • FIG. 1 is a plan view showing an example of a cBN sintered body tool according to this embodiment
  • FIG. 2 is a front view of the cBN sintered body tool of FIG.
  • the cBN sintered body tool 10 includes a tool base material 1, a joining layer 2 provided on the surface of the tool base material 1, and a tool base material 1 via the joining layer 2. And a cBN sintered body 3 joined to each other.
  • Such a cBN sintered body tool 10 can be used in various kinds of processing of general metals, and can be effectively used particularly in machining of sintered alloys, hard-to-cut cast iron, hardened steel, and heat-resistant alloys.
  • cBN sintered body tool 10 When the cBN sintered body tool 10 is used for cutting applications, for example, drill, end mill, milling or turning cutting edge replacement cutting tip, metal saw, gear cutting tool, reamer, tap, or crankshaft pin milling It can be effectively used as a chip for use.
  • the cBN sintered body tool 10 When used for plastic working, it can be effectively used as, for example, a punch press die, a die for die, friction welding, or the like. Further, engine parts, hard disk drives (HDD), HDD heads, capstans, wafer chuck semiconductor transfer arms, camera zoom lens seal rings, friction stir welding tools, and the like can be exemplified.
  • HDD hard disk drives
  • HDD heads HDD heads
  • capstans capstans
  • wafer chuck semiconductor transfer arms camera zoom lens seal rings
  • friction stir welding tools and the like
  • cutting refers to machining a product having a desired size and shape while scraping off chips
  • plastic processing refers to applying a force to the workpiece to deform the desired size and shape. This means that the product is processed. Plastic processing differs from cutting in that no chips are generated.
  • the material of the tool base material 1 is not particularly limited as long as it is a conventionally known material used as this kind of tool base material.
  • a material that can withstand the processing resistance such as cemented carbide, steel, ceramics, and the like can be suitably used.
  • cemented carbide is preferable from the viewpoint of strength.
  • the shape of the tool base material 1 is not particularly limited as long as it is a conventionally known shape used as this kind of tool base material.
  • the joining layer 2 plays a role for joining the tool base material 1 and the cBN sintered body 3.
  • the bonding layer 2 of the present embodiment is provided on the surface 1 a and the surface 1 b of the tool base material 1.
  • the material is not particularly limited.
  • the following (1) or (2) bonding layer can be used.
  • the bonding layer 2 can exhibit high high temperature resistance and high wettability due to the presence of Ti and Zr. Bonding strength with the cBN sintered body 3 can be increased. Also, due to the presence of Cu, joining at a low temperature is possible, and due to the high elastic modulus of Cu, when heat generated during processing flows into the tool base material 1 through the cBN sintered body 3. Further, the bonding layer 2 can relieve the distortion caused by the difference between the thermal expansion coefficient of the cBN sintered body 3 and the thermal expansion coefficient of the tool base material 1. Even when the bonding layer (2) is used as the bonding layer 2, the same effect as described above can be obtained.
  • Ni is mixed in the bonding layer (1) and the bonding layer (2).
  • the bonding strength between the cBN sintered body 3 and the bonding layer 2 is further improved.
  • the thickness of the bonding layer 2 is preferably 10 ⁇ m or more. When the thickness of the bonding layer 2 is less than 10 ⁇ m, the bonding force of the bonding layer 2 may be easily reduced.
  • the thickness of the bonding layer 2 is preferably 200 ⁇ m or less. Usually, since the hardness of the bonding layer 2 tends to be lower than the hardness of the tool base material 1 and the cBN sintered body 3, if the thickness exceeds 200 ⁇ m, the bonding layer 2 itself may be damaged. .
  • the cBN sintered body 3 is joined to the tool base material 1 via the joining layer 2. As shown in FIGS. 1 and 2, the cBN sintered body 3 of the present embodiment has two bonding surfaces 3 a and 3 b as bonding surfaces to be bonded to the bonding layer 2, and two bonding surfaces 3 a. , 3b intersect with each other to form a ridgeline 3c.
  • the cBN sintered body 3 includes crystal grains (cBN crystal grains) made of cBN.
  • the particle size of the cBN crystal grains is not particularly limited, but can be 0.1 to 10 ⁇ m from the viewpoint of increasing the hardness.
  • the cBN sintered body may be composed only of cBN crystal grains, and may contain other components.
  • a binder phase As a component other than the above cBN crystal grains, a binder phase can be mentioned.
  • the binder phase has a role of binding the cBN particles, and the material is not particularly limited as long as it can have the role.
  • the following (3) or (4) can be used as the binder phase contained in the cBN sintered body 3.
  • a bonded phase comprising a compound or a solid solution of the compound and an Al compound (AlN, AlB 2 , Al 2 O 3, etc.); (4) From a compound selected from the group consisting of Al compound, cobalt (Co), W compound (WC, W 2 Co 21 B 6 , Co 3 W 3 C, W 3 CoB 3, etc.), or a solid solution of the compound A bonded phase.
  • BN having a crystal structure other than cBN for example, boron nitride (wBN) having a wurtzite crystal structure, boron nitride having a compressive hexagonal crystal structure (compressed BN), etc. (However, hBN is not included in “BN having a crystal structure other than cBN”).
  • the binder phase is preferably contained in an amount of at least 3% by volume in order to exhibit the effect of bonding the cBN crystal grains.
  • the content ratio of the cBN particles in the cBN sintered body 3 is 98% by volume or more. That is, the total content of wBN and compressed BN that can be included in the cBN sintered body 3 that does not include a binder phase is less than 2% by volume.
  • the above-mentioned cBN sintered body 3 may contain inevitable impurities such as nitrogen (N), hydrogen (H), oxygen (O).
  • impurities such as cemented carbide, silicon nitride, zirconia, and alumina may be included in the manufacturing process.
  • the content of each component that is an unavoidable impurity is less than 4%, and the content of each component that is an impurity is less than 3%.
  • the surface of the cBN sintered body 3 is composed of hBN, B, B 2 O 3 , and B 2 ON 3 on the side of the bonding surface 3 a that is bonded to the bonding layer 2.
  • An altered portion 31 including at least one selected from the group is present.
  • the hBN is generated by the phase transformation of cBN located on the surface of the cBN sintered body by a processing step described later.
  • B is generated by denitrification of cBN by a processing step described later.
  • B 2 O 3 and B 2 ON 3 are produced by oxidizing B or BN x (x ⁇ 1) obtained by denitrifying all or part of nitrogen of cBN by a processing step described later. is there.
  • the region of the altered portion 31 may further include a binder phase
  • the cBN sintered body 3 includes wBN and / or compressed BN.
  • the region of the altered portion 31 may further include wBN and / or compressed BN.
  • the altered portion 31 and the region other than the altered portion 31 are distinguished as follows.
  • a region other than the altered portion 31 in the cBN sintered body 3 is referred to as a base 32.
  • CP processing is performed on a surface of the cBN sintered body 31 in which the configuration in the thickness direction of the bonding surface 3a is observed using a cross section polisher (CP).
  • a cross section polisher CP
  • the CP processing conditions are as follows. When the thickness direction (depth direction) of the bonding surface 3a is not visible, the cBN sintered body is cut at a plane including the normal of the surface of the bonding surface 3a, and the appearing cross section is subjected to CP processing. May be.
  • the components of the cBN sintered body are analyzed by observing the CP processed surface by various analysis methods. Specifically, whether or not at least one of hBN, B 2 O 3 , and B 2 ON 3 is present in the cBN sintered body by performing Raman spectroscopic analysis using a Raman spectroscopic device. Is confirmed. Also, by performing energy dispersive X-ray analysis (EDS analysis) or Auger electron spectroscopy (AES method) using an energy dispersive X-ray analyzer, whether or not B is present in the cBN sintered body is determined. It is confirmed. Then, the region in which hBN, B 2 O 3 , or B 2 ON 3 is considered to exist and / or the region in which B is considered to exist is regarded as the altered portion 31.
  • EDS analysis energy dispersive X-ray analysis
  • AES method Auger electron spectroscopy
  • an area where 5% by volume or more of hBN, B 2 O 3 , or B 2 ON 3 is observed with respect to cBN is defined as an area where each component exists. I reckon. Further, in the EDS analysis (observation region of 2 ⁇ m ⁇ 2 ⁇ m), a region where the ratio of B element is 95 atm% or more is regarded as a region where B exists. Alternatively, in the AES method (observation region of 0.2 ⁇ m ⁇ 0.2 ⁇ m), a region where the ratio of B element is 95 atm% or more is regarded as a region where B exists.
  • the ratio of B element is calculated after correcting (excluding) C and O adsorbed on the surface of the observation region.
  • PHI700 manufactured by ULVAC-PHI Co., Ltd.
  • the altered portion 31 has a thickness d of 0.1 to 50.0 ⁇ m.
  • the thickness d can be confirmed by Raman spectroscopy. For example, the surface of the cBN sintered body 3 shown on the paper surface in FIG. 2 is observed with a Raman spectroscope, and the region where hBN, B 2 O 3 , or B 2 ON 3 exists is specified.
  • the position (from joining surface 3a) is the innermost side among the areas where hBN, B 2 O 3 or B 2 ON 3 exists
  • the shortest distance to the deepest position is “thickness d”.
  • the thickness d can be confirmed by an EDS analysis method.
  • the surface of the cBN sintered body 3 shown on the paper surface in FIG. 2 is analyzed by EDS to identify the region where B exists. In the region, the shortest distance from the position of the bonding surface 3a in contact with the bonding layer 2 to the innermost position in the region where B exists is “thickness d”.
  • the region where each component of hBN, B, B 2 O 3 , or B 2 ON 3 is present is identified and identified by Raman spectroscopic analysis and EDS analysis. Among the regions, it is necessary to determine the shortest distance from the position of the joint surface 3b to the region located at the innermost position.
  • Method of manufacturing cBN sintered body tool A method of manufacturing a cBN sintered body tool according to this embodiment will be described with reference to FIGS. 4A to 4D. Here, the case where a binder phase is included in the cBN sintered body will be described.
  • a raw material powder for a binder phase is prepared by this step.
  • TiN, AlN, TiAlN or the like is used as the binder phase
  • TiN powder and Al powder are prepared, a mixed powder thereof is prepared, and the mixed powder is pulverized using a ball mill. Thereby, the raw material powder for binder phases is produced.
  • Examples of the ball mill material include cemented carbide, silicon nitride, zirconia, and alumina.
  • impurities such as the above cemented carbide, silicon nitride, zirconia, and alumina may be mixed in the raw powder of the binder phase due to this pulverization process. .
  • the produced raw material powder for binder phase and cBN powder (boron nitride particles) are mixed to prepare a mixed powder 41.
  • this mixed powder 41 is supported by a cemented carbide. It arrange
  • the ultrahigh pressure sintering conditions are as follows.
  • a cBN sintered body composed of a binder phase and cBN particles is formed on the support plate, and thus the support plate 42 is attached to one surface (one surface) of the cBN sintered body 3A.
  • a laminated body is produced.
  • a cBN sintered body 3A is produced as shown in FIG. 4C.
  • the method for removing the support plate 42 is not particularly limited, and examples thereof include grinding removal.
  • the cBN sintered body 3A may contain inevitable impurities and impurities.
  • the produced cBN sintered body 3A is processed by a pulse laser. Specifically, after forming the cBN sintered body 3A into a plate shape, the plate-like sintered body is set in a pulse laser device, and the plate-like sintered body is laser processed into a desired shape. As shown in 4D, a laser-processed cBN sintered body 3B is obtained.
  • the pulse energy in the pulse laser is 0.01 J or more and 1.5 J or less, the pulse width is 0.01 msec or more and 0.40 msec or less, and the output is 30 W or more and 500 W or less.
  • the suitable processing conditions A of the pulse laser including these conditions are shown.
  • Pulse energy 0.01-1.5J Pulse width: 0.01-0.40 msec Output: 30-500W Frequency: 100-2000Hz Wavelength: 1070 nm.
  • a modified portion 31 is formed on a processed surface processed by a pulse laser. This is because the cBN sintered body is processed by heat in the processing under the above conditions, so that a part of cBN located on the processing surface is transformed into hBN, or all or one part of cBN positioned on the processing surface. This is because B or BN x (x ⁇ 1) formed by denitrifying a part of nitrogen is oxidized.
  • the laser-processed cBN sintered body 3 ⁇ / b> B is bonded to the tool base material 1 through the bonding layer 2. Specifically, first, a material that is a raw material of the bonding layer 2 is sandwiched between the laser-processed cBN sintered body 3 ⁇ / b> B and the tool base material 1. At this time, the respective members are arranged so that the surface 1a of the tool base material 1 faces the processed surface of the cBN sintered body 3B (that is, the surface where the altered portion 31 exists, and in this embodiment, the joint surface 3a).
  • the laminated body in which the material constituting the bonding layer 2 is sandwiched between the laser-processed cBN sintered body 3B and the tool base material 1 is placed in a vacuum furnace. And while reducing the pressure in a vacuum furnace to 2 * 10 ⁇ -2 > Pa or less, and making the temperature in a furnace into 750 degreeC or more, the material which comprises the joining layer 2 is dissolved. As a result, the laser-processed cBN sintered body 3B and the tool base material 1 are joined. Next, the material which comprises the joining layer 2 is solidified by taking out the joined processed material from a vacuum furnace and allowing it to cool.
  • the periphery of the joint surface (the cBN sintered body tool 10) is polished.
  • the portion exposed as the outer surface of the surface is smoothed.
  • the cBN sintered body tool 10 in which the cBN sintered body 3 and the tool base material 1 are bonded via the bonding layer 2 is produced.
  • the altered portion is polished by polishing the portion where the altered portion is present during the above polishing process. It is preferable to remove. This is because the altered portion has an effect of improving the bonding strength between the cBN sintered body 3 and the tool base material 1, but tends to have lower hardness than the base 32.
  • the cBN sintered body tool 10 including the binder phase (3) or (4) is manufactured has been described.
  • the pulverization step of the manufacturing method is not performed, and the sintering step is performed.
  • a powder made of atmospheric pressure type BN such as hBN or pyrolytic boron nitride (pBN) is introduced into an ultrahigh pressure apparatus. Then, this powder is subjected to ultra-high pressure sintering.
  • the ultrahigh pressure sintering conditions are as follows. Thereby, most (98% or more) of the normal pressure type BN is converted to cBN, and as a result, a cBN sintered body containing no binder phase is produced.
  • This cBN sintered body may contain 2% by volume or less of BN (wBN and / or compressed BN) having a crystal structure other than cBN.
  • the relationship between the pressure and temperature in an ultrahigh pressure sintering condition becomes important.
  • the temperature is preferably about 1900 to 2300 ° C.
  • the pressure is about 20 GPa
  • the temperature can be about 1300 to 1900 ° C.
  • the highly crystalline hBN means that the graphitization index (GI value) in the X-ray diffraction method is less than 5.
  • the GI value is a value derived by introducing the areas of the three peaks of x-ray diffraction of hBN, that is, the peaks of (100), (101), and (102) into the following formula (1). The smaller the performance, the smaller.
  • GI (I (100) + I (101) ) / I (102) Expression (1).
  • pBN when used as the normal pressure BN, it is preferable to use pBN having orientation from the viewpoint of increasing hardness.
  • pBN may have an orientation on the (002) plane, and (010) plane X-rays with respect to the X-ray diffraction intensity of the (002) plane of pBN when pBN is diffracted from the c-axis direction.
  • the ratio of diffraction intensities may be 0.1 or less.
  • a commercially available product can be used.
  • the altered portion 31 having a thickness d of 0.1 to 50.0 ⁇ m is present on the surface of the cBN sintered body 3.
  • the bonding strength between the sintered body 3 and the tool base material 1 is increased. Therefore, since there is no restriction like the above technique, it can be applied to a tool having a wide composition.
  • the present inventors infer the reason why the bonding strength between the cBN sintered body 3 and the tool base material 1 is increased in the cBN sintered body tool 10 according to the present embodiment as follows.
  • the wettability of hBN, B, B 2 O 3 , and B 2 ON 3 present in the altered portion 31 is higher than that of cBN. For this reason, since both are joined in a state in which the bonding layer 2 corresponds (along) to the fine irregularities on the surface of the cBN sintered body, the cBN sintered body and the tool base material 1 that do not have the altered portion 31. And the case where the cBN sintered body 3 having the altered portion 31 and the tool base material 1 are joined via the joining layer 2 than the case where they are joined via the joining layer 2. And the contact area between the bonding layer 2 are increased.
  • the cBN sintered body tool 10 Since the bonding strength between the two members increases as the contact area increases, the cBN sintered body tool 10 according to the present embodiment has a bonding strength between the cBN sintered body 3 and the tool base material 1 as compared with the conventional case. Get higher.
  • “wetability” means wettability with respect to a melt in which a material for forming the bonding layer 2 is dissolved.
  • the thickness d of the altered portion 31 is less than 0.1 ⁇ m, the thickness is too thin, so that the above-described effect due to high wettability such as hBN cannot be exhibited appropriately.
  • the thickness d exceeds 50.0 ⁇ m, the altered portion 31 itself becomes a starting point of breakage or destruction.
  • the thickness d is preferably 0.3 to 5.0 ⁇ m.
  • the bonding strength tends to be further increased. The reason for this is as follows.
  • a cBN sintered body tool including a tool base material, a bonding layer, and a cBN sintered body
  • the workpiece is allowed to cool.
  • the thermal expansion coefficient of the bonding layer 2 tends to be higher than the thermal expansion coefficient of cBN
  • the bonding layer 2 contracts greatly compared to cBN when allowed to cool.
  • a conventional cBN sintered body tool that is, a cBN sintered body tool in which the substrate 32 and the bonding layer 2 are in contact
  • a relatively large internal stress due to the difference in thermal expansion coefficient as described above remains. There was a trend. Such internal stress can be a factor that causes the cBN sintered body to fall off from the cBN sintered body tool.
  • the altered portion 31 including at least one of hBN and B is present between the base body 32 and the bonding layer 2.
  • the difference in thermal expansion coefficient can be reduced. Therefore, according to the cBN sintered body tool 10 having the altered portion 31 including at least one of hBN and B, the internal stress can be relaxed (reduced) compared to the conventional case. As compared with the above, the bonding strength between the cBN sintered body 3 and the tool base material 1 is increased.
  • hBN is most excellent in terms of the above-described wettability and thermal expansion coefficient.
  • the content ratio of the cBN particles in the cBN sintered body 3 is preferably 80.0% by volume or more, more preferably 96.0% by volume or more. In this case, the bonding strength between the cBN sintered body 3 and the tool base material 1 can be increased. Further, such a high content ratio of cBN particles tends to be difficult with the technique disclosed in Patent Document 1, but according to the present embodiment, this is possible.
  • the content ratio of the cBN particles in the base body 32 and the content ratio of the cBN particles in the altered portion 31 are different, but the content ratio of the cBN particles in the entire cBN sintered body 3 is in the above range. If it exists, there can exist said effect.
  • the content ratio of the binder phase is preferably 4 to 97% by volume, and more preferably 4 to 39% by volume.
  • the content ratio of cBN particles is preferably 98 to 100% by volume. In this case, the cBN sintered body 3 is excellent in the balance between the bonding strength between the cBN particles and the hardness of the cBN sintered body 3.
  • the thermal conductivity of the cBN sintered body 3 is preferably 70 W / m ⁇ K or more.
  • the thickness d of the altered portion 31 can be easily controlled within the above range, and the thickness d of the altered portion 31 tends to be uniform. This is because, when the thermal conductivity of the cBN sintered body 3 is 70 W / m ⁇ K or more, heat retention on the surface of the bulk sintered body hardly occurs during pulse laser processing. This is thought to be due to the suppression of excessive spread (promotion).
  • the thermal conductivity of the cBN sintered body 3 is more preferably 85 W / m ⁇ K or more, further preferably 100 W / m ⁇ K or more, and particularly preferably 120 W / m ⁇ K or more.
  • the thermal conductivity of the cBN sintered body 3 is preferably 2000 W / m ⁇ K or less. This is because, when it exceeds 2000 W / m ⁇ K, the speed at which heat is transmitted is too high, and the altered portion 31 having a sufficient thickness tends not to be formed.
  • the thermal conductivity of the cBN sintered body 3 can be obtained by a laser flash method in accordance with “JIS R1611: 2010”. Specifically, after a sample for a measurement sample is cut out from the cBN sintered body 3, a processed surface by a pulse laser is polished and removed to produce a measurement sample for thermal conductivity having a diameter of 18 mm and a thickness of 1 mm. And a pulse laser beam is irradiated with respect to a measurement sample using a thermal constant measuring apparatus, and the specific heat and thermal diffusivity of a measurement sample are measured. The thermal conductivity of the cBN sintered body 3 is calculated by multiplying the thermal diffusivity by the specific heat and the density of the cBN sintered body.
  • the thermal conductivity of the cBN sintered body 3 corresponds to “the thermal conductivity of the substrate 32 constituting the cBN sintered body 3”.
  • the cBN sintered body 3 according to the present embodiment is manufactured for the first time by a manufacturing method using a pulse laser as described above. This is because, by the above-described processing steps, the above-described modified portion 31 is generated for the first time when the cBN on the surface of the cBN sintered body is thermally altered to an appropriate ratio and to an appropriate depth. is there.
  • the present inventors have confirmed that when the cBN sintered body is processed by a wire saw, wire electric discharge machining (WEDM) or the like, the above-described altered portion is not formed. Further, the processed surface is rough as compared with the case of a pulse laser, and there is a tendency that microcracks, chips, and the like exist.
  • WEDM wire electric discharge machining
  • processing methods using a pulse laser are classified into thermal processing and non-thermal processing depending on the difference in laser wavelength and pulse width.
  • thermal processing laser light is converted into heat absorbed by the surface of the material, and the material is processed while the material is melted by that heat.
  • non-thermal processing laser light is absorbed. The material is processed while breaking the bonds between the atoms or molecules at the locations and instantaneously evaporating the material in the atomic or molecular state.
  • thermal processing using a fiber laser or YAG laser is preferable.
  • a processing step is carried out using these, it becomes possible to satisfy the above-mentioned preferable processing conditions.
  • the processed surface by the fiber laser has a reduced thickness, and the generation of microcracks is particularly suppressed. Therefore, the bonding strength between the cBN sintered body and the tool base material 1 is reduced. It is because it is excellent in.
  • the pulse energy is preferably 0.01 to 1.5 J, and the pulse width is preferably 0.01 to 0.40 msec.
  • the altered portion 31 is further appropriately formed.
  • the processing condition A it is preferable to use a pulse laser that satisfies the following specifications.
  • the thickness of the joining layer 2 can be made uniform, the stress applied to the joining surface during the joining process becomes uniform, and as a result, the joining strength between the tool base material 1 and the cBN sintered body 3 is further increased. Can be increased.
  • the fiber laser easily satisfies the following specifications.
  • Laser spread angle 2.0 mm / mrad or less
  • Spot diameter 15 ⁇ m or less.
  • FIG. 5A is a diagram schematically showing a workpiece before being processed by the pulse laser
  • FIG. 5B is a diagram schematically showing the workpiece after being processed by the pulse laser.
  • the arrows in FIG. 5A indicate the direction of the laser irradiated on the rectangular parallelepiped workpiece 20.
  • a rectangular parallelepiped (plate-like) work piece 20 as shown in FIG. 5A is prepared, and this is to be cut at a position indicated by a one-dot chain line by using a pulse laser, a one-dot chain line is used due to the nature of the pulse laser.
  • the workpiece 20 cannot be divided at the position shown, and in practice, two workpieces 20A and a workpiece 20B as shown in FIG. 5B are produced.
  • the machining surface 20b faces the surface 1a of the tool base material 1 with respect to the tool base material 1 (the angle formed by the surfaces 1a and 1b is 90 °) as shown in FIGS.
  • the angle formed by the surfaces 1a and 1b is 90 °
  • the mutually facing surfaces of the tool base material 1 and the workpiece 20B are not parallel to each other. For this reason, it is necessary to change the thickness of the bonding layer 2 so as to follow the gap without filling the gap between the mutually facing surfaces of the tool base material 1 and the workpiece 20B.
  • the stress applied to the bonding surface during the bonding process becomes non-uniform, and as a result, the bonding strength between the workpiece 20B and the tool base material 1 may be insufficient.
  • the actual situation is that the angle ⁇ shown in FIG. 5B is 88 ° or less.
  • the angle ⁇ between the manufactured processed surface 20b and the surface 22 intersecting with the processed surface 20b can be set to 89.0 ° to 90.0 °.
  • the angle ⁇ between the processed surface 20b and the surface 21 intersecting with the processed surface 20b can be set to 90.0 ° to 91.0 °. That is, in the cBN sintered body tool, a cBN sintered body in which an angle formed by two mutually intersecting surfaces to be bonded surfaces is 89.0 to 91.0 ° can be used.
  • the tool base material 1 and the cBN sintered body 3 The bonding strength can be further increased. Further, from the viewpoint of further increasing the bonding strength, the angle ⁇ is more preferably 89.5 ° to 90.0 °, and the angle ⁇ is more preferably 90.0 to 90.5 °. That is, in the cBN sintered body tool, a cBN sintered body in which an angle formed by two mutually intersecting surfaces to be bonded surfaces is 89.5 to 90.5 ° is preferable.
  • the cBN sintered body from which the support plate has been removed is laser processed, and this is used as the cBN sintered body tool.
  • the support plate is not removed and the support is removed.
  • Laser processing is performed on the cBN sintered body with the plate, and this is used as a cBN sintered body tool.
  • a support plate 4 is attached to one surface of the cBN sintered body 3. That is, in the present embodiment, the support plate 4 is disposed between the cBN sintered body 3 and the bonding layer 2. Since the cBN sintered body 3 and the support plate 4 have undergone the sintering process as described above, they are firmly bonded to each other.
  • the support plate 4 may be a support plate 42 after the sintering process as shown in FIG. 4B or may be a part of the support plate 42. That is, the support plate 4 may be present on one surface of the cBN sintered body 3 by leaving all of the support plate 42 after the sintering step, or without removing all of the support plate 42. You may make it exist on one surface of the cBN sintered compact 3 by leaving a part.
  • an altered portion is present on the joining surface 3a side, and thereby the joining strength between the cBN sintered body 3 and the tool base material 1 is enhanced.
  • the above-described altered portion 31 exists on both the joining surface 3 a and the joining surface 3 b of the cBN sintered body 3.
  • Such a cBN sintered body can be produced not only by forming the joint surface 3a but also by forming the joint surface 3b by performing the above-described processing steps.
  • the presence of the altered portion 31 in each of the joining surface 3a and the joining surface 3b increases the joining strength between the cBN sintered body 3 and the tool base material 1. .
  • each surface is manufactured by a pulse laser that satisfies the processing condition A, so that the angle formed by both surfaces of the bonding surfaces 3a and 3b (that is, the ridge line 3c in FIG. Angle) can be 89.0 ° or more and 91.0 ° or less.
  • the thickness of the joining layer 2 can be made uniform as compared with the conventional case, the stress applied to the joining surface during the joining process becomes uniform, and as a result, the tool base material 1 and the cBN sintered body 3 The joint strength can be further increased.
  • Example 1 A cBN sintered body tool having the shape shown in FIGS. 1 and 2 was produced as follows.
  • TiN powder and Al powder (each having an average particle size of about 20 ⁇ m) were mixed to a mass ratio of 4: 1 to prepare a mixture.
  • the mixture was heat-treated at 1250 ° C. for 30 minutes in a vacuum.
  • the mixture obtained by the heat treatment was pulverized using a ⁇ 4 mm cemented carbide ball and a cemented carbide pot to obtain a raw material powder for the binder phase (pulverization step).
  • cBN powder composed of cBN particles (average particle size is about 4 ⁇ m) is prepared, and the mixing ratio (volume%) of the binder phase raw material powder and cBN phase cBN powder is 39:61. Both powders were mixed together to prepare a mixed powder. The mixed powder was placed in a vacuum furnace, heated to 950 ° C., and held for 30 minutes to degas the mixed powder. Then, the mixed powder after degassing is laminated on a support plate made of cemented carbide and filled into a capsule made of Mo, and the capsule is placed in an ultra-high pressure apparatus, and is sintered under the following sintering conditions. (Sintering process). After the sintering step, the sintered body was taken out from the capsule, the support plate was ground and removed, and then the shape was adjusted by grinding to prepare a disk-shaped cBN sintered body.
  • the disk-shaped cBN sintered body was processed using a fiber laser device under the following processing conditions (processing step).
  • processing step an isosceles triangle having two sides of 2 mm and an apex angle of 80 ° between them is a bottom surface and a thickness of 1.0 mm is cut into a triangular prism-shaped cBN sintered body. It was.
  • a rectangular surface is a laser processed surface.
  • Laser oscillator YLR-150 / 1500 (model number) manufactured by IPG Amplification medium: Optical fiber Pulse energy: 0.02J Pulse width: 0.10 msec Output: 150W Frequency: 300Hz Wavelength: 1070 nm Introduced gas: Nitrogen Processing speed: 50 mm / min. .
  • a tool base material made of cemented carbide is prepared, and 25% by mass of Ti, 25% by mass of Zr, 30% by mass of Cu, and 20% by mass of cBN sintered body and the tool base material.
  • a material for the bonding layer made of Ni was sandwiched, and this laminate was placed in a vacuum furnace. Then, the pressure inside the vacuum furnace is set to 1 ⁇ 10 ⁇ 2 Pa, the internal temperature is raised to 850 ° C., and the material for the bonding layer is melted to join the cBN sintered body and the tool base material. I let you.
  • the cBN sintered body has one processed surface formed by the above-described processing steps, and the processed surface is disposed so as to correspond to the joint surface 3a of the cBN sintered body in FIGS.
  • the processing surface (surface corresponding to the surface 22 in FIG. 5B) was arranged so as to correspond to the bonding surface 3b of the cBN sintered body.
  • the tool base material bonded with the cBN sintered body was taken out of the vacuum furnace and allowed to cool. Then, the periphery of the joint surface between the cBN sintered body and the joint layer and the outer periphery of the joint surface between the tool base material and the joint layer were polished to smooth the periphery of the joint surface.
  • a cBN sintered body tool having an ISO model number of CNGA120408 and having a cBN sintered body at the apex angle portion was produced.
  • Table 1 shows various conditions of the method of manufacturing the cBN sintered body tool in Example 1 and various characteristics of the manufactured cBN sintered body tool.
  • the cBN content ratio column (% by volume) is shown in the column of the cBN content, and the composition of the compound constituting the binder phase is shown in the column of the binder phase.
  • the column of cutting method the method of cutting (processing) the cBN sintered body is shown (“FB” means fiber laser), and in the column of pulse width and energy, the pulse width during processing (msec) ) And pulse energy values (J).
  • the content ratio of cBN in the cBN sintered body was calculated as follows. First, the cBN sintered body after the processing step (without the joining step) was mirror-polished (though the polishing thickness was limited to less than 50 ⁇ m), and the cBN sintered body in an arbitrary region was magnified 2000 times with an electron microscope. When the photo was taken with a black area, a gray area and a white area were observed. With the attached energy dispersive X-ray spectrometer (EDX: Energy Dispersive X-ray spectroscopy), it was confirmed that the black region was cBN, and the gray region and the white region were bonded phases other than cBN. Next, the 2000 ⁇ photograph taken above was binarized using image processing software to calculate the total area of the region (black region) occupied by cBN particles in the photograph, The percentage of the ratio of the black region in the cBN sintered body was defined as volume%.
  • EDX Energy Dispersive X-ray spectrometer
  • the content rate of cBN in the cBN sintered body coincided with the mixing ratio of the raw materials (the mixing ratio of the BN particles and the material for the binder). From this, even if a part of cBN constituting the cBN sintered body (particularly a part of cBN located in the surface region) is phase-converted to hBN, the content ratio of hBN to the whole cBN sintered body is It was understood that it was less than 1% by volume.
  • composition of the compound constituting the binder phase in the cBN sintered body is to perform X-ray diffraction (XRD) on the cBN sintered body after the processing step (without the joining step).
  • XRD X-ray diffraction
  • Examples 2 to 25 With respect to the cBN sintered body tool of Example 1, the composition of the compound constituting the binder phase was changed as shown in Table 1, and the presence or absence of the support (“Yes”: leaving a part of the support, “ ⁇ ” : Remove all of the support) as shown in Table 1 and change the cBN content (% by volume) as shown in Table 1 to carry out the sintering process, and further the pulse width and A cBN sintered body tool was produced in the same manner as in Example 1 except that the pulse energy was changed as shown in Table 1.
  • Example 2 the same raw material powder for the binder phase as in Example 1 was used.
  • Example 9 to 16 a mixture in which cBN powder and AlN powder were mixed at a mass ratio of 8: 1 was used as a raw material powder.
  • the cBN powder and the binder powder (Co powder, WC powder, and Al powder mixed at a mass ratio of 2: 7: 1) are in a mass ratio of 9: 1.
  • the mixture thus prepared was used as a raw material powder.
  • Example 26 to 41 Commercially available pellet-shaped hBN as a raw material is put into a capsule made of a refractory metal, the capsule is introduced into an ultrahigh pressure apparatus, a sintering process is performed under the following sintering conditions, and a pulse width and A cBN sintered body tool was produced in the same manner as in Example 1 except that the pulse energy was changed as shown in Table 2. In this sintering process, hBN was directly converted to cBN.
  • Examples 1 to 41 in Examples 8, 16, 25, and 38 to 41, a YAG laser was used instead of the fiber laser. Even when the YAG laser was used, the other processing conditions were the same as in Example 1 except that the pulse width and pulse energy were changed as shown in Table 1. However, in the fiber laser, the specifications were a spot diameter and a laser spread angle of 10 ⁇ m and 1.0 mm / mrad, respectively, whereas in the YAG laser, the specifications were larger than these values.
  • Examples 2, 10, 18 and 27 are arranged such that the surface corresponding to surface 21 in FIG. 5B is positioned on surface 3b, and otherwise, corresponds to surface 22 in FIG. 5B. It arrange
  • Comparative Examples 1 to 20 Regarding the pulverization step, in Comparative Examples 1 to 5, the same binder phase raw material powder as in Example 1 was used, and in Comparative Examples 6 to 10, the same binder phase raw material powder as in Example 7 was used. In Comparative Examples 11 to 14, the same raw material powder for the binder phase as in Example 13 was used.
  • the mixing ratio of the cBN powder is as shown in the cBN content (volume%) in Table 3.
  • YAG (thermal) and YAG (non-thermal) mean thermal processing with a YAG laser and non-thermal processing with a YAG laser.
  • the processing conditions of WEDM, wire saw, thermal processing with YAG laser, and non-thermal processing with YAG laser are as follows.
  • Wire material Diamond Wire diameter: 0.2mm
  • Cutting speed 0.05 mm / min. .
  • Laser processing machine MS35 Amplification medium: YAG Pulse energy: 1.6J Pulse width: 0.5msec Output: 40W Frequency: 100Hz Wavelength: 1064nm Processing speed: 50 mm / min. .
  • Laser oscillator Hawk-Pro-532 Amplification medium: YAG Pulse width: 25nsec (0.025msec) Output: 15W Frequency: 1000Hz Wavelength: 532 nm Processing speed: 50 mm / min. .
  • Thermal conductivity of cBN sintered body was determined by a laser flash method in accordance with “JIS R1611: 2010”. Specifically, first, a sample for a measurement sample is cut out from the cBN sintered body after the processing step (the bonding step is not performed), and is sufficiently polished until there is no altered portion on the sample surface, and the diameter is 18 mm and the thickness is 1 mm. A measurement sample was prepared. The surface of the measurement sample was irradiated with pulsed laser light, the specific heat and the thermal diffusivity were measured, and the thermal conductivity was calculated using these. The results are shown in Tables 1 to 3. The laser beam had a wavelength of 1.06 ⁇ m and a pulse width of 0.4 ms.
  • a surface corresponding to the surface shown on the paper surface of FIG. 2 of the cBN sintered body tool was subjected to CP processing using a CP apparatus to prepare a sample for observation.
  • this CP processed surface was observed using a Raman spectroscope (HORIBA LabRAM HR-800, wavelength: 532 nm), and hBN, B 2 O 3 in the vicinity of the contact surface in contact with the bonding layer in the cBN sintered body, And the presence or absence of B 2 ON 3 was observed.
  • HORIBA LabRAM HR-800 HORIBA LabRAM HR-800, wavelength: 532 nm
  • the CP processed surface was observed using an EDS analyzer (JED-2300, manufactured by JEOL Ltd.), and the presence or absence of B in the vicinity of the contact surface in contact with the bonding layer in the cBN sintered body was observed.
  • FIG. 7A is a plan view schematically showing an outline of how to apply the punching bar when measuring the bonding strength of the cBN sintered body tool
  • FIG. 7B measures the bonding strength of the cBN sintered body tool. It is the front view which showed typically the outline of how to apply the punching rod at the time.
  • a punching rod made of cemented carbide is used so that only the cBN sintered body 3 of the cBN sintered body tool 10 is loaded and the tool base material 1 is not loaded.
  • 30 was brought into surface contact with the side surface of the cBN sintered body 3.
  • the load of the punching rod 30 was increased gradually, and the load when the cBN sintered compact 3 fractured
  • the load at the time of fracture was divided by the bonding area between the cBN sintered body 3 and the tool base material 1 to calculate the bonding strength (kgf / mm 2 ) per unit area. The results are shown in Tables 1 to 3.
  • the cBN sintered body tool of the example has higher bonding strength between the cBN sintered body and the tool base material than the cBN sintered body tool of the comparative example. confirmed.

