JP5821088B2 - Cubic boron nitride sintered body tool and manufacturing method thereof - Google Patents

Cubic boron nitride sintered body tool and manufacturing method thereof Download PDF

Info

Publication number
JP5821088B2
JP5821088B2 JP2010288040A JP2010288040A JP5821088B2 JP 5821088 B2 JP5821088 B2 JP 5821088B2 JP 2010288040 A JP2010288040 A JP 2010288040A JP 2010288040 A JP2010288040 A JP 2010288040A JP 5821088 B2 JP5821088 B2 JP 5821088B2
Authority
JP
Japan
Prior art keywords
boron nitride
cubic boron
sintered body
nitride sintered
bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010288040A
Other languages
Japanese (ja)
Other versions
JP2012135822A (en
Inventor
克己 岡村
克己 岡村
後藤 光宏
光宏 後藤
小林 豊
豊 小林
松田 裕介
裕介 松田
朋弘 深谷
朋弘 深谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Hardmetal Corp
Original Assignee
Sumitomo Electric Hardmetal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Hardmetal Corp filed Critical Sumitomo Electric Hardmetal Corp
Priority to JP2010288040A priority Critical patent/JP5821088B2/en
Publication of JP2012135822A publication Critical patent/JP2012135822A/en
Application granted granted Critical
Publication of JP5821088B2 publication Critical patent/JP5821088B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • C04B35/5831Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride based on cubic boron nitrides or Wurtzitic boron nitrides, including crystal structure transformation of powder
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62685Treating the starting powders individually or as mixtures characterised by the order of addition of constituents or additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/003Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts
    • C04B37/006Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts consisting of metals or metal salts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • C04B37/026Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of metals or metal salts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • C04B2235/3843Titanium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3886Refractory metal nitrides, e.g. vanadium nitride, tungsten nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/405Iron group metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/665Local sintering, e.g. laser sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/963Surface properties, e.g. surface roughness
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/122Metallic interlayers based on refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/124Metallic interlayers based on copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/126Metallic interlayers wherein the active component for bonding is not the largest fraction of the interlayer
    • C04B2237/127The active component for bonding being a refractory metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/361Boron nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/401Cermets
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/52Pre-treatment