Abstract

According to the present invention, a cubic boron nitride sintered body tool is provided with a tool base material, a bonding layer provided on a surface of the tool base material and a cubic boron nitride sintered body bonded to the tool base material via the bonding layer. The cubic boron nitride sintered body has bonding surfaces that are bonded to the bonding layer and an altered section including at least one substance selected from the group consisting of hexagonal boron nitride, boron, boron oxide and boron oxynitride exists on at least one of the bonding surfaces. The cubic boron nitride sintered body tool comprises the altered section having a thickness of 0.1-50.0 μm.

Description

立方晶窒化硼素焼結体工具、これに用いられる立方晶窒化硼素焼結体および立方晶窒化硼素焼結体工具の製造方法Cubic boron nitride sintered body tool, cubic boron nitride sintered body used therefor, and method for producing cubic boron nitride sintered body tool
 本開示は、立方晶窒化硼素焼結体工具、これに用いられる立方晶窒化硼素焼結体および立方晶窒化硼素焼結体工具の製造方法に関する。本出願は、2015年11月5日出願の日本出願第2015-217468号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。 The present disclosure relates to a cubic boron nitride sintered body tool, a cubic boron nitride sintered body used therefor, and a method for manufacturing a cubic boron nitride sintered body tool. This application claims priority based on Japanese Patent Application No. 2015-217468 filed on November 5, 2015, and incorporates all the description content described in the above Japanese application.
 立方晶窒化硼素(cBN)焼結体は、耐摩耗性および強度に優れていることから、工具として広く用いられている。cBN焼結体を備える工具(以下、「cBN焼結体工具」という)は、接合層を介して工具母材にcBN焼結体を接合させた構造を有するのが一般的である。 Cubic boron nitride (cBN) sintered bodies are widely used as tools because of their excellent wear resistance and strength. A tool including a cBN sintered body (hereinafter referred to as “cBN sintered body tool”) generally has a structure in which a cBN sintered body is joined to a tool base material via a joining layer.
 このようなcBN焼結体工具において、cBN焼結体と工具母材との接合強度が低いと、加工中にcBN焼結体工具からcBN焼結体が脱落してしまい、工具としての機能を満たさなくなってしまう。このため、cBN焼結体工具においては、cBN焼結体と工具母材との接合強度を高めることが重要となる。 In such a cBN sintered body tool, if the bonding strength between the cBN sintered body and the tool base material is low, the cBN sintered body is dropped from the cBN sintered body tool during processing, and the function as a tool is achieved. It will not be satisfied. For this reason, in the cBN sintered body tool, it is important to increase the bonding strength between the cBN sintered body and the tool base material.
 たとえば特開2012-096934号公報(特許文献1)には、cBN焼結体の表面から、cBN焼結体中に含まれる結合相を除去することによって、cBN焼結体の表面に凹凸を設け、この凹凸のアンカー効果によってcBN焼結体と工具母材との接合強度を高める技術が開示されている。 For example, Japanese Unexamined Patent Application Publication No. 2012-096934 (Patent Document 1) discloses that a cBN sintered body is provided with irregularities by removing a binder phase contained in the cBN sintered body from the surface of the cBN sintered body. A technique for increasing the bonding strength between the cBN sintered body and the tool base material by the uneven anchor effect is disclosed.
特開2012-096934号公報JP 2012-096934 A
 本開示のcBN焼結体工具は、工具母材と、工具母材の表面に設けられた接合層と、接合層を介して工具母材に接合されたcBN焼結体と、を備え、cBN焼結体は、接合層と接合する接合面を有し、該接合面のうち少なくとも1つの面側には、六方晶窒化硼素(hBN)、硼素(B)(以下、「硼素」または「B」と表記する場合、硼素単体であることを意味し、他の元素と化合物を構成している硼素は含まない)、酸化硼素(B23)、および酸窒化硼素(B2ON3)からなる群より選択される少なくとも1種を含む変質部が存在しており、変質部は、0.1μm以上50.0μm以下の厚さを有する。 A cBN sintered body tool of the present disclosure includes a tool base material, a joining layer provided on the surface of the tool base material, and a cBN sintered body joined to the tool base material via the joining layer, and cBN. The sintered body has a bonding surface to be bonded to the bonding layer, and at least one of the bonding surfaces has hexagonal boron nitride (hBN), boron (B) (hereinafter referred to as “boron” or “B”). ”Means boron alone, does not include boron constituting a compound with other elements), boron oxide (B 2 O 3 ), and boron oxynitride (B 2 ON 3 ) There is an altered portion containing at least one selected from the group consisting of, and the altered portion has a thickness of 0.1 μm or more and 50.0 μm or less.
 本開示のcBN焼結体は、上記cBN焼結体工具に用いられるcBN焼結体である。
 本開示のcBN焼結体工具の製造方法は、工具母材と、工具母材の表面に設けられた接合層と、接合層を介して工具母材に接合されたcBN焼結体と、を備えるcBN焼結体工具を製造する方法であって、窒化硼素(BN)粒子を焼結させてcBN焼結体を作製する工程と、パルスレーザーによりcBN焼結体をレーザ加工する工程と、レーザ加工されたcBN焼結体を、接合層を介して工具母材に接合させる工程と、を含み、パルスレーザにおけるパルスエネルギーは0.01J以上1.5J以下であり、パルス幅は0.01msec以上0.40msec以下であり、出力は30W以上500W以下である。
The cBN sintered body of the present disclosure is a cBN sintered body used for the cBN sintered body tool.
A method of manufacturing a cBN sintered body tool of the present disclosure includes a tool base material, a bonding layer provided on the surface of the tool base material, and a cBN sintered body bonded to the tool base material via the bonding layer. A method of manufacturing a cBN sintered body tool comprising a step of sintering boron nitride (BN) particles to produce a cBN sintered body, a step of laser processing the cBN sintered body with a pulse laser, and a laser Bonding the processed cBN sintered body to a tool base material via a bonding layer, the pulse energy in the pulse laser is 0.01 J or more and 1.5 J or less, and the pulse width is 0.01 msec or more The output is 0.40 msec or less, and the output is 30 W or more and 500 W or less.
図1は、第1の実施形態に係るcBN焼結体工具の一例を示す平面図である。FIG. 1 is a plan view showing an example of a cBN sintered body tool according to the first embodiment. 図2は、図1のcBN焼結体工具の正面図である。FIG. 2 is a front view of the cBN sintered body tool of FIG. 図3は、図2のcBN焼結体工具の部分拡大図である。FIG. 3 is a partially enlarged view of the cBN sintered body tool of FIG. 図4Aは、支持板上に混合粉末を配置させた状態を示す概略図である。FIG. 4A is a schematic view showing a state in which the mixed powder is arranged on the support plate. 図4Bは、支持板とcBN焼結体とからなる積層体を示す概略図である。FIG. 4B is a schematic view showing a laminate composed of a support plate and a cBN sintered body. 図4Cは、積層体から支持板が除去された状態を示す概略図である。FIG. 4C is a schematic view showing a state where the support plate is removed from the laminate. 図4Dは、cBN焼結体がレーザ加工された状態を示す概略図である。FIG. 4D is a schematic view showing a state where the cBN sintered body is laser processed. 図5Aは、パルスレーザーにより加工される前の被加工物を模式的に示す図である。FIG. 5A is a diagram schematically showing a workpiece before being processed by a pulse laser. 図5Bは、パルスレーザーにより加工された後の被加工物を模式的に示す図である。FIG. 5B is a diagram schematically showing the workpiece after being processed by the pulse laser. 図6は、第2の実施形態に係るcBN焼結体工具の一例を示す平面図である。FIG. 6 is a plan view showing an example of a cBN sintered body tool according to the second embodiment. 図7Aは、cBN焼結体工具の接合強度を測定するときの打ち抜き棒の当て方の概略を模式的に示した平面図である。FIG. 7A is a plan view schematically showing an outline of how to apply the punching bar when measuring the bonding strength of the cBN sintered body tool. 図7Bは、cBN焼結体工具の接合強度を測定するときの打ち抜き棒の当て方の概略を模式的に示した正面図である。FIG. 7B is a front view schematically showing an outline of how to apply the punching bar when measuring the bonding strength of the cBN sintered body tool.
[本開示が解決しようとする課題]
 近年の市場の要求を満たす過酷な使用条件下での上述のような脱落を防ぐべく、cBN焼結体と工具母材との接合強度をさらに高めることが求められている。
[Problems to be solved by this disclosure]
In order to prevent the above-described dropout under severe use conditions that satisfy recent market demands, it is required to further increase the bonding strength between the cBN sintered body and the tool base material.
 本開示の目的は、cBN焼結体が強固に接合されたcBN焼結体工具を提供することを目的とする。
[本開示の効果]
 本開示によれば、cBN焼結体が強固に接合されたcBN焼結体工具を提供することができる。
An object of the present disclosure is to provide a cBN sintered body tool in which a cBN sintered body is firmly bonded.
[Effects of the present disclosure]
According to the present disclosure, it is possible to provide a cBN sintered body tool in which a cBN sintered body is firmly bonded.
 [実施形態の説明]
 最初に本発明の実施態様を列記して説明する。
[Description of Embodiment]
First, embodiments of the present invention will be listed and described.
 〔1〕本開示のcBN焼結体工具は、工具母材と、工具母材の表面に設けられた接合層と、接合層を介して工具母材に接合されたcBN焼結体と、を備え、cBN焼結体は、接合層と接合する接合面を有し、該接合面のうち少なくとも1つの面側には、hBN、B、B23、およびB2ON3からなる群より選択される少なくとも1種を含む変質部が存在しており、変質部は、0.1μm以上50.0μm以下の厚さを有する。 [1] A cBN sintered body tool of the present disclosure includes a tool base material, a joining layer provided on the surface of the tool base material, and a cBN sintered body joined to the tool base material via the joining layer. The cBN sintered body has a bonding surface to be bonded to the bonding layer, and at least one surface side of the bonding surface is made of hBN, B, B 2 O 3 , and B 2 ON 3 There is an altered portion including at least one selected, and the altered portion has a thickness of 0.1 μm or more and 50.0 μm or less.
 上記cBN焼結体工具によれば、上記のような変質部を備えることにより、工具母材とcBN焼結体とが強固に接合されるとともに、変質部の存在に起因する破損を抑制することができる。これにより、上記cBN焼結体工具は、cBN焼結体が強固に接合されることとなる。 According to the cBN sintered body tool, the tool base material and the cBN sintered body are firmly bonded to each other and the damage due to the presence of the altered portion is suppressed by providing the altered portion as described above. Can do. Thereby, as for the said cBN sintered compact tool, a cBN sintered compact will be joined firmly.
 〔2〕上記cBN焼結体工具において、変質部は、0.3μm以上5.0μm以下の厚さを有することが好ましい。これにより、cBN焼結体と接合層との接合強度を高めることができる。 [2] In the cBN sintered body tool, the altered portion preferably has a thickness of 0.3 μm or more and 5.0 μm or less. Thereby, the joint strength of a cBN sintered compact and a joining layer can be raised.
 〔3〕上記cBN焼結体工具において、cBN焼結体におけるcBNの含有率は、80.0体積%以上であることが好ましい。これにより、cBN焼結体と接合層との接合強度を高めることができる。 [3] In the cBN sintered body tool, the cBN content in the cBN sintered body is preferably 80.0% by volume or more. Thereby, the joint strength of a cBN sintered compact and a joining layer can be raised.
 〔4〕上記cBN焼結体工具において、cBN焼結体におけるcBNの含有率は、96.0体積%以上であることが好ましい。これにより、cBN焼結体と接合層との接合強度をさらに高めることができる。 [4] In the cBN sintered body tool, the cBN content in the cBN sintered body is preferably 96.0% by volume or more. Thereby, the joint strength between the cBN sintered body and the joining layer can be further increased.
 〔5〕上記cBN焼結体工具において、接合面のうち、互いに交差する2つの接合面の成す角は、89.0°以上91.0°以下であることが好ましい。これにより、cBN焼結体と工具母材とがより強固に接合される。 [5] In the above cBN sintered body tool, it is preferable that an angle formed by two joining surfaces intersecting each other among the joining surfaces is 89.0 ° or more and 91.0 ° or less. Thereby, a cBN sintered compact and a tool base material are joined more firmly.
 〔6〕上記cBN焼結体工具において、cBN焼結体の熱伝導率は、70W/m・K以上であることが好ましい。このような熱伝導率を有するcBN焼結体においては、厚さが過剰に大きい変質部の存在が抑制され易いため、結果的に、cBN焼結体と接合層との接合強度を高めることができる。 [6] In the above cBN sintered body tool, the thermal conductivity of the cBN sintered body is preferably 70 W / m · K or more. In a cBN sintered body having such a thermal conductivity, the presence of an altered portion having an excessively large thickness is easily suppressed, and as a result, the bonding strength between the cBN sintered body and the bonding layer can be increased. it can.
 〔7〕本開示のcBN焼結体は、上記cBN焼結体工具に用いられるcBN焼結体である。 [7] The cBN sintered body of the present disclosure is a cBN sintered body used for the cBN sintered body tool.
 上記cBN焼結体によれば、cBN焼結体工具に用いられることにより、cBN焼結体が強固に接合されたcBN焼結体工具を提供することができる。 According to the cBN sintered body, a cBN sintered body tool in which the cBN sintered body is firmly joined can be provided by being used for a cBN sintered body tool.
 〔8〕本開示のcBN焼結体工具の製造方法は、工具母材と、工具母材の表面に設けられた接合層と、接合層を介して工具母材に接合されたcBN焼結体と、を備えるcBN焼結体工具を製造する方法であって、BN粒子を焼結させてcBN焼結体を作製する工程と、パルスレーザーによりcBN焼結体をレーザ加工する工程と、レーザ加工されたcBN焼結体を、接合層を介して工具母材に接合させる工程と、を含み、パルスレーザにおけるパルスエネルギーは0.01J以上1.5J以下であり、パルス幅は0.01msec以上0.40msec以下であり、出力は30W以上500W以下である。 [8] A method for manufacturing a cBN sintered body tool of the present disclosure includes a tool base material, a joining layer provided on the surface of the tool base material, and a cBN sintered body joined to the tool base material via the joining layer. A method of manufacturing a cBN sintered body tool comprising: a step of sintering a BN particle to produce a cBN sintered body; a step of laser processing the cBN sintered body with a pulse laser; and a laser processing Bonding the cBN sintered body to the tool base material via a bonding layer, the pulse energy in the pulse laser is 0.01 J or more and 1.5 J or less, and the pulse width is 0.01 msec or more and 0 .40 msec or less, and output is 30 W or more and 500 W or less.
 上記cBN焼結体の製造方法によれば、パルスレーザーによって形成された加工面において、0.1μm以上50.0μm以下の厚さを有する上記変質部が生成されるため、結果的に、cBN焼結体が強固に接合された、上述のcBN焼結体工具を製造することができる。 According to the method for producing a cBN sintered body, the altered portion having a thickness of 0.1 μm or more and 50.0 μm or less is generated on the processed surface formed by the pulse laser. The above-mentioned cBN sintered body tool in which the bonded body is firmly bonded can be manufactured.
 上記cBN焼結体の製造方法において、パルスレーザーは、ファイバーレーザーであることが好ましい。ファイバーレーザーによって形成された加工面は、接合層との接合強度に優れるためである。 In the above method for producing a cBN sintered body, the pulse laser is preferably a fiber laser. This is because the processed surface formed by the fiber laser has excellent bonding strength with the bonding layer.
 [実施形態の詳細]
 以下、本開示の実施形態について説明するが、本実施形態はこれらに限定されるものではない。なお、本明細書において「A~B」という形式の表記は、範囲の上限下限(すなわちA以上B以下)を意味しており、Aにおいて単位の記載がなく、Bにおいてのみ単位が記載されている場合、Aの単位とBの単位とは同じである。
[Details of the embodiment]
Hereinafter, although embodiment of this indication is described, this embodiment is not limited to these. In the present specification, the notation in the form of “A to B” means the upper and lower limits of the range (that is, A or more and B or less), the unit is not described in A, and the unit is described only in B. The unit of A is the same as the unit of B.
 〔第1の実施形態〕
 〔cBN焼結体工具〕
 図1は、本実施形態に係るcBN焼結体工具の一例を示す平面図であり、図2は、図1のcBN焼結体工具の正面図である。図1および図2に示されるように、cBN焼結体工具10は、工具母材1と、工具母材1の表面に設けられた接合層2と、接合層2を介して工具母材1に接合されたcBN焼結体3とを備える。
[First Embodiment]
[CBN sintered body tool]
FIG. 1 is a plan view showing an example of a cBN sintered body tool according to this embodiment, and FIG. 2 is a front view of the cBN sintered body tool of FIG. As shown in FIGS. 1 and 2, the cBN sintered body tool 10 includes a tool base material 1, a joining layer 2 provided on the surface of the tool base material 1, and a tool base material 1 via the joining layer 2. And a cBN sintered body 3 joined to each other.
 このようなcBN焼結体工具10は、一般的な金属の各種加工において用いることができ、特に、焼結合金、難削鋳鉄、焼入れ鋼、耐熱合金の機械加工において有効に用いることができる。 Such a cBN sintered body tool 10 can be used in various kinds of processing of general metals, and can be effectively used particularly in machining of sintered alloys, hard-to-cut cast iron, hardened steel, and heat-resistant alloys.
 cBN焼結体工具10を切削加工の用途に用いる場合、たとえばドリル、エンドミル、フライス加工用または旋削加工用刃先交換型切削チップ、メタルソー、歯切工具、リーマ、タップ、またはクランクシャフトのピンミーリング加工用チップ等として有効に用いることができる。 When the cBN sintered body tool 10 is used for cutting applications, for example, drill, end mill, milling or turning cutting edge replacement cutting tip, metal saw, gear cutting tool, reamer, tap, or crankshaft pin milling It can be effectively used as a chip for use.
 cBN焼結体工具10を塑性加工の用途に用いる場合、たとえばパンチプレス金型、ダイス用金型、摩擦圧接等として有効に用いることができる。また、エンジン部品、ハードディスクドライブ(HDD)、HDDヘッド、キャプスタン、ウェハーチャック半導体搬送用アーム、カメラ用ズームレンズシールリング、摩擦撹拌接合用工具等を例示することができる。 When the cBN sintered body tool 10 is used for plastic working, it can be effectively used as, for example, a punch press die, a die for die, friction welding, or the like. Further, engine parts, hard disk drives (HDD), HDD heads, capstans, wafer chuck semiconductor transfer arms, camera zoom lens seal rings, friction stir welding tools, and the like can be exemplified.
 なお、「切削加工」とは、切屑を削り出しながら所望の寸法形状の品物を機械加工することをいい、「塑性加工」とは、加工物に力を加えて変形させて、所望の寸法形状の品物を成形加工することをいう。塑性加工は切屑が発生しないという点で、切削加工と異なる。 Note that “cutting” refers to machining a product having a desired size and shape while scraping off chips, and “plastic processing” refers to applying a force to the workpiece to deform the desired size and shape. This means that the product is processed. Plastic processing differs from cutting in that no chips are generated.
 〔工具母材〕
 工具母材1の材料は、この種の工具母材として用いられる従来公知のものであれば特に限定されない。たとえば、超硬合金、鋼、セラミックス等の加工抵抗に耐え得る材料を好適に用いることができる。なかでも、強度の観点から、超硬合金が好ましい。
(Tool base material)
The material of the tool base material 1 is not particularly limited as long as it is a conventionally known material used as this kind of tool base material. For example, a material that can withstand the processing resistance, such as cemented carbide, steel, ceramics, and the like can be suitably used. Among these, cemented carbide is preferable from the viewpoint of strength.
 工具母材1の形状もまた、この種の工具母材として用いられる従来公知の形状であれば特に限定されない。本実施形態では、図1および図2に示されるように、接合層2を介してcBN焼結体3が接合される面として、2つの面(面1aおよび面1b)を有する形状の工具母材1について説明する。 The shape of the tool base material 1 is not particularly limited as long as it is a conventionally known shape used as this kind of tool base material. In the present embodiment, as shown in FIGS. 1 and 2, a tool base having a shape having two surfaces (surface 1 a and surface 1 b) as surfaces to which the cBN sintered body 3 is bonded via the bonding layer 2. The material 1 will be described.
 〔接合層〕
 接合層2は、工具母材1とcBN焼結体3とを接合するための役割を果たすものである。本実施形態の接合層2は、工具母材1の面1aおよび面1b上に設けられている。工具母材1に関し、当該役割を果たすことができる限り、その材料は特に限定されない。たとえば、以下(1)または(2)の接合層を用いることができる。
(Junction layer)
The joining layer 2 plays a role for joining the tool base material 1 and the cBN sintered body 3. The bonding layer 2 of the present embodiment is provided on the surface 1 a and the surface 1 b of the tool base material 1. As long as the tool base material 1 can play the role, the material is not particularly limited. For example, the following (1) or (2) bonding layer can be used.
 (1)接合層全体に対して、5質量%以上のTiと、5質量%以上のZrとを含み、かつTiおよびZrの合計が90質量%以下であり、その残部にCuを含む接合層;
 (2)接合層全体に対して、1質量%以上のTiと、15質量%以上のCuとを含み、その残部にAgとを含む接合層。
(1) A bonding layer containing 5% by mass or more of Ti and 5% by mass or more of Zr with respect to the entire bonding layer, the total of Ti and Zr being 90% by mass or less, and the balance being Cu. ;
(2) A bonding layer containing 1% by mass or more of Ti and 15% by mass or more of Cu with respect to the entire bonding layer, and the remainder including Ag.
 接合層2として上記(1)の接合層を用いた場合、接合層2は、TiおよびZrの存在に起因して、高い高温耐性と高い濡れ性を発揮することができるため、接合層2とcBN焼結体3との接合強度を高めることができる。また、Cuの存在に起因して、低温での接合加工が可能となるとともに、Cuが有する高い弾性率により、加工時に発生する熱がcBN焼結体3を通して工具母材1に流入する際に、cBN焼結体3の熱膨張率と工具母材1の熱膨張率との差に起因する歪みを接合層2によって緩和させることが可能となる。接合層2として上記(2)の接合層を用いた場合にも、上記の同様の効果を奏することができる。 When the bonding layer (1) is used as the bonding layer 2, the bonding layer 2 can exhibit high high temperature resistance and high wettability due to the presence of Ti and Zr. Bonding strength with the cBN sintered body 3 can be increased. Also, due to the presence of Cu, joining at a low temperature is possible, and due to the high elastic modulus of Cu, when heat generated during processing flows into the tool base material 1 through the cBN sintered body 3. Further, the bonding layer 2 can relieve the distortion caused by the difference between the thermal expansion coefficient of the cBN sintered body 3 and the thermal expansion coefficient of the tool base material 1. Even when the bonding layer (2) is used as the bonding layer 2, the same effect as described above can be obtained.
 また、上記(1)の接合層および上記(2)の接合層において、さらに5質量%以上のNiを混入させることが好ましい。この場合、cBN焼結体3に対する接合層2の濡れ性をさらに向上させることができるため、cBN焼結体3と接合層2との接合強度がさらに向上する。 Further, it is preferable that 5% by mass or more of Ni is mixed in the bonding layer (1) and the bonding layer (2). In this case, since the wettability of the bonding layer 2 with respect to the cBN sintered body 3 can be further improved, the bonding strength between the cBN sintered body 3 and the bonding layer 2 is further improved.
 接合層2の厚さは10μm以上が好ましい。接合層2の厚さが10μm未満の場合、接合層2の接合力が低下し易くなる恐れがある。また接合層2の厚さは200μm以下が好ましい。通常、接合層2の硬度は工具母材1およびcBN焼結体3の各硬度と比べて低い傾向にあるため、その厚さが200μmを超えると、接合層2自体の破損が生じる恐れがある。 The thickness of the bonding layer 2 is preferably 10 μm or more. When the thickness of the bonding layer 2 is less than 10 μm, the bonding force of the bonding layer 2 may be easily reduced. The thickness of the bonding layer 2 is preferably 200 μm or less. Usually, since the hardness of the bonding layer 2 tends to be lower than the hardness of the tool base material 1 and the cBN sintered body 3, if the thickness exceeds 200 μm, the bonding layer 2 itself may be damaged. .
 〔cBN焼結体〕
 cBN焼結体3は、接合層2を介して、工具母材1に接合される。図1および図2に示されるように、本実施形態のcBN焼結体3は、接合層2と接合する接合面として、2つの接合面3a,3bを有しており、2つの接合面3a,3bは互いに交差して、稜線3cを形成している。
[CBN sintered body]
The cBN sintered body 3 is joined to the tool base material 1 via the joining layer 2. As shown in FIGS. 1 and 2, the cBN sintered body 3 of the present embodiment has two bonding surfaces 3 a and 3 b as bonding surfaces to be bonded to the bonding layer 2, and two bonding surfaces 3 a. , 3b intersect with each other to form a ridgeline 3c.
 cBN焼結体3は、cBNからなる結晶粒(cBN結晶粒)を含む。cBN結晶粒の粒径は特に限定されないが、硬度を高める観点から0.1~10μmとすることができる。cBN焼結体は、cBN結晶粒のみで構成されてもよく、他の成分を含んでいてもよい。 The cBN sintered body 3 includes crystal grains (cBN crystal grains) made of cBN. The particle size of the cBN crystal grains is not particularly limited, but can be 0.1 to 10 μm from the viewpoint of increasing the hardness. The cBN sintered body may be composed only of cBN crystal grains, and may contain other components.
 上記のcBN結晶粒以外の他の成分として、結合相を挙げることができる。結合相は、cBN粒子同士を結合させる役割を有するものであり、当該役割を有することができる限り、その材料は特に限定されない。たとえば、cBN焼結体3に含まれる結合相として、以下(3)または(4)を用いることができる。 As a component other than the above cBN crystal grains, a binder phase can be mentioned. The binder phase has a role of binding the cBN particles, and the material is not particularly limited as long as it can have the role. For example, the following (3) or (4) can be used as the binder phase contained in the cBN sintered body 3.
 (3)周期律表の第4~6族元素からなる群より選択される少なくとも1種の元素と、N、C、B、およびOからなる群より選択される少なくとも1種の元素とからなる化合物、または該化合物の固溶体と、Al化合物(AlN、AlB2、Al23等)とからなる結合相;
 (4)Al化合物、コバルト(Co)、W化合物(WC、W2Co216、Co33C、W3CoB3等)からなる群より選択される化合物、または該化合物の固溶体からなる結合相。
(3) consisting of at least one element selected from the group consisting of Group 4 to 6 elements of the periodic table and at least one element selected from the group consisting of N, C, B, and O A bonded phase comprising a compound or a solid solution of the compound and an Al compound (AlN, AlB 2 , Al 2 O 3, etc.);
(4) From a compound selected from the group consisting of Al compound, cobalt (Co), W compound (WC, W 2 Co 21 B 6 , Co 3 W 3 C, W 3 CoB 3, etc.), or a solid solution of the compound A bonded phase.
 cBN焼結体3において、上記(3)および(4)のような結合相が存在する場合、焼結合金、鋳鉄、焼入れ鋼、耐熱合金等の機械加工において特に良好な耐摩耗性を発揮することができる。 In the cBN sintered body 3, when a binder phase such as the above (3) and (4) is present, particularly excellent wear resistance is exhibited in machining of sintered alloys, cast iron, hardened steel, heat-resistant alloys and the like. be able to.
 またcBN結晶粒以外の他の成分として、cBN以外の結晶構造を有するBN、たとえば、ウルツ型結晶構造を有する窒化硼素(wBN)、圧縮型六方晶結晶構造を有する窒化硼素(圧縮型BN)などを挙げることができる(ただし、「cBN以外の結晶構造を有するBN」にhBNは含まれない)。 Further, as components other than cBN crystal grains, BN having a crystal structure other than cBN, for example, boron nitride (wBN) having a wurtzite crystal structure, boron nitride having a compressive hexagonal crystal structure (compressed BN), etc. (However, hBN is not included in “BN having a crystal structure other than cBN”).
 cBN焼結体3に上述の結合相が含まれる場合、結合相は、cBN結晶粒同士を結合させるという効果を発揮するために、少なくとも3体積%よりも多く含まれることが好ましい。一方、cBN焼結体3が結合相を含まない場合、cBN焼結体3におけるcBN粒子の含有割合は98体積%以上となる。すなわち、結合相を含まないcBN焼結体3に含まれ得る、wBNおよび圧縮型BNの合計含有割合は、2体積%未満となる。これは、wBNおよび圧縮型BNが、結合相を含まないcBN焼結体を製造する場合に、製造プロセス上cBN焼結体3中に生成される(残存する)ものであり、その生成率(残存率)には上限があるためである。 When the above-mentioned binder phase is contained in the cBN sintered body 3, the binder phase is preferably contained in an amount of at least 3% by volume in order to exhibit the effect of bonding the cBN crystal grains. On the other hand, when the cBN sintered body 3 does not include a binder phase, the content ratio of the cBN particles in the cBN sintered body 3 is 98% by volume or more. That is, the total content of wBN and compressed BN that can be included in the cBN sintered body 3 that does not include a binder phase is less than 2% by volume. This is because wBN and compression-type BN are produced (remaining) in the cBN sintered body 3 in the production process when producing a cBN sintered body that does not contain a binder phase. This is because there is an upper limit for the residual ratio.
 上述のcBN焼結体3には、窒素(N)、水素(H)、酸素(O)などの不可避不純物が含まれ得る。また、cBN焼結体3が結合相を含む場合、製造プロセス上、超硬合金、窒化ケイ素、ジルコニア、アルミナ等の不純物も含まれ得る。cBN焼結体3において、不可避不純物である各成分の含有率は、各々4%未満であり、不純物である各成分の含有率は、各々3%未満である。 The above-mentioned cBN sintered body 3 may contain inevitable impurities such as nitrogen (N), hydrogen (H), oxygen (O). In addition, when the cBN sintered body 3 includes a binder phase, impurities such as cemented carbide, silicon nitride, zirconia, and alumina may be included in the manufacturing process. In the cBN sintered body 3, the content of each component that is an unavoidable impurity is less than 4%, and the content of each component that is an impurity is less than 3%.
 〔変質部〕
 さらに、上述のcBN焼結体3において、接合面3a,3bのうち、少なくとも1つの面側には、変質部が存在している。本実施形態では、接合面3a側にのみ変質部が存在している場合について、図2および図3を用いて説明する。
[Changed part]
Furthermore, in the cBN sintered body 3 described above, an altered portion exists on at least one of the joint surfaces 3a and 3b. In the present embodiment, the case where the altered portion exists only on the joint surface 3a side will be described with reference to FIGS.
 図2および図3に示されるように、cBN焼結体3の表面のうち、接合層2と接合する接合面3a側には、hBN、B、B23、およびB2ON3からなる群より選択される少なくとも1種を含む変質部31が存在している。hBNは、後述する加工工程によってcBN焼結体の表面に位置するcBNが相変態することによって生成されるものである。Bは、後述する加工工程によってcBNが脱窒されることによって生成されるものである。B23およびB2ON3は、後述する加工工程によってcBNの全部または一部の窒素が脱窒されてなるBまたはBNx(x<1)が酸化されることによって生成されるものである。 As shown in FIGS. 2 and 3, the surface of the cBN sintered body 3 is composed of hBN, B, B 2 O 3 , and B 2 ON 3 on the side of the bonding surface 3 a that is bonded to the bonding layer 2. An altered portion 31 including at least one selected from the group is present. The hBN is generated by the phase transformation of cBN located on the surface of the cBN sintered body by a processing step described later. B is generated by denitrification of cBN by a processing step described later. B 2 O 3 and B 2 ON 3 are produced by oxidizing B or BN x (x <1) obtained by denitrifying all or part of nitrogen of cBN by a processing step described later. is there.
 すなわち、cBN焼結体3のうち、変質部31の領域には、hBN、B、B23、およびB2ON3からなる群より選択される少なくとも1種と、cBNとが存在する。なお、cBN焼結体3が結合相を含む場合には、変質部31の領域にはさらに結合相が含まれ得ることとなり、またcBN焼結体3がwBNおよび/または圧縮型BNを含む場合には、変質部31の領域にはさらにwBNおよび/または圧縮型BNが含まれ得ることとなる。 That is, at least one selected from the group consisting of hBN, B, B 2 O 3 , and B 2 ON 3 and cBN exist in the region of the altered portion 31 in the cBN sintered body 3. In the case where the cBN sintered body 3 includes a binder phase, the region of the altered portion 31 may further include a binder phase, and the cBN sintered body 3 includes wBN and / or compressed BN. In this case, the region of the altered portion 31 may further include wBN and / or compressed BN.
 ここで、cBN焼結体3において、変質部31と、該変質部31以外の領域とは、次のようにして区別される。なお、以下、cBN焼結体3のうち変質部31以外の領域を基体32とする。 Here, in the cBN sintered body 3, the altered portion 31 and the region other than the altered portion 31 are distinguished as follows. Hereinafter, a region other than the altered portion 31 in the cBN sintered body 3 is referred to as a base 32.
 まず、cBN焼結体31のうち、接合面3aの厚さ方向の構成が観察されるような面に対し、クロスセクションポリッシャー装置(CP:Cross section Polisher)を用いてCP加工を行う。このような面としては、図2および図3に示される面が挙げられる。CP加工条件は以下の通りである。また、接合面3aの厚さ方向(深さ方向)が視認できないような構成の場合には、接合面3aの表面の法線を含む面でcBN焼結体を切断し、現れる断面をCP加工してもよい。 First, CP processing is performed on a surface of the cBN sintered body 31 in which the configuration in the thickness direction of the bonding surface 3a is observed using a cross section polisher (CP). As such a surface, the surface shown by FIG. 2 and FIG. 3 is mentioned. The CP processing conditions are as follows. When the thickness direction (depth direction) of the bonding surface 3a is not visible, the cBN sintered body is cut at a plane including the normal of the surface of the bonding surface 3a, and the appearing cross section is subjected to CP processing. May be.
 (CP加工条件)
加圧速度:6kV
照射電流:0.30mA
照射時間:300分。
(CP processing conditions)
Pressurization speed: 6kV
Irradiation current: 0.30 mA
Irradiation time: 300 minutes.
 次に、CP加工面を種々の分析方法によって観察することにより、cBN焼結体の成分を分析する。具体的には、ラマン分光装置を用いたラマン分光分析を行うことにより、cBN焼結体中に、hBN、B23、およびB2ON3の少なくともいずれか1種が存在するか否かが確認される。また、エネルギー分散型X線分析装置を用いたエネルギー分散型X線分析(EDS分析)またはオージェ電子分光法(AES法)を行うことにより、cBN焼結体中にBが存在するか否かが確認される。そして、hBN、B23、またはB2ON3が存在するとみなされた領域、および/またはBが存在するとみなされた領域を変質部31とみなす。 Next, the components of the cBN sintered body are analyzed by observing the CP processed surface by various analysis methods. Specifically, whether or not at least one of hBN, B 2 O 3 , and B 2 ON 3 is present in the cBN sintered body by performing Raman spectroscopic analysis using a Raman spectroscopic device. Is confirmed. Also, by performing energy dispersive X-ray analysis (EDS analysis) or Auger electron spectroscopy (AES method) using an energy dispersive X-ray analyzer, whether or not B is present in the cBN sintered body is determined. It is confirmed. Then, the region in which hBN, B 2 O 3 , or B 2 ON 3 is considered to exist and / or the region in which B is considered to exist is regarded as the altered portion 31.
 なお、ラマン分光分析(1μm×1μmの観察領域)において、cBNに対して5体積%以上のhBN、B23、またはB2ON3が観察された領域を、各成分が存在する領域とみなす。また、EDS分析(2μm×2μmの観察領域)において、B元素の割合が95atm%以上となる領域を、Bが存在する領域とみなす。または、AES法(0.2μm×0.2μmの観察領域)において、B元素の割合が95atm%以上となる領域をBが存在する領域とみなす。ただし、AES法においては、観察領域の表面に吸着したCおよびOを補正(除外)した上で、B元素の割合を算出する。AES法に用いられる装置としては、「PHI700」(ULVAC-PHI株式会社製)を用いることができる。 In Raman spectroscopic analysis (observation area of 1 μm × 1 μm), an area where 5% by volume or more of hBN, B 2 O 3 , or B 2 ON 3 is observed with respect to cBN is defined as an area where each component exists. I reckon. Further, in the EDS analysis (observation region of 2 μm × 2 μm), a region where the ratio of B element is 95 atm% or more is regarded as a region where B exists. Alternatively, in the AES method (observation region of 0.2 μm × 0.2 μm), a region where the ratio of B element is 95 atm% or more is regarded as a region where B exists. However, in the AES method, the ratio of B element is calculated after correcting (excluding) C and O adsorbed on the surface of the observation region. As a device used for the AES method, “PHI700” (manufactured by ULVAC-PHI Co., Ltd.) can be used.
 変質部31は、0.1~50.0μmの厚さdを有する。変質部31にhBN、B23、およびB2ON3からなる群より選択される少なくとも1種が含まれる場合、厚さdは、ラマン分光法により確認することができる。たとえば、図2において紙面上に示されるcBN焼結体3の表面をラマン分光装置によって観察し、hBN、B23、またはB2ON3が存在する領域を特定する。そして、当該領域において、接合層2と接触する接合面3aの最表面の位置から、hBN、B23、またはB2ON3が存在する領域のうち最も内部側の位置(接合面3aから最も奥まった位置)までの最短距離が「厚さd」となる。 The altered portion 31 has a thickness d of 0.1 to 50.0 μm. When the altered portion 31 includes at least one selected from the group consisting of hBN, B 2 O 3 , and B 2 ON 3 , the thickness d can be confirmed by Raman spectroscopy. For example, the surface of the cBN sintered body 3 shown on the paper surface in FIG. 2 is observed with a Raman spectroscope, and the region where hBN, B 2 O 3 , or B 2 ON 3 exists is specified. And in the said area | region, from the position of the outermost surface of the joining surface 3a which contacts the joining layer 2, the position (from joining surface 3a) is the innermost side among the areas where hBN, B 2 O 3 or B 2 ON 3 exists The shortest distance to the deepest position is “thickness d”.
 また、変質部31にBが含まれる場合、厚さdは、EDS分析法により確認することができる。たとえば、図2において紙面上に示されるcBN焼結体3の表面をEDS分析し、Bが存在する領域を特定する。そして、当該領域において、接合層2と接触する接合面3aの位置から、Bが存在する領域のうち最も内部側の位置までの最短距離が「厚さd」となる。 Further, when B is included in the altered portion 31, the thickness d can be confirmed by an EDS analysis method. For example, the surface of the cBN sintered body 3 shown on the paper surface in FIG. 2 is analyzed by EDS to identify the region where B exists. In the region, the shortest distance from the position of the bonding surface 3a in contact with the bonding layer 2 to the innermost position in the region where B exists is “thickness d”.
 したがって、実際に厚さdを決定するためには、ラマン分光分析およびEDS分析により、hBN、B、B23、またはB2ON3の各成分が存在する領域を特定し、特定された領域のうち、接合面3bの位置から最も内部側の位置に位置する領域までの上記最短距離を決定する必要がある。 Therefore, in order to actually determine the thickness d, the region where each component of hBN, B, B 2 O 3 , or B 2 ON 3 is present is identified and identified by Raman spectroscopic analysis and EDS analysis. Among the regions, it is necessary to determine the shortest distance from the position of the joint surface 3b to the region located at the innermost position.
 〔cBN焼結体工具の製造方法〕
 本実施形態に係るcBN焼結体工具の製造方法について図4A~図4Dを用いながら説明する。ここでは、cBN焼結体中に結合相を含む場合について説明する。
[Method of manufacturing cBN sintered body tool]
A method of manufacturing a cBN sintered body tool according to this embodiment will be described with reference to FIGS. 4A to 4D. Here, the case where a binder phase is included in the cBN sintered body will be described.
 〔粉砕工程〕
 まず、本工程により、結合相用の原料粉末を調製する。たとえば、結合相としてTiN、AlN、TiAlN等を用いる場合には、TiN粉末およびAl粉末を準備し、これらの混合粉末を調製し、該混合粉末をボールミルを用いて粉砕する。これにより、結合相用の原料粉末が作製される。
[Crushing process]
First, a raw material powder for a binder phase is prepared by this step. For example, when TiN, AlN, TiAlN or the like is used as the binder phase, TiN powder and Al powder are prepared, a mixed powder thereof is prepared, and the mixed powder is pulverized using a ball mill. Thereby, the raw material powder for binder phases is produced.
 ボールミルの材料としては、超硬合金、窒化ケイ素、ジルコニア、アルミナ等を挙げることができる。結合相を含むcBN焼結体を作製する場合、この粉砕工程に起因して、結合相の原料粉末中に、上記の超硬合金、窒化ケイ素、ジルコニア、アルミナ等の不純物が混入する場合がある。 Examples of the ball mill material include cemented carbide, silicon nitride, zirconia, and alumina. When a cBN sintered body including a binder phase is produced, impurities such as the above cemented carbide, silicon nitride, zirconia, and alumina may be mixed in the raw powder of the binder phase due to this pulverization process. .
 〔焼結工程〕
 次に、作製された結合相用の原料粉末およびcBN粉末(窒化ホウ素粒子)を混合して、混合粉末41を準備し、図4Aに示すように、この混合粉末41を超硬合金製の支持板42上に配置させて成形する。そして、これを超高圧装置に導入し、超高圧焼結させる。超高圧焼結条件は、以下のとおりである。
[Sintering process]
Next, the produced raw material powder for binder phase and cBN powder (boron nitride particles) are mixed to prepare a mixed powder 41. As shown in FIG. 4A, this mixed powder 41 is supported by a cemented carbide. It arrange | positions on the board 42 and shape | molds. And this is introduce | transduced into an ultra-high pressure apparatus, and is sintered by ultra-high pressure. The ultrahigh pressure sintering conditions are as follows.
 (焼結条件)
 圧力:3~7GPa
 温度:1100~1900℃
 時間:10~180分。
(Sintering conditions)
Pressure: 3-7GPa
Temperature: 1100-1900 ° C
Time: 10-180 minutes.
 これにより、図4Bに示すように、支持板上に、結合相とcBN粒子とからなるcBN焼結体が形成され、もってcBN焼結体3Aの片面(1つの面)に支持板42が付いた積層体が作製されることとなる。本実施形態においては、さらに上記積層体から支持板42の全てが除去されることにより、図4Cに示されるように、cBN焼結体3Aが作製される。支持板42の除去方法は特に限定されず、たとえば研削除去が挙げられる。なおcBN焼結体3Aには、不可避不純物および不純物が含まれ得る。 As a result, as shown in FIG. 4B, a cBN sintered body composed of a binder phase and cBN particles is formed on the support plate, and thus the support plate 42 is attached to one surface (one surface) of the cBN sintered body 3A. A laminated body is produced. In the present embodiment, by further removing all of the support plate 42 from the laminate, a cBN sintered body 3A is produced as shown in FIG. 4C. The method for removing the support plate 42 is not particularly limited, and examples thereof include grinding removal. The cBN sintered body 3A may contain inevitable impurities and impurities.
 〔加工工程〕
 次に、作製されたcBN焼結体3Aを、パルスレーザーにより加工する。具体的には、cBN焼結体3Aを板状に成形した後、該板状の焼結体をパルスレーザー装置にセットし、板状の焼結体を所望の形状にレーザー加工して、図4Dに示されるように、レーザ加工されたcBN焼結体3Bを得る。パルスレーザにおけるパルスエネルギーは0.01J以上1.5J以下であり、パルス幅は0.01msec以上0.40msec以下であり、出力は30W以上500W以下である。以下に、これらの条件を含むパルスレーザの好適な加工条件Aを示す。
[Processing process]
Next, the produced cBN sintered body 3A is processed by a pulse laser. Specifically, after forming the cBN sintered body 3A into a plate shape, the plate-like sintered body is set in a pulse laser device, and the plate-like sintered body is laser processed into a desired shape. As shown in 4D, a laser-processed cBN sintered body 3B is obtained. The pulse energy in the pulse laser is 0.01 J or more and 1.5 J or less, the pulse width is 0.01 msec or more and 0.40 msec or less, and the output is 30 W or more and 500 W or less. Below, the suitable processing conditions A of the pulse laser including these conditions are shown.
 (加工条件A)
 パルスエネルギー :0.01~1.5J
 パルス幅     :0.01~0.40msec
 出力       :30~500W
 周波数      :100~2000Hz
 波長       :1070nm。
(Processing condition A)
Pulse energy: 0.01-1.5J
Pulse width: 0.01-0.40 msec
Output: 30-500W
Frequency: 100-2000Hz
Wavelength: 1070 nm.
 レーザ加工されたcBN焼結体3Bのうち、パルスレーザーによって加工された加工面には、変質部31が形成される。これは、上記条件下での加工では、熱によってcBN焼結体が加工されるため、加工面に位置するcBNの一部がhBNに相変態したり、加工面に位置するcBNの全部または一部の窒素が脱窒されてなるBまたはBNx(x<1)が酸化されたりするためである。 In the laser-processed cBN sintered body 3B, a modified portion 31 is formed on a processed surface processed by a pulse laser. This is because the cBN sintered body is processed by heat in the processing under the above conditions, so that a part of cBN located on the processing surface is transformed into hBN, or all or one part of cBN positioned on the processing surface. This is because B or BN x (x <1) formed by denitrifying a part of nitrogen is oxidized.
 〔接合工程〕
 次に、レーザ加工されたcBN焼結体3Bを、接合層2を介して工具母材1に接合させる。具体的には、まず、レーザ加工されたcBN焼結体3Bと工具母材1とで、接合層2の原料となる材料を挟み込む。このとき、工具母材1の面1aと、cBN焼結体3Bの加工面(すなわち変質部31が存在する面であり、本実施形態においては接合面3a)とが向かい合うように各部材を配置させる。
[Jointing process]
Next, the laser-processed cBN sintered body 3 </ b> B is bonded to the tool base material 1 through the bonding layer 2. Specifically, first, a material that is a raw material of the bonding layer 2 is sandwiched between the laser-processed cBN sintered body 3 </ b> B and the tool base material 1. At this time, the respective members are arranged so that the surface 1a of the tool base material 1 faces the processed surface of the cBN sintered body 3B (that is, the surface where the altered portion 31 exists, and in this embodiment, the joint surface 3a). Let
 次に、レーザ加工されたcBN焼結体3Bと工具母材1とによって接合層2を構成する材料が挟み込まれた積層体を、真空炉内に設置する。そして、真空炉内の圧力を2×10-2Pa以下に減圧するとともに、炉内の温度を750℃以上にすることにより、接合層2を構成する材料を溶解させる。これにより、レーザ加工されたcBN焼結体3Bと工具母材1とを接合加工する。次に、接合加工された加工物を真空炉から取り出して放冷させることにより、接合層2を構成する材料を固化させる。そして、cBN焼結体3Bと接合層2との接合面の外周、および工具母材1と接合層2との接合面の外周を研磨処理することにより、接合面周り(cBN焼結体工具10の外面として露出する部分)を平滑にする。以上により、cBN焼結体3と工具母材1とが接合層2を介して接合されたcBN焼結体工具10が作製される。 Next, the laminated body in which the material constituting the bonding layer 2 is sandwiched between the laser-processed cBN sintered body 3B and the tool base material 1 is placed in a vacuum furnace. And while reducing the pressure in a vacuum furnace to 2 * 10 <-2 > Pa or less, and making the temperature in a furnace into 750 degreeC or more, the material which comprises the joining layer 2 is dissolved. As a result, the laser-processed cBN sintered body 3B and the tool base material 1 are joined. Next, the material which comprises the joining layer 2 is solidified by taking out the joined processed material from a vacuum furnace and allowing it to cool. Then, by polishing the outer periphery of the joint surface between the cBN sintered body 3B and the joint layer 2 and the outer periphery of the joint surface between the tool base material 1 and the joint layer 2, the periphery of the joint surface (the cBN sintered body tool 10) is polished. The portion exposed as the outer surface of the surface is smoothed. As described above, the cBN sintered body tool 10 in which the cBN sintered body 3 and the tool base material 1 are bonded via the bonding layer 2 is produced.
 cBN焼結体3のうち逃げ面やすくい面に相当する面にも変質部が存在する場合には、上記の研磨処理の際に、その変質部が存在する部分をも研磨して変質部を除去することが好ましい。変質部は、cBN焼結体3と工具母材1との接合強度を向上させる効果を奏する一方で、基体32と比較して硬度が低い傾向があるためである。 In the case where an altered portion is also present on the surface of the cBN sintered body 3 corresponding to a surface that is easy to escape, the altered portion is polished by polishing the portion where the altered portion is present during the above polishing process. It is preferable to remove. This is because the altered portion has an effect of improving the bonding strength between the cBN sintered body 3 and the tool base material 1, but tends to have lower hardness than the base 32.
 上記製造方法では、上記(3)または(4)の結合相を含むcBN焼結体工具10を製造する場合について説明したが、上記製造方法のうちの粉砕工程を実施せず、かつ焼結工程を以下のように変更することにより、結合相を含まないcBN焼結体工具10を製造することができる。 In the manufacturing method described above, the case where the cBN sintered body tool 10 including the binder phase (3) or (4) is manufactured has been described. However, the pulverization step of the manufacturing method is not performed, and the sintering step is performed. Can be manufactured as follows, and the cBN sintered compact tool 10 which does not contain a binder phase can be manufactured.
 まず、BN粒子として、hBNまたは熱分解窒化硼素(pBN)といった常圧型BNからなる粉末を超高圧装置に導入する。そしてこの粉末を超高圧焼結する。超高圧焼結条件は、以下のとおりである。これにより、常圧型BNの大部分(98%以上)がcBNに変換され、結果的に、結合相を含まないcBN焼結体が作製される。このcBN焼結体には、cBN以外の結晶構造を有するBN(wBNおよび/または圧縮型BN)が2体積%以下含まれ得る。 First, as BN particles, a powder made of atmospheric pressure type BN such as hBN or pyrolytic boron nitride (pBN) is introduced into an ultrahigh pressure apparatus. Then, this powder is subjected to ultra-high pressure sintering. The ultrahigh pressure sintering conditions are as follows. Thereby, most (98% or more) of the normal pressure type BN is converted to cBN, and as a result, a cBN sintered body containing no binder phase is produced. This cBN sintered body may contain 2% by volume or less of BN (wBN and / or compressed BN) having a crystal structure other than cBN.
 (焼結条件)
 圧力:8~20GPa
 温度:1300~2300℃
 時間:5~30分。
(Sintering conditions)
Pressure: 8-20GPa
Temperature: 1300-2300 ° C
Time: 5-30 minutes.
 結合相を含まないcBN焼結体工具10を製造する場合には、超高圧焼結条件における圧力と温度の関係が重要となる。たとえば、圧力が10GPa程度の場合、温度は1900~2300℃程度であることが好ましく、圧力が20GPa程度の場合、温度は1300~1900℃程度とすることができる。 When manufacturing the cBN sintered compact tool 10 which does not contain a binder phase, the relationship between the pressure and temperature in an ultrahigh pressure sintering condition becomes important. For example, when the pressure is about 10 GPa, the temperature is preferably about 1900 to 2300 ° C., and when the pressure is about 20 GPa, the temperature can be about 1300 to 1900 ° C.
 また、常圧型BNとしてhBNを用いる場合には、硬度を高める観点から、高結晶性のhBNを用いることが好ましい。高結晶性のhBNとは、X線回折法における黒鉛化指数(GI値)が5未満のことを意味する。GI値とは、hBNのX線回折の3本のピーク、すなわち(100)、(101)、(102)のピークの面積を以下式(1)に導入することによって導き出される値であり、結晶性が向上するほど小さくなる。
GI=(I(100)+I(101))/I(102)・・・式(1)。
In addition, when hBN is used as the normal pressure type BN, it is preferable to use highly crystalline hBN from the viewpoint of increasing the hardness. The highly crystalline hBN means that the graphitization index (GI value) in the X-ray diffraction method is less than 5. The GI value is a value derived by introducing the areas of the three peaks of x-ray diffraction of hBN, that is, the peaks of (100), (101), and (102) into the following formula (1). The smaller the performance, the smaller.
GI = (I (100) + I (101) ) / I (102) Expression (1).
 一方、常圧型BNとしてpBNを用いる場合には、硬度を高める観点から、配向性を有しているpBNを用いることが好ましい。たとえば、pBNは(002)面に配向性を有してもよく、pBNをc軸方向からX線回折したときの、pBNの(002)面のX線回折強度に対する(010)面のX線回折強度の比は0.1以下としてもよい。pBNはこのような配向性を有している限りにおいて、市販のものを用いることができる。 On the other hand, when pBN is used as the normal pressure BN, it is preferable to use pBN having orientation from the viewpoint of increasing hardness. For example, pBN may have an orientation on the (002) plane, and (010) plane X-rays with respect to the X-ray diffraction intensity of the (002) plane of pBN when pBN is diffracted from the c-axis direction. The ratio of diffraction intensities may be 0.1 or less. As long as pBN has such orientation, a commercially available product can be used.
 〔効果〕
 本実施形態に係るcBN焼結体工具10の作用効果について、従来技術と比較しながら説明する。
〔effect〕
The effects of the cBN sintered body tool 10 according to the present embodiment will be described in comparison with the prior art.
 特許文献1に開示される技術によれば、cBN焼結体の表面から結合相を除去することによって、cBN焼結体の表面に凹凸を設け、この凹凸のアンカー効果によってcBN焼結体と工具母材との接合強度が高められている。しかし、この技術においては、cBN焼結体の表面に凹凸を適切に設けるべく、cBN焼結体におけるcBNの含有割合を比較的低く設定することが求められる。 According to the technique disclosed in Patent Document 1, by removing the binder phase from the surface of the cBN sintered body, unevenness is provided on the surface of the cBN sintered body, and the cBN sintered body and the tool are provided by the anchor effect of the unevenness. Bonding strength with the base material is increased. However, in this technique, it is required to set the content ratio of cBN in the cBN sintered body to be relatively low in order to appropriately provide unevenness on the surface of the cBN sintered body.
 これに対し、本実施形態に係るcBN焼結体工具10によれば、cBN焼結体3の表面に、0.1~50.0μmの厚さdの変質部31が存在することによって、cBN焼結体3と工具母材1との接合強度が高められる。したがって、上記技術のような制約がないため、幅広い組成の工具に適用することができる。本発明者らは、本実施形態に係るcBN焼結体工具10において、cBN焼結体3と工具母材1との接合強度が高められる理由について、以下のように推察する。 On the other hand, according to the cBN sintered body tool 10 according to the present embodiment, the altered portion 31 having a thickness d of 0.1 to 50.0 μm is present on the surface of the cBN sintered body 3. The bonding strength between the sintered body 3 and the tool base material 1 is increased. Therefore, since there is no restriction like the above technique, it can be applied to a tool having a wide composition. The present inventors infer the reason why the bonding strength between the cBN sintered body 3 and the tool base material 1 is increased in the cBN sintered body tool 10 according to the present embodiment as follows.
 変質部31に存在するhBN、B、B23、およびB2ON3の濡れ性は、cBNの濡れ性よりも高い。このため、cBN焼結体の表面の微細な凹凸に、接合層2が対応した(沿った)状態で両者が接合されるため、変質部31を有さないcBN焼結体と工具母材1とが接合層2を介して接合される場合よりも、変質部31を有するcBN焼結体3と工具母材1とが接合層2を介して接合される場合のほうが、cBN焼結体3と接合層2との接触面積が大きくなる。2つの部材の接合強度は接触面積が大きいほど高くなるため、本実施形態に係るcBN焼結体工具10は、従来と比して、cBN焼結体3と工具母材1との接合強度が高くなる。なおここでの「濡れ性」は、接合層2を構成するための材料が溶解した融液に対する濡れ性を意味する。 The wettability of hBN, B, B 2 O 3 , and B 2 ON 3 present in the altered portion 31 is higher than that of cBN. For this reason, since both are joined in a state in which the bonding layer 2 corresponds (along) to the fine irregularities on the surface of the cBN sintered body, the cBN sintered body and the tool base material 1 that do not have the altered portion 31. And the case where the cBN sintered body 3 having the altered portion 31 and the tool base material 1 are joined via the joining layer 2 than the case where they are joined via the joining layer 2. And the contact area between the bonding layer 2 are increased. Since the bonding strength between the two members increases as the contact area increases, the cBN sintered body tool 10 according to the present embodiment has a bonding strength between the cBN sintered body 3 and the tool base material 1 as compared with the conventional case. Get higher. Here, “wetability” means wettability with respect to a melt in which a material for forming the bonding layer 2 is dissolved.
 一方、変質部31の厚さdが0.1μm未満の場合、厚さが薄すぎるために、hBN等の高い濡れ性に起因する上記効果を適切に発揮することができない。厚さdが50.0μmを超える場合、変質部31自体が、破損、破壊の起点となる。厚さdは、好ましくは0.3~5.0μmである。 On the other hand, when the thickness d of the altered portion 31 is less than 0.1 μm, the thickness is too thin, so that the above-described effect due to high wettability such as hBN cannot be exhibited appropriately. When the thickness d exceeds 50.0 μm, the altered portion 31 itself becomes a starting point of breakage or destruction. The thickness d is preferably 0.3 to 5.0 μm.
 本実施形態に係るcBN焼結体工具10において、変質部31には、hBNおよびBの少なくとも一方が存在することが好ましい。この場合、さらに接合強度が高くなる傾向がある。この理由は以下のとおりである。 In the cBN sintered body tool 10 according to the present embodiment, it is preferable that at least one of hBN and B exists in the altered portion 31. In this case, the bonding strength tends to be further increased. The reason for this is as follows.
 すなわち、工具母材、接合層およびcBN焼結体を備えるcBN焼結体工具を製造するためには、少なくとも上記のような接合工程を実施する必要があり、接合工程においては、接合加工された加工物の放冷が実施されることとなる。しかし、cBNの熱膨張率に比して、接合層2の熱膨張率は高い傾向にあるため、放冷時、接合層2はcBNに比して大きく収縮してしまう。このため、従来のcBN焼結体工具(すなわち基体32と接合層2とが接触するcBN焼結体工具)においては、上記のような熱膨張率差に起因する比較的大きな内部応力が残存する傾向があった。このような内部応力は、cBN焼結体工具からのcBN焼結体の脱落を引き起こす要因となり得る。 That is, in order to manufacture a cBN sintered body tool including a tool base material, a bonding layer, and a cBN sintered body, it is necessary to perform at least the above-described bonding process, and in the bonding process, the bonding process is performed. The workpiece is allowed to cool. However, since the thermal expansion coefficient of the bonding layer 2 tends to be higher than the thermal expansion coefficient of cBN, the bonding layer 2 contracts greatly compared to cBN when allowed to cool. For this reason, in a conventional cBN sintered body tool (that is, a cBN sintered body tool in which the substrate 32 and the bonding layer 2 are in contact), a relatively large internal stress due to the difference in thermal expansion coefficient as described above remains. There was a trend. Such internal stress can be a factor that causes the cBN sintered body to fall off from the cBN sintered body tool.
 これに対し、hBNおよびBは、cBNよりも大きい熱膨張率を有するため、基体32と接合層2との間にhBNおよびBのうち少なくとも1種を含む変質部31が存在することにより、上記熱膨張率差を緩和させることができる。したがって、hBNおよびBのうち少なくとも1種を含む変質部31を有するcBN焼結体工具10によれば、従来と比して内部応力を緩和(低減)させることができるため、結果的に、従来と比してcBN焼結体3と工具母材1との接合強度が高くなる。 On the other hand, since hBN and B have a thermal expansion coefficient larger than that of cBN, the altered portion 31 including at least one of hBN and B is present between the base body 32 and the bonding layer 2. The difference in thermal expansion coefficient can be reduced. Therefore, according to the cBN sintered body tool 10 having the altered portion 31 including at least one of hBN and B, the internal stress can be relaxed (reduced) compared to the conventional case. As compared with the above, the bonding strength between the cBN sintered body 3 and the tool base material 1 is increased.
 また、より好ましくは、hBN、B、B23、およびB2ON3のうち、hBNのみが変質部31に存在することが好ましい。hBNは、上述の濡れ性、熱膨張率の点で最も優れるためである。 More preferably, of hBN, B, B 2 O 3 , and B 2 ON 3 , it is preferable that only hBN exists in the altered portion 31. This is because hBN is most excellent in terms of the above-described wettability and thermal expansion coefficient.
 また、cBN焼結体3におけるcBN粒子の含有割合は、80.0体積%以上であることが好ましく、より好ましくは96.0体積%以上である。この場合、cBN焼結体3と工具母材1との接合強度を高めることができる。また、このようなcBN粒子の高い含有割合は、特許文献1に開示される技術では難しい傾向にあるが、本実施形態によればこれが可能となる。 Further, the content ratio of the cBN particles in the cBN sintered body 3 is preferably 80.0% by volume or more, more preferably 96.0% by volume or more. In this case, the bonding strength between the cBN sintered body 3 and the tool base material 1 can be increased. Further, such a high content ratio of cBN particles tends to be difficult with the technique disclosed in Patent Document 1, but according to the present embodiment, this is possible.
 ここで、cBN焼結体3のうち、基体32におけるcBN粒子の含有割合と、変質部31におけるcBN粒子の含有割合は異なるが、cBN焼結体3全体におけるcBN粒子の含有割合が上記範囲であれば、上記の効果を奏することができる。 Here, in the cBN sintered body 3, the content ratio of the cBN particles in the base body 32 and the content ratio of the cBN particles in the altered portion 31 are different, but the content ratio of the cBN particles in the entire cBN sintered body 3 is in the above range. If it exists, there can exist said effect.
 また、cBN焼結体3が結合相を含む場合、該結合相の含有割合は、4~97体積%が好ましく、4~39体積%がより好ましい。cBN焼結体3が結合相を含まない場合には、cBN粒子の含有割合は98~100体積%が好ましい。この場合、cBN焼結体3において、cBN粒子同士の結合強度とcBN焼結体3の硬度とのバランスに優れる。 In addition, when the cBN sintered body 3 includes a binder phase, the content ratio of the binder phase is preferably 4 to 97% by volume, and more preferably 4 to 39% by volume. When the cBN sintered body 3 does not contain a binder phase, the content ratio of cBN particles is preferably 98 to 100% by volume. In this case, the cBN sintered body 3 is excellent in the balance between the bonding strength between the cBN particles and the hardness of the cBN sintered body 3.
 また、cBN焼結体3の熱伝導率は、70W/m・K以上であることが好ましい。この場合、変質部31の厚さdを上記範囲に制御し易くなり、さらに変質部31の厚さdが均一となる傾向がある。これは、cBN焼結体3の熱伝導率が70W/m・K以上の場合、パルスレーザー加工時にバルク焼結体の表面での熱の滞留が起こり難いため、熱の滞留に起因する熱変質の過剰な拡がり(促進)を抑制できるためと考えられる。 The thermal conductivity of the cBN sintered body 3 is preferably 70 W / m · K or more. In this case, the thickness d of the altered portion 31 can be easily controlled within the above range, and the thickness d of the altered portion 31 tends to be uniform. This is because, when the thermal conductivity of the cBN sintered body 3 is 70 W / m · K or more, heat retention on the surface of the bulk sintered body hardly occurs during pulse laser processing. This is thought to be due to the suppression of excessive spread (promotion).
 cBN焼結体3の熱伝導率は、85W/m・K以上がより好ましく、100W/m・K以上がさらに好ましく、120W/m・K以上が特に好ましい。また、cBN焼結体3の熱伝導率は、2000W/m・K以下であることが好ましい。2000W/m・Kを超える場合、熱の伝わる速度が速すぎるために、十分な厚みの変質部31が形成され難い傾向があるためである。 The thermal conductivity of the cBN sintered body 3 is more preferably 85 W / m · K or more, further preferably 100 W / m · K or more, and particularly preferably 120 W / m · K or more. The thermal conductivity of the cBN sintered body 3 is preferably 2000 W / m · K or less. This is because, when it exceeds 2000 W / m · K, the speed at which heat is transmitted is too high, and the altered portion 31 having a sufficient thickness tends not to be formed.
 cBN焼結体3の熱伝導率は、「JIS R1611:2010」に準拠したレーザフラッシュ法により求めることができる。具体的には、cBN焼結体3から測定試料用のサンプルを切り出した後、パルスレーザーによる加工面を研磨除去し、直径18mm、厚み1mmの熱伝導率用の測定試料を作製する。そして熱定数測定装置を用いて測定試料に対しパルスレーザー光を照射し、測定試料の比熱と熱拡散率とを測定する。熱拡散率に比熱とcBN焼結体の密度とを乗じることにより、cBN焼結体3の熱伝導率が算出される。 The thermal conductivity of the cBN sintered body 3 can be obtained by a laser flash method in accordance with “JIS R1611: 2010”. Specifically, after a sample for a measurement sample is cut out from the cBN sintered body 3, a processed surface by a pulse laser is polished and removed to produce a measurement sample for thermal conductivity having a diameter of 18 mm and a thickness of 1 mm. And a pulse laser beam is irradiated with respect to a measurement sample using a thermal constant measuring apparatus, and the specific heat and thermal diffusivity of a measurement sample are measured. The thermal conductivity of the cBN sintered body 3 is calculated by multiplying the thermal diffusivity by the specific heat and the density of the cBN sintered body.
 cBN焼結体3から作製された測定試料は、cBN焼結体の基体32の部分に当たり、変質部31が存在しないこととなる。したがって、本明細書において「cBN焼結体3の熱伝導率」は、「cBN焼結体3を構成する基体32の熱伝導率」に一致することになる。 The measurement sample produced from the cBN sintered body 3 hits the base 32 portion of the cBN sintered body, and the altered portion 31 does not exist. Therefore, in this specification, “the thermal conductivity of the cBN sintered body 3” corresponds to “the thermal conductivity of the substrate 32 constituting the cBN sintered body 3”.
 本実施形態に係るcBN焼結体3は、上述のようなパルスレーザーを用いた製造方法によって初めて製造されるものである。何故なら、上述の加工工程によって、cBN焼結体の表面のcBNが、適切な割合で、かつ適切な深さまで熱変質させられることによって、初めて上記のような変質部31が生成されるためである。 The cBN sintered body 3 according to the present embodiment is manufactured for the first time by a manufacturing method using a pulse laser as described above. This is because, by the above-described processing steps, the above-described modified portion 31 is generated for the first time when the cBN on the surface of the cBN sintered body is thermally altered to an appropriate ratio and to an appropriate depth. is there.
 これに対し、ワイヤーソー、ワイヤー放電加工(WEDM)等によってcBN焼結体を加工した場合、上述のような変質部は形成されないことを本発明者らは確認している。また、その加工面は、パルスレーザーの場合と比して粗く、微小クラック、欠け等が存在する傾向がある。 On the other hand, the present inventors have confirmed that when the cBN sintered body is processed by a wire saw, wire electric discharge machining (WEDM) or the like, the above-described altered portion is not formed. Further, the processed surface is rough as compared with the case of a pulse laser, and there is a tendency that microcracks, chips, and the like exist.
 パルスレーザーとしては、光ファイバーを増幅媒質としたファイバーレーザー、YAGを増幅媒質としたYAGレーザー、CO2を増幅媒質としたCO2レーザーなどが挙げられる。また、パルスレーザによる加工方法は、レーザ波長、パルス幅の違いにより、熱加工と非熱加工とに区別される。なお、熱加工においては、レーザー光が材料の表面で吸収された熱に変換され、その熱で材料を溶融しながら当該材料が加工されるのに対し、非熱加工においては、レーザー光を吸収した箇所の原子間または分子間の結合を切断し、材料を原子または分子状態で瞬時に蒸発させながら当該材料が加工される。 The pulsed laser, a fiber laser in which the optical fiber and the amplifying medium, YAG laser was YAG amplification medium, such as CO 2 laser in which the CO 2 and the amplifying medium and the like. Further, processing methods using a pulse laser are classified into thermal processing and non-thermal processing depending on the difference in laser wavelength and pulse width. In thermal processing, laser light is converted into heat absorbed by the surface of the material, and the material is processed while the material is melted by that heat. In non-thermal processing, laser light is absorbed. The material is processed while breaking the bonds between the atoms or molecules at the locations and instantaneously evaporating the material in the atomic or molecular state.
 本実施形態の加工工程の実施においては、ファイバーレーザーまたはYAGレーザーによる熱加工が好ましい。これらを用いて加工工程を実施した場合、上述の好適な加工条件を満たすことが可能となる。なかでも、ファイバーレーザーを用いることが好ましい。ファイバーレーザーによる加工面は、YAGレーザーによる加工面と比較して、変質部の厚みが薄く、また微小クラックの発生が特に抑制されており、もってcBN焼結体と工具母材1との接合強度に優れるためである。 In the execution of the processing step of the present embodiment, thermal processing using a fiber laser or YAG laser is preferable. When a processing step is carried out using these, it becomes possible to satisfy the above-mentioned preferable processing conditions. Among these, it is preferable to use a fiber laser. Compared with the YAG laser processed surface, the processed surface by the fiber laser has a reduced thickness, and the generation of microcracks is particularly suppressed. Therefore, the bonding strength between the cBN sintered body and the tool base material 1 is reduced. It is because it is excellent in.
 また、加工条件Aに関し、パルスエネルギーは、0.01~1.5Jであることが好ましく、パルス幅は、0.01~0.40msecであることが好ましい。この場合、さらに、適切に上記変質部31が形成される。 Regarding the processing condition A, the pulse energy is preferably 0.01 to 1.5 J, and the pulse width is preferably 0.01 to 0.40 msec. In this case, the altered portion 31 is further appropriately formed.
 また、上述の加工条件Aに加え、以下の仕様を満たすパルスレーザーを用いることが好ましい。この場合、接合層2の厚みを均一にすることができるため、接合工程時に接合面に加えられる応力が均一となり、結果的に、工具母材1とcBN焼結体3との接合強度をより高めることができる。特にファイバーレーザーは、以下の仕様を満たしやすい。 In addition to the above processing condition A, it is preferable to use a pulse laser that satisfies the following specifications. In this case, since the thickness of the joining layer 2 can be made uniform, the stress applied to the joining surface during the joining process becomes uniform, and as a result, the joining strength between the tool base material 1 and the cBN sintered body 3 is further increased. Can be increased. In particular, the fiber laser easily satisfies the following specifications.
 (レーザ発振器および加工機の仕様)
 レーザーの広がり角:2.0mm/mrad以下
 スポット径    :15μm以下。
(Laser oscillator and processing machine specifications)
Laser spread angle: 2.0 mm / mrad or less Spot diameter: 15 μm or less.
 加工条件Aを満たす場合に、接合強度がより高まる理由について、図5Aおよび図5Bを用いながら説明する。図5Aは、パルスレーザーにより加工される前の被加工物を模式的に示す図であり、図5Bは、パルスレーザーにより加工された後の被加工物を模式的に示す図である。図5A中の矢印は、直方体の被加工物20に照射されるレーザーの向きを示している。 The reason why the bonding strength is further increased when the processing condition A is satisfied will be described with reference to FIGS. 5A and 5B. FIG. 5A is a diagram schematically showing a workpiece before being processed by the pulse laser, and FIG. 5B is a diagram schematically showing the workpiece after being processed by the pulse laser. The arrows in FIG. 5A indicate the direction of the laser irradiated on the rectangular parallelepiped workpiece 20.
 図5Aに示されるような直方体(板状)の被加工物20を準備し、これをパルスレーザーを用いて、一点鎖線で示す位置で切断しようとした場合、パルスレーザーの性質上、一点鎖線で示す位置で被加工物20を分割することはできず、実際には、図5Bで示すような2つの被加工物20Aおよび被加工物20Bが作製されることとなる。 When a rectangular parallelepiped (plate-like) work piece 20 as shown in FIG. 5A is prepared, and this is to be cut at a position indicated by a one-dot chain line by using a pulse laser, a one-dot chain line is used due to the nature of the pulse laser. The workpiece 20 cannot be divided at the position shown, and in practice, two workpieces 20A and a workpiece 20B as shown in FIG. 5B are produced.
 これは、パルスレーザーによる被加工物20の切断においては、レーザーの入射面側(面21側)と出射面側(面22側)とで、加工除去される領域の幅(図中左右方向)が変化するためである。なお図5Bにおいて、加工除去される領域を斜線のハッチングで示す。このため、面21および面22のそれぞれと、切断により形成された切断面20a,20bとが交差してなる角度αおよび角度βは所望していた90度とならない。 This is because the width of the region to be processed and removed on the laser incident surface side (surface 21 side) and the emission surface side (surface 22 side) in the cutting of the workpiece 20 by a pulse laser (left and right direction in the figure). This is because of changes. In FIG. 5B, the region to be processed and removed is indicated by hatching. Therefore, the angle α and the angle β formed by intersecting each of the surfaces 21 and 22 and the cut surfaces 20a and 20b formed by cutting do not become the desired 90 degrees.
 このような加工物20Bを、図1および図2に示すような工具母材1(面1aおよび面1bの成す角が90°)に対し、加工面20bが工具母材1の面1aと向かいあい、面22が工具母材1の面1bと向かい合うように両者を配置させた場合、工具母材1と加工物20Bとの互いに向かい合う面同士が平行とならない。このため、工具母材1と加工物20Bとの互いに向かい合う面同士の隙間を埋めるべく接合層2の厚みを均一とせず、隙間に追従するように変化させる必要が生じる。 With respect to such a workpiece 20B, the machining surface 20b faces the surface 1a of the tool base material 1 with respect to the tool base material 1 (the angle formed by the surfaces 1a and 1b is 90 °) as shown in FIGS. In the meantime, when both surfaces are arranged so that the surface 22 faces the surface 1b of the tool base material 1, the mutually facing surfaces of the tool base material 1 and the workpiece 20B are not parallel to each other. For this reason, it is necessary to change the thickness of the bonding layer 2 so as to follow the gap without filling the gap between the mutually facing surfaces of the tool base material 1 and the workpiece 20B.
 接合層2の厚みが均一でない場合、接合工程時に接合面に加えられる応力が不均一となり、結果的に、加工物20Bと工具母材1の接合強度が不十分となる恐れがある。特に、従来利用されていたパルスレーザーの条件においては、図5Bに示す角度αは、88°以下となるのが実情であった。 When the thickness of the bonding layer 2 is not uniform, the stress applied to the bonding surface during the bonding process becomes non-uniform, and as a result, the bonding strength between the workpiece 20B and the tool base material 1 may be insufficient. In particular, under the conditions of pulse lasers conventionally used, the actual situation is that the angle α shown in FIG. 5B is 88 ° or less.
 これに対し、上記条件Aを満たすパルスレーザーによれば、作製された加工面20bと、これと交差する面22との角度αを89.0°~90.0°とすることができる。同様に、加工面20bとこれと交差する面21との角度βを90.0°~91.0°とすることができる。すなわち、cBN焼結体工具において、接合面となるべき互いに交差する2つの面の成す角が、89.0~91.0°であるcBN焼結体を用いることができる。 On the other hand, according to the pulse laser satisfying the above condition A, the angle α between the manufactured processed surface 20b and the surface 22 intersecting with the processed surface 20b can be set to 89.0 ° to 90.0 °. Similarly, the angle β between the processed surface 20b and the surface 21 intersecting with the processed surface 20b can be set to 90.0 ° to 91.0 °. That is, in the cBN sintered body tool, a cBN sintered body in which an angle formed by two mutually intersecting surfaces to be bonded surfaces is 89.0 to 91.0 ° can be used.
 このため、工具母材1と加工物20Bとの向かい合う面同士の隙間を小さくすることができる。したがって、接合層2の厚みを、従来と比して均一にすることができるため、接合工程時に接合面に加えられる応力が均一となり、結果的に、工具母材1とcBN焼結体3との接合強度をより高めることができる。また、接合強度をさらに高める観点からは、角度αは、89.5°~90.0°であることがより好ましく、角度βは、90.0~90.5°であることがより好ましい。すなわち、cBN焼結体工具において、接合面となるべき互いに交差する2つの面の成す角が、89.5~90.5°であるcBN焼結体が好ましい。 For this reason, it is possible to reduce the gap between the facing surfaces of the tool base material 1 and the workpiece 20B. Therefore, since the thickness of the joining layer 2 can be made uniform as compared with the conventional case, the stress applied to the joining surface during the joining process becomes uniform. As a result, the tool base material 1 and the cBN sintered body 3 The bonding strength can be further increased. Further, from the viewpoint of further increasing the bonding strength, the angle α is more preferably 89.5 ° to 90.0 °, and the angle β is more preferably 90.0 to 90.5 °. That is, in the cBN sintered body tool, a cBN sintered body in which an angle formed by two mutually intersecting surfaces to be bonded surfaces is 89.5 to 90.5 ° is preferable.
 〔第2の実施形態〕
 上述の第1の実施形態では、支持板を除去したcBN焼結体をレーザ加工し、これを用いてcBN焼結体工具としたが、本実施形態においては、支持板を除去せず、支持板が付いたcBN焼結体をレーザ加工し、これを用いてcBN焼結体工具とする。
[Second Embodiment]
In the first embodiment described above, the cBN sintered body from which the support plate has been removed is laser processed, and this is used as the cBN sintered body tool. However, in this embodiment, the support plate is not removed and the support is removed. Laser processing is performed on the cBN sintered body with the plate, and this is used as a cBN sintered body tool.
 具体的には、図6に示されるように、cBN焼結体3の一つの面には、支持板4が付いている。すなわち、本実施形態において、cBN焼結体3と接合層2との間に、支持板4が配置されている。cBN焼結体3と支持板4とは、上述のように焼結工程を経ていることから、互いに強固に接合されている。 Specifically, as shown in FIG. 6, a support plate 4 is attached to one surface of the cBN sintered body 3. That is, in the present embodiment, the support plate 4 is disposed between the cBN sintered body 3 and the bonding layer 2. Since the cBN sintered body 3 and the support plate 4 have undergone the sintering process as described above, they are firmly bonded to each other.
 なお、支持板4は、図4Bに示されるような焼結工程後の支持板42であってもよく、支持板42の一部であってもよい。すなわち、支持板4は、焼結工程後の支持板42の全てを残すことにより、cBN焼結体3の1つの面上に存在させても良いし、支持板42の全てを除去せずに一部を残すことにより、cBN焼結体3の1つの面上に存在させても良い。 The support plate 4 may be a support plate 42 after the sintering process as shown in FIG. 4B or may be a part of the support plate 42. That is, the support plate 4 may be present on one surface of the cBN sintered body 3 by leaving all of the support plate 42 after the sintering step, or without removing all of the support plate 42. You may make it exist on one surface of the cBN sintered compact 3 by leaving a part.
 本実施形態においても第1の実施形態と同様に、接合面3a側に変質部が存在しており、これによりcBN焼結体3と工具母材1との接合強度が高められている。 In the present embodiment, similarly to the first embodiment, an altered portion is present on the joining surface 3a side, and thereby the joining strength between the cBN sintered body 3 and the tool base material 1 is enhanced.
 〔第3の実施形態〕
 上述の第1の実施形態では、cBN焼結体3の接合面3aに変質部31が存在する場合について説明したが、本実施形態においては、cBN焼結体3の接合面3aおよび接合面3bの両面に変質部31が存在する場合について説明する。なお、接合面3bに変質部31が存在する以外は、第1の実施形態と同様であるため、その説明は繰り返さない。
[Third Embodiment]
In the above-described first embodiment, the case where the altered portion 31 is present on the joint surface 3a of the cBN sintered body 3 has been described. However, in the present embodiment, the joint surface 3a and the joint surface 3b of the cBN sintered body 3 are described. A case in which the altered portion 31 exists on both sides of will be described. In addition, since it is the same as that of 1st Embodiment except the quality change part 31 existing in the joint surface 3b, the description is not repeated.
 図2を参照し、cBN焼結体3の接合面3aおよび接合面3bの両面には、上述の変質部31が存在する。このようなcBN焼結体は、接合面3aの形成のみならず、接合面3bの形成においても上述の加工工程を実施することにより、作製することができる。 Referring to FIG. 2, the above-described altered portion 31 exists on both the joining surface 3 a and the joining surface 3 b of the cBN sintered body 3. Such a cBN sintered body can be produced not only by forming the joint surface 3a but also by forming the joint surface 3b by performing the above-described processing steps.
 本実施形態のcBN焼結体工具10によれば、接合面3aおよび接合面3bのそれぞれに変質部31が存在することにより、cBN焼結体3と工具母材1との接合強度が高められる。 According to the cBN sintered body tool 10 of the present embodiment, the presence of the altered portion 31 in each of the joining surface 3a and the joining surface 3b increases the joining strength between the cBN sintered body 3 and the tool base material 1. .
 また、接合面3aおよび接合面3bの作製に際し、加工条件Aを満たすパルスレーザーにより各面を作製することにより、接合面3a,3bの両面の成す角度(すなわち、図2において稜線3cを頂点とする角度)を89.0°以上91.0°以下とすることができる。このため、接合層2の厚みを、従来と比して均一にすることができるため、接合工程時に接合面に加えられる応力が均一となり、結果的に、工具母材1とcBN焼結体3との接合強度をより高めることができる。 Further, when the bonding surface 3a and the bonding surface 3b are manufactured, each surface is manufactured by a pulse laser that satisfies the processing condition A, so that the angle formed by both surfaces of the bonding surfaces 3a and 3b (that is, the ridge line 3c in FIG. Angle) can be 89.0 ° or more and 91.0 ° or less. For this reason, since the thickness of the joining layer 2 can be made uniform as compared with the conventional case, the stress applied to the joining surface during the joining process becomes uniform, and as a result, the tool base material 1 and the cBN sintered body 3 The joint strength can be further increased.
 以下、実施例を挙げて本実施形態をより詳細に説明するが、本実施形態はこれらに限定されるものではない。 Hereinafter, the present embodiment will be described in more detail with reference to examples, but the present embodiment is not limited thereto.
 〔実施例1〕
 以下のようにして、図1および図2に示される形状のcBN焼結体工具を作製した。
[Example 1]
A cBN sintered body tool having the shape shown in FIGS. 1 and 2 was produced as follows.
 まず、TiN粉末およびAl粉末(それぞれ平均粒径は20μm程度)を、質量比で4:1となるように混合して混合物を調製した。次に、混合物を真空中で1250℃、30分間熱処理した。熱処理して得られた混合物を、φ4mmの超硬合金製ボールと超硬合金製ポットとを用いて粉砕することにより、結合相の原料粉末を得た(粉砕工程)。 First, TiN powder and Al powder (each having an average particle size of about 20 μm) were mixed to a mass ratio of 4: 1 to prepare a mixture. Next, the mixture was heat-treated at 1250 ° C. for 30 minutes in a vacuum. The mixture obtained by the heat treatment was pulverized using a φ4 mm cemented carbide ball and a cemented carbide pot to obtain a raw material powder for the binder phase (pulverization step).
 次に、cBN粒子(平均粒径は4μm程度)からなるcBN粉末を準備し、上記結合相用の原料粉末とcBN相用のcBN粉末との混合割合(体積%)が39:61となるように両粉末を混合して、混合粉末を調製した。この混合粉末を真空炉内に配置し、950℃に昇温した後に30分間保持することにより、混合粉末の脱ガスを行った。そして、脱ガス後の混合粉末を超硬合金製の支持板に積層してMo製のカプセルに充填し、該カプセルを超高圧装置内に配置して、以下の焼結条件下で焼結工程を実施した(焼結工程)。焼結工程後、カプセルから焼結体を取り出し、支持板を研削して全て除去し、さらに研削して形状を整えることにより、円盤状のcBN焼結体を調製した。 Next, cBN powder composed of cBN particles (average particle size is about 4 μm) is prepared, and the mixing ratio (volume%) of the binder phase raw material powder and cBN phase cBN powder is 39:61. Both powders were mixed together to prepare a mixed powder. The mixed powder was placed in a vacuum furnace, heated to 950 ° C., and held for 30 minutes to degas the mixed powder. Then, the mixed powder after degassing is laminated on a support plate made of cemented carbide and filled into a capsule made of Mo, and the capsule is placed in an ultra-high pressure apparatus, and is sintered under the following sintering conditions. (Sintering process). After the sintering step, the sintered body was taken out from the capsule, the support plate was ground and removed, and then the shape was adjusted by grinding to prepare a disk-shaped cBN sintered body.
 (焼結条件)
 圧力:5GPa
 温度:1300℃
 時間:20分。
(Sintering conditions)
Pressure: 5GPa
Temperature: 1300 ° C
Time: 20 minutes.
 次に、円盤状のcBN焼結体に対し、ファイバーレーザー装置を用いて以下の加工条件下で加工した(加工工程)。これにより、図1および図2に示されるような、2辺が2mmでその間の頂角が80°の二等辺三角形が底面で、その厚みが1.0mmの三角柱形状のcBN焼結体が切り出された。この切り出されたcBN焼結体のうち、長方形形状の面がレーザー加工された面である。 Next, the disk-shaped cBN sintered body was processed using a fiber laser device under the following processing conditions (processing step). Thereby, as shown in FIGS. 1 and 2, an isosceles triangle having two sides of 2 mm and an apex angle of 80 ° between them is a bottom surface and a thickness of 1.0 mm is cut into a triangular prism-shaped cBN sintered body. It was. Of the cBN sintered body cut out, a rectangular surface is a laser processed surface.
 (レーザー加工条件)
 レーザー発振器   :IPG製YLR-150/1500(型番)
 増幅媒質      :光ファイバー
 パルスエネルギー  :0.02J
 パルス幅      :0.10msec
 出力        :150W
 周波数       :300Hz
 波長        :1070nm
 導入ガス      :窒素
 加工速度      :50mm/min.。
(Laser processing conditions)
Laser oscillator: YLR-150 / 1500 (model number) manufactured by IPG
Amplification medium: Optical fiber Pulse energy: 0.02J
Pulse width: 0.10 msec
Output: 150W
Frequency: 300Hz
Wavelength: 1070 nm
Introduced gas: Nitrogen Processing speed: 50 mm / min. .
 次に、超硬合金からなる工具母材を準備し、cBN焼結体と工具母材との間に、25質量%のTiと25質量%のZrと30質量%のCuと20質量%のNiとからなる接合層用の材料を挟み込み、この積層体を真空炉内に設置した。そして、真空炉内の圧力を1×10-2Paとし、その内部温度を850℃にまで昇温し、接合層用の材料を溶解させることにより、cBN焼結体と工具母材とを接合させた。cBN焼結体は、上記の加工工程により形成された1つの加工面を有するが、該加工面は、図1および図2におけるcBN焼結体の接合面3aに相当するように配置し、非加工の面(図5Bにおける面22に相当する面)が、cBN焼結体の接合面3bに相当するように配置した。 Next, a tool base material made of cemented carbide is prepared, and 25% by mass of Ti, 25% by mass of Zr, 30% by mass of Cu, and 20% by mass of cBN sintered body and the tool base material. A material for the bonding layer made of Ni was sandwiched, and this laminate was placed in a vacuum furnace. Then, the pressure inside the vacuum furnace is set to 1 × 10 −2 Pa, the internal temperature is raised to 850 ° C., and the material for the bonding layer is melted to join the cBN sintered body and the tool base material. I let you. The cBN sintered body has one processed surface formed by the above-described processing steps, and the processed surface is disposed so as to correspond to the joint surface 3a of the cBN sintered body in FIGS. The processing surface (surface corresponding to the surface 22 in FIG. 5B) was arranged so as to correspond to the bonding surface 3b of the cBN sintered body.
 その後、工具母材にcBN焼結体が接合されたものを真空炉から取り出して放冷を行った。そして、cBN焼結体と接合層との接合面の外周、および工具母材と接合層との接合面の外周を研磨処理することにより、接合面周りを平滑にした。以上により、ISO型番がCNGA120408の形状であって、その頂角部分にcBN焼結体を備えたcBN焼結体工具が作製された。 Thereafter, the tool base material bonded with the cBN sintered body was taken out of the vacuum furnace and allowed to cool. Then, the periphery of the joint surface between the cBN sintered body and the joint layer and the outer periphery of the joint surface between the tool base material and the joint layer were polished to smooth the periphery of the joint surface. As described above, a cBN sintered body tool having an ISO model number of CNGA120408 and having a cBN sintered body at the apex angle portion was produced.
 実施例1におけるcBN焼結体工具の製造方法の各種条件および、製造されたcBN焼結体工具の各種特徴について表1に示す。 Table 1 shows various conditions of the method of manufacturing the cBN sintered body tool in Example 1 and various characteristics of the manufactured cBN sintered body tool.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1において、cBN含有率の欄には、cBN焼結体中のcBN含有割合(体積%)が示され、結合相の欄には、結合相を構成する化合物の組成が示される。また、切断方法の欄には、cBN焼結体の切断(加工)方法が示され(「FB」はファイバーレーザーを意味する)、パルス幅、エネルギーの欄には、加工時のパルス幅(msec)およびパルスエネルギーの値(J)が示される。 In Table 1, the cBN content ratio column (% by volume) is shown in the column of the cBN content, and the composition of the compound constituting the binder phase is shown in the column of the binder phase. In the column of cutting method, the method of cutting (processing) the cBN sintered body is shown (“FB” means fiber laser), and in the column of pulse width and energy, the pulse width during processing (msec) ) And pulse energy values (J).
 cBN焼結体中のcBNの含有割合は、次のようにして算出した。まず、加工工程後(接合工程は実施せず)のcBN焼結体を鏡面研磨し(ただし研磨する厚みは50μm未満にとどめた)、任意の領域のcBN焼結体を電子顕微鏡にて2000倍で写真撮影したところ、黒色領域と灰色領域と白色領域が観察された。付属のエネルギー分散型X線分光装置(EDX:Energy Dispersive X-ray spectroscopy)により、黒色領域はcBNであり、灰色領域および白色領域はcBN以外の結合相であることが確認された。次に、上記で撮影された2000倍の写真に対して画像処理ソフトを用いて二値化処理を施し、同写真のcBN粒子が占める領域(黒色領域)の合計面積を算出し、その写真中のcBN焼結体に占める黒色領域の割合の百分率を体積%とした。 The content ratio of cBN in the cBN sintered body was calculated as follows. First, the cBN sintered body after the processing step (without the joining step) was mirror-polished (though the polishing thickness was limited to less than 50 μm), and the cBN sintered body in an arbitrary region was magnified 2000 times with an electron microscope. When the photo was taken with a black area, a gray area and a white area were observed. With the attached energy dispersive X-ray spectrometer (EDX: Energy Dispersive X-ray spectroscopy), it was confirmed that the black region was cBN, and the gray region and the white region were bonded phases other than cBN. Next, the 2000 × photograph taken above was binarized using image processing software to calculate the total area of the region (black region) occupied by cBN particles in the photograph, The percentage of the ratio of the black region in the cBN sintered body was defined as volume%.
 なお、cBN焼結体におけるcBNの含有率は、原料の配合割合(BN粒子と結合材用の材料との配合割合)に一致した。このことから、cBN焼結体を構成するcBNの一部(なかでも表面領域に位置するcBNの一部)がhBNに相変換されていたとしても、cBN焼結体全体に対するhBNの含有割合は1体積%に満たないものであることが理解された。 In addition, the content rate of cBN in the cBN sintered body coincided with the mixing ratio of the raw materials (the mixing ratio of the BN particles and the material for the binder). From this, even if a part of cBN constituting the cBN sintered body (particularly a part of cBN located in the surface region) is phase-converted to hBN, the content ratio of hBN to the whole cBN sintered body is It was understood that it was less than 1% by volume.
 cBN焼結体中の結合相を構成する化合物の組成は、加工工程後(接合工程は実施せず)のcBN焼結体に対し、X線回折(XRD:X-ray diffraction)を実施することにより確認した。なお、以下の実施例2~41および比較例1~20においても、cBN焼結体におけるcBNの含有率の求め方、結合相を構成する化合物の組成の確認は、実施例1と同様とした。 The composition of the compound constituting the binder phase in the cBN sintered body is to perform X-ray diffraction (XRD) on the cBN sintered body after the processing step (without the joining step). Confirmed by In Examples 2 to 41 and Comparative Examples 1 to 20 below, the method for obtaining the content of cBN in the cBN sintered body and the confirmation of the composition of the compound constituting the binder phase were the same as in Example 1. .
 〔実施例2~25〕
 実施例1のcBN焼結体工具に対し、結合相を構成する化合物の組成を表1に示すように変更し、支持体の有無(「有」:支持体の一部を残す、「-」:支持体の全部を除去)を表1に示すように変更し、かつcBN含有率(体積%)を表1に示すように変更して焼結工程を実施し、さらに加工工程におけるパルス幅およびパルスエネルギーを表1に示すように変更した以外は、実施例1と同様の方法により、cBN焼結体工具を作製した。
[Examples 2 to 25]
With respect to the cBN sintered body tool of Example 1, the composition of the compound constituting the binder phase was changed as shown in Table 1, and the presence or absence of the support (“Yes”: leaving a part of the support, “−” : Remove all of the support) as shown in Table 1 and change the cBN content (% by volume) as shown in Table 1 to carry out the sintering process, and further the pulse width and A cBN sintered body tool was produced in the same manner as in Example 1 except that the pulse energy was changed as shown in Table 1.
 なお実施例2~8においては、実施例1と同様の結合相用の原料粉末を用いた。実施例9~16においては、cBN粉末およびAlN粉末を質量比で8:1となるように混合した混合物を原料粉末とした。実施例17~25においては、cBN粉末と結合材粉末(Co粉末、WC粉末、およびAl粉末を質量比で2:7:1で混合させた粉末)とを、質量比で9:1となるように混合した混合物を原料粉末とした。実施例2、10および18においては、図5Bの面21に相当する面が面3bに位置するように配置した。 In Examples 2 to 8, the same raw material powder for the binder phase as in Example 1 was used. In Examples 9 to 16, a mixture in which cBN powder and AlN powder were mixed at a mass ratio of 8: 1 was used as a raw material powder. In Examples 17 to 25, the cBN powder and the binder powder (Co powder, WC powder, and Al powder mixed at a mass ratio of 2: 7: 1) are in a mass ratio of 9: 1. The mixture thus prepared was used as a raw material powder. In Examples 2, 10 and 18, the surface corresponding to the surface 21 in FIG. 5B was disposed on the surface 3b.
 〔実施例26~41〕
 原料として市販のペレット状のhBNを高融点金属からなるカプセルに入れ、該カプセルを超高圧装置内に導入し、以下の焼結条件下で焼結工程を実施し、さらに加工工程におけるパルス幅およびパルスエネルギーを表2に示すように変更した以外は、実施例1と同様の方法により、cBN焼結体工具を作製した。この焼結工程においては、hBNがcBNに直接変換された。
[Examples 26 to 41]
Commercially available pellet-shaped hBN as a raw material is put into a capsule made of a refractory metal, the capsule is introduced into an ultrahigh pressure apparatus, a sintering process is performed under the following sintering conditions, and a pulse width and A cBN sintered body tool was produced in the same manner as in Example 1 except that the pulse energy was changed as shown in Table 2. In this sintering process, hBN was directly converted to cBN.
 (焼結条件)
 圧力:10GPa
 温度:2100℃
 時間:20分。
(Sintering conditions)
Pressure: 10GPa
Temperature: 2100 ° C
Time: 20 minutes.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 上記実施例1~41のうち、実施例8、16、25および38~41では、ファイバーレーザーのかわりにYAGレーザーを用いた。YAGレーザーを用いた場合においても、パルス幅およびパルスエネルギーを表1に示すように変更した以外の他の加工条件は実施例1と同様とした。ただし、ファイバーレーザーにおいては、その仕様がスポット径、レーザーの広がり角がそれぞれ10μm、1.0mm/mradであったのに対し、YAGレーザーではこれらの値よりも大きい仕様となった。実施例1~41のうち、実施例2、10、18および27は、図5Bの面21に相当する面が面3bに位置するように配置し、それ以外は、図5Bの面22に相当する面が面3bに位置するように配置した。 Among Examples 1 to 41, in Examples 8, 16, 25, and 38 to 41, a YAG laser was used instead of the fiber laser. Even when the YAG laser was used, the other processing conditions were the same as in Example 1 except that the pulse width and pulse energy were changed as shown in Table 1. However, in the fiber laser, the specifications were a spot diameter and a laser spread angle of 10 μm and 1.0 mm / mrad, respectively, whereas in the YAG laser, the specifications were larger than these values. Among Examples 1 to 41, Examples 2, 10, 18 and 27 are arranged such that the surface corresponding to surface 21 in FIG. 5B is positioned on surface 3b, and otherwise, corresponds to surface 22 in FIG. 5B. It arrange | positions so that the surface to perform may be located in the surface 3b.
 〔比較例1~20〕
 粉砕工程に関し、比較例1~5においては、実施例1と同様の結合相用の原料粉末を用い、比較例6~10においては、実施例7と同様の結合相用の原料粉末を用い、比較例11~14においては、実施例13と同様の結合相用の原料粉末を用いた。cBN粉末の混合割合は、表3のcBN含有率(体積%)に示すとおりである。
[Comparative Examples 1 to 20]
Regarding the pulverization step, in Comparative Examples 1 to 5, the same binder phase raw material powder as in Example 1 was used, and in Comparative Examples 6 to 10, the same binder phase raw material powder as in Example 7 was used. In Comparative Examples 11 to 14, the same raw material powder for the binder phase as in Example 13 was used. The mixing ratio of the cBN powder is as shown in the cBN content (volume%) in Table 3.
 また、加工工程に関し、比較例1~20において、表3に示す加工を行った。なお、表3中、YAG(熱)およびYAG(非熱)は、YAGレーザーによる熱加工およびYAGレーザーによる非熱加工を意味する。 Further, regarding the processing steps, the processing shown in Table 3 was performed in Comparative Examples 1 to 20. In Table 3, YAG (thermal) and YAG (non-thermal) mean thermal processing with a YAG laser and non-thermal processing with a YAG laser.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に関し、WEDM、ワイヤーソー、YAGレーザーによる熱加工、YAGレーザーによる非熱加工の各加工条件は以下のとおりである。 Regarding Table 3, the processing conditions of WEDM, wire saw, thermal processing with YAG laser, and non-thermal processing with YAG laser are as follows.
 (WEDMの加工条件)
 ワイヤー材料:真鍮
 ワイヤー直径:0.3mm
 切断速度  :2mm/min.。
(WEDM processing conditions)
Wire material: Brass Wire diameter: 0.3mm
Cutting speed: 2 mm / min. .
 (ワイヤーソーの加工条件)
 ワイヤー材料:ダイヤモンド
 ワイヤー直径:0.2mm
 切断速度  :0.05mm/min.。
(Wire saw processing conditions)
Wire material: Diamond Wire diameter: 0.2mm
Cutting speed: 0.05 mm / min. .
 (YAGレーザーによる熱加工の加工条件)
 レーザー加工機 :MS35
 増幅媒質    :YAG
 パルスエネルギー:1.6J
 パルス幅    :0.5msec
 出力      :40W
 周波数     :100Hz
 波長      :1064nm
 加工速度    :50mm/min.。
(Processing conditions for thermal processing with YAG laser)
Laser processing machine: MS35
Amplification medium: YAG
Pulse energy: 1.6J
Pulse width: 0.5msec
Output: 40W
Frequency: 100Hz
Wavelength: 1064nm
Processing speed: 50 mm / min. .
 (YAGレーザーによる非熱加工の加工条件)
 レーザー発振器 :Hawk-Pro-532
 増幅媒質    :YAG
 パルス幅    :25nsec(0.025msec)
 出力      :15W
 周波数     :1000Hz
 波長      :532nm
 加工速度    :50mm/min.。
(Processing conditions for non-thermal processing with YAG laser)
Laser oscillator: Hawk-Pro-532
Amplification medium: YAG
Pulse width: 25nsec (0.025msec)
Output: 15W
Frequency: 1000Hz
Wavelength: 532 nm
Processing speed: 50 mm / min. .
 〔cBN焼結体の熱伝導率について〕
 実施例1~41および比較例1~20の各cBN焼結体の熱伝導率は、「JIS R1611:2010」に準拠したレーザフラッシュ法により求めた。具体的には、まず加工工程後(接合工程は実施せず)のcBN焼結体から測定試料用のサンプルを切り出して、サンプル表面に変質部がなくなるまで十分研磨して、直径18mm、厚み1mmの測定試料を作製した。この測定試料の表面にパルスレーザー光を照射し、比熱と熱拡散率とを測定し、これらを用いて熱伝導率を算出した。その結果を表1~表3に示す。なお、レーザー光は波長が1.06μmであり、パルス幅が0.4msであった。
[Thermal conductivity of cBN sintered body]
The thermal conductivity of each of the cBN sintered bodies of Examples 1 to 41 and Comparative Examples 1 to 20 was determined by a laser flash method in accordance with “JIS R1611: 2010”. Specifically, first, a sample for a measurement sample is cut out from the cBN sintered body after the processing step (the bonding step is not performed), and is sufficiently polished until there is no altered portion on the sample surface, and the diameter is 18 mm and the thickness is 1 mm. A measurement sample was prepared. The surface of the measurement sample was irradiated with pulsed laser light, the specific heat and the thermal diffusivity were measured, and the thermal conductivity was calculated using these. The results are shown in Tables 1 to 3. The laser beam had a wavelength of 1.06 μm and a pulse width of 0.4 ms.
 〔評価1:変質部の有無について〕
 各cBN焼結体工具において、cBN焼結体のうちの接合層と接触する面に変質部が存在するか否かについて、ラマン分光分析およびEDS分析により観察した。
[Evaluation 1: Presence or absence of altered part]
In each cBN sintered compact tool, it was observed by Raman spectroscopic analysis and EDS analysis whether or not an altered portion is present on the surface of the cBN sintered compact that contacts the bonding layer.
 ラマン分光分析に関し、まず、cBN焼結体工具のうちの図2の紙面上に示される面に相当する面をCP装置を用いてCP加工し、観察用のサンプルを準備した。次に、このCP加工面をラマン分光装置(HORIBA LabRAM HR-800,波長:532nm)を用いて観察し、cBN焼結体のうち接合層と接触する接触面近傍におけるhBN、B23、およびB2ON3の有無を観察した。 Regarding the Raman spectroscopic analysis, first, a surface corresponding to the surface shown on the paper surface of FIG. 2 of the cBN sintered body tool was subjected to CP processing using a CP apparatus to prepare a sample for observation. Next, this CP processed surface was observed using a Raman spectroscope (HORIBA LabRAM HR-800, wavelength: 532 nm), and hBN, B 2 O 3 in the vicinity of the contact surface in contact with the bonding layer in the cBN sintered body, And the presence or absence of B 2 ON 3 was observed.
 EDS分析に関し、上記CP加工面をEDS分析装置(JED-2300、日本電子社製)を用いて観察し、cBN焼結体のうち接合層と接触する接触面近傍におけるBの有無を観察した。 Regarding EDS analysis, the CP processed surface was observed using an EDS analyzer (JED-2300, manufactured by JEOL Ltd.), and the presence or absence of B in the vicinity of the contact surface in contact with the bonding layer in the cBN sintered body was observed.
 そして、hBN、B、B23、およびB2ON3の少なくとも1種の成分が観察されたサンプルにおいては、接合層と接触する接触面の位置から、上記成分のいずれかが存在する領域のうち最も内部側の位置までの最短距離を変質部の厚さ(μm)とした。その結果を表1~表3に示す。 In a sample in which at least one component of hBN, B, B 2 O 3 , and B 2 ON 3 is observed, a region in which any of the above components exists from the position of the contact surface in contact with the bonding layer Among these, the shortest distance to the innermost position was defined as the thickness (μm) of the altered portion. The results are shown in Tables 1 to 3.
 表1~表3に示されるように、ファイバーレーザーによって加工されたcBN焼結体およびYAGレーザーによる熱加工によって加工されたcBN焼結体において、面3aに対応する面に変質部が存在することが確認された。なお、確認された変質部は、いずれのcBN焼結体においても、各面の全面に形成されていた。 As shown in Tables 1 to 3, in a cBN sintered body processed by a fiber laser and a cBN sintered body processed by thermal processing using a YAG laser, an altered portion exists on the surface corresponding to the surface 3a. Was confirmed. In addition, the confirmed altered part was formed in the whole surface of each surface in any cBN sintered compact.
 なお比較例14および20に関し、WEDMによるcBN焼結体の加工ができなかったため、表2において「切断不可」とした。 For Comparative Examples 14 and 20, the cBN sintered body could not be processed by WEDM.
 〔評価2:cBN焼結体の接合面の成す角について〕
 上記の研磨面を顕微鏡を用いて観察し、接合面の成す角(面3aと面3bとの成す角)を測定した。その結果を表1および表2に示す。
[Evaluation 2: Angle formed by joint surface of cBN sintered body]
The above polished surface was observed using a microscope, and the angle formed by the bonded surfaces (the angle formed by the surfaces 3a and 3b) was measured. The results are shown in Tables 1 and 2.
 〔評価3:接合強度について〕
 各cBN焼結体工具において、cBN焼結体と工具母材との接合強度を測定した。この接合強度の測定方法について、図7Aおよび図7Bを用いながら説明する。
[Evaluation 3: Bonding strength]
In each cBN sintered body tool, the bonding strength between the cBN sintered body and the tool base material was measured. A method for measuring the bonding strength will be described with reference to FIGS. 7A and 7B.
 図7Aは、cBN焼結体工具の接合強度を測定するときの打ち抜き棒の当て方の概略を模式的に示した平面図であり、図7Bは、cBN焼結体工具の接合強度を測定するときの打ち抜き棒の当て方の概略を模式的に示した正面図である。 FIG. 7A is a plan view schematically showing an outline of how to apply the punching bar when measuring the bonding strength of the cBN sintered body tool, and FIG. 7B measures the bonding strength of the cBN sintered body tool. It is the front view which showed typically the outline of how to apply the punching rod at the time.
 図7Aおよび図7Bに示されるように、cBN焼結体工具10のうち、cBN焼結体3のみに荷重がかかり、工具母材1には荷重がかからないように、超硬合金製の打ち抜き棒30をcBN焼結体3の側面に面接触させた。なおcBN焼結体工具10が支持板4を有する場合には、cBN焼結体3と支持板4との両者に荷重がかかるように調整した。そして、工具母材1が動かないように固定した上で、打ち抜き棒30の荷重を徐々に増加させていき、cBN焼結体3が工具母材1から破断したときの荷重を測定した。破断した時の荷重をcBN焼結体3と工具母材1との接合面積で除し、単位面積あたりの接合強度(kgf/mm2)を算出した。その結果を表1~表3に示す。 As shown in FIG. 7A and FIG. 7B, a punching rod made of cemented carbide is used so that only the cBN sintered body 3 of the cBN sintered body tool 10 is loaded and the tool base material 1 is not loaded. 30 was brought into surface contact with the side surface of the cBN sintered body 3. In addition, when the cBN sintered compact tool 10 had the support plate 4, it adjusted so that a load might be applied to both the cBN sintered compact 3 and the support plate 4. FIG. And after fixing so that the tool base material 1 might not move, the load of the punching rod 30 was increased gradually, and the load when the cBN sintered compact 3 fractured | ruptured from the tool base material 1 was measured. The load at the time of fracture was divided by the bonding area between the cBN sintered body 3 and the tool base material 1 to calculate the bonding strength (kgf / mm 2 ) per unit area. The results are shown in Tables 1 to 3.
 表1~表3に示されるように、比較例のcBN焼結体工具と比して、実施例のcBN焼結体工具は、cBN焼結体と工具母材との接合強度が高いことが確認された。 As shown in Tables 1 to 3, the cBN sintered body tool of the example has higher bonding strength between the cBN sintered body and the tool base material than the cBN sintered body tool of the comparative example. confirmed.
 今回開示された実施の形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態および実施例ではなく請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。 It should be considered that the embodiments and examples disclosed this time are examples in all respects and are not restrictive. The scope of the present invention is shown not by the above-described embodiments and examples but by the scope of claims, and is intended to include meanings equivalent to the scope of claims and all modifications within the scope.
 1 工具母材、2 接合層、3,3A cBN焼結体、4 支持板、10 cBN焼結体工具、31 変質部、32 基体、1a,1b,3a,3b 面、3c 稜線、20 被加工物、20A,20B 加工物、20Bb 加工面、20a 入射面、20b 出射面、30 打ち抜き棒。 1 tool base material, 2 bonding layer, 3,3A cBN sintered body, 4 support plate, 10 cBN sintered body tool, 31 altered part, 32 substrate, 1a, 1b, 3a, 3b surface, 3c ridge line, 20 workpiece Workpiece, 20A, 20B workpiece, 20Bb machined surface, 20a entrance surface, 20b exit surface, 30 punched bar.

Claims (9)

  1.  工具母材と、
     前記工具母材の表面に設けられた接合層と、
     前記接合層を介して前記工具母材に接合された立方晶窒化硼素焼結体と、を備え、
     前記立方晶窒化硼素焼結体は、前記接合層と接合する接合面を有し、
     前記接合面のうち少なくとも1つの面側には、六方晶窒化硼素、硼素、酸化硼素、および酸窒化硼素からなる群より選択される少なくとも1種を含む変質部が存在しており、
     前記変質部は、0.1μm以上50.0μm以下の厚さを有する、立方晶窒化硼素焼結体工具。
    Tool base material,
    A bonding layer provided on a surface of the tool base material;
    A cubic boron nitride sintered body joined to the tool base material via the joining layer,
    The cubic boron nitride sintered body has a bonding surface to be bonded to the bonding layer,
    On the at least one surface side of the joint surface, there is an altered portion containing at least one selected from the group consisting of hexagonal boron nitride, boron, boron oxide, and boron oxynitride,
    The altered boron part is a cubic boron nitride sintered body tool having a thickness of 0.1 μm or more and 50.0 μm or less.
  2.  前記変質部は、0.3μm以上5.0μm以下の厚さを有する、請求項1に記載の立方晶窒化硼素焼結体工具。 The cubic boron nitride sintered body tool according to claim 1, wherein the altered portion has a thickness of 0.3 µm or more and 5.0 µm or less.
  3.  前記立方晶窒化硼素焼結体における立方晶窒化硼素の含有率は、80.0体積%以上である、請求項1または請求項2に記載の立方晶窒化硼素焼結体工具。 The cubic boron nitride sintered body tool according to claim 1 or 2, wherein the cubic boron nitride sintered body has a cubic boron nitride content of 80.0 vol% or more.
  4.  前記立方晶窒化硼素焼結体における立方晶窒化硼素の含有率は、96.0体積%以上である、請求項1または請求項2に記載の立方晶窒化硼素焼結体工具。 The cubic boron nitride sintered body tool according to claim 1 or 2, wherein a content ratio of cubic boron nitride in the cubic boron nitride sintered body is 96.0% by volume or more.
  5.  前記接合面のうち、互いに交差する2つの接合面の成す角は、89.0°以上91.0°以下である、請求項1から請求項4のいずれか1項に記載の立方晶窒化硼素焼結体工具。 5. The cubic boron nitride according to claim 1, wherein an angle formed by two of the joint surfaces intersecting each other is 89.0 ° or more and 91.0 ° or less. Sintered body tool.
  6.  前記立方晶窒化硼素焼結体の熱伝導率は、70W/m・K以上である、請求項1~請求項5のいずれか1項に記載の立方晶窒化硼素焼結体工具。 The cubic boron nitride sintered body tool according to any one of claims 1 to 5, wherein the cubic boron nitride sintered body has a thermal conductivity of 70 W / m · K or more.
  7.  請求項1から請求項6のいずれか1項に記載の立方晶窒化硼素焼結体工具に用いられる立方晶窒化硼素焼結体。 A cubic boron nitride sintered body used for the cubic boron nitride sintered body tool according to any one of claims 1 to 6.
  8.  工具母材と、前記工具母材の表面に設けられた接合層と、前記接合層を介して前記工具母材に接合された立方晶窒化硼素焼結体と、を備える立方晶窒化硼素焼結体工具を製造する方法であって、
     窒化硼素粒子を焼結させて立s方晶窒化硼素焼結体を作製する工程と、
     パルスレーザーにより前記立方晶窒化硼素焼結体をレーザ加工する工程と、
     レーザ加工された前記立方晶窒化硼素焼結体を、前記接合層を介して前記工具母材に接合させる工程と、を含み、
     前記加工する工程において、前記パルスレーザにおけるパルスエネルギーは0.01J以上1.5J以下であり、パルス幅は0.01msec以上0.40msec以下であり、出力は30W以上500W以下である、立方晶窒化硼素焼結体工具の製造方法。
    Cubic boron nitride sintered comprising a tool base material, a joining layer provided on the surface of the tool base material, and a cubic boron nitride sintered body joined to the tool base material via the joining layer. A method of manufacturing a body tool,
    A step of sintering the boron nitride particles to produce a vertical s tetragonal boron nitride sintered body;
    Laser processing the cubic boron nitride sintered body with a pulse laser;
    Bonding the laser-processed cubic boron nitride sintered body to the tool base material via the bonding layer, and
    In the step of processing, the pulse energy in the pulse laser is 0.01 J or more and 1.5 J or less, the pulse width is 0.01 msec or more and 0.40 msec or less, and the output is 30 W or more and 500 W or less. Method for manufacturing a boron sintered body tool.
  9.  前記パルスレーザーは、ファイバーレーザーである、請求項8に記載の立方晶窒化硼素焼結体工具の製造方法。 The method for manufacturing a cubic boron nitride sintered body tool according to claim 8, wherein the pulse laser is a fiber laser.
PCT/JP2016/080235 2015-11-05 2016-10-12 Cubic boron nitride sintered body tool, cubic boron nitride sintered body used therein and production method for cubic boron nitride sintered body tool WO2017077829A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201680078032.0A CN108541228B (en) 2015-11-05 2016-10-12 The manufacturing method of cubic boron nitride sintered body tool, the cubic boron nitride sintered body used in it and cubic boron nitride sintered body tool

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015217468 2015-11-05
JP2015-217468 2015-11-05

Publications (1)

Publication Number Publication Date
WO2017077829A1 true WO2017077829A1 (en) 2017-05-11

Family

ID=58662430

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/080235 WO2017077829A1 (en) 2015-11-05 2016-10-12 Cubic boron nitride sintered body tool, cubic boron nitride sintered body used therein and production method for cubic boron nitride sintered body tool

Country Status (2)

Country Link
CN (1) CN108541228B (en)
WO (1) WO2017077829A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110948191A (en) * 2019-12-28 2020-04-03 郑州博特硬质材料有限公司 Integrally sintered milling head and preparation method thereof
CN112384319A (en) * 2018-07-03 2021-02-19 住友电工硬质合金株式会社 Cutting insert and method of manufacturing the same
WO2021124701A1 (en) * 2019-12-16 2021-06-24 住友電工ハードメタル株式会社 Cubic boron nitride sintered compact and method for manufacturing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020174922A1 (en) * 2019-02-28 2020-09-03 住友電工ハードメタル株式会社 Polycrystalline cubic boron nitride and production method therefor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003127007A (en) * 2001-08-10 2003-05-08 Sumitomo Electric Ind Ltd Throw-away tip
JP2006281386A (en) * 2005-04-01 2006-10-19 Tungaloy Corp Hard sintered body cutting tool and its manufacturing method
JP2012135822A (en) * 2010-12-24 2012-07-19 Sumitomo Electric Hardmetal Corp Cubic boron nitride sintered body tool and method for manufacturing the same
WO2013150610A1 (en) * 2012-04-03 2013-10-10 住友電工ハードメタル株式会社 Sintered cubic boron nitride tool

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08206902A (en) * 1994-12-01 1996-08-13 Sumitomo Electric Ind Ltd Sintered body tip for cutting and its manufacture
JP2014094423A (en) * 2012-11-08 2014-05-22 Mitsubishi Materials Corp Insert made of cubic crystal boron nitride superhigh pressure sintered material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003127007A (en) * 2001-08-10 2003-05-08 Sumitomo Electric Ind Ltd Throw-away tip
JP2006281386A (en) * 2005-04-01 2006-10-19 Tungaloy Corp Hard sintered body cutting tool and its manufacturing method
JP2012135822A (en) * 2010-12-24 2012-07-19 Sumitomo Electric Hardmetal Corp Cubic boron nitride sintered body tool and method for manufacturing the same
WO2013150610A1 (en) * 2012-04-03 2013-10-10 住友電工ハードメタル株式会社 Sintered cubic boron nitride tool

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112384319A (en) * 2018-07-03 2021-02-19 住友电工硬质合金株式会社 Cutting insert and method of manufacturing the same
JPWO2020009117A1 (en) * 2018-07-03 2021-07-08 住友電工ハードメタル株式会社 Cutting insert and its manufacturing method
EP3819051A4 (en) * 2018-07-03 2022-05-04 Sumitomo Electric Hardmetal Corp. Cutting insert and manufacturing method thereof
WO2021124701A1 (en) * 2019-12-16 2021-06-24 住友電工ハードメタル株式会社 Cubic boron nitride sintered compact and method for manufacturing same
JPWO2021124701A1 (en) * 2019-12-16 2021-12-16 住友電工ハードメタル株式会社 Cubic boron nitride sintered body and its manufacturing method
JP7047975B2 (en) 2019-12-16 2022-04-05 住友電工ハードメタル株式会社 Cubic boron nitride sintered body and its manufacturing method
CN110948191A (en) * 2019-12-28 2020-04-03 郑州博特硬质材料有限公司 Integrally sintered milling head and preparation method thereof

Also Published As

Publication number Publication date
CN108541228B (en) 2019-10-08
CN108541228A (en) 2018-09-14

Similar Documents

Publication Publication Date Title
JP5610357B2 (en) Cubic boron nitride sintered tool
KR101456395B1 (en) Cubic boron nitride sintered body tool
JP5927685B2 (en) Cutting tools
WO2017077829A1 (en) Cubic boron nitride sintered body tool, cubic boron nitride sintered body used therein and production method for cubic boron nitride sintered body tool
JP2011189421A (en) Cubic system boron nitride sintered body tool
KR102216988B1 (en) Surface-coated boron nitride sintered compact tool
US20130291446A1 (en) Tool made of cubic boron nitride sintered body
JP5409199B2 (en) Cutting tools
JP5663807B2 (en) Cubic boron nitride sintered tool
JP5821088B2 (en) Cubic boron nitride sintered body tool and manufacturing method thereof
US20160083301A1 (en) Pcbn material, tool elements comprising same and method for using same
JP5725441B2 (en) Cubic boron nitride sintered tool
WO2022070402A1 (en) Cubic boron nitride sintered body tool

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16861896

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16861896

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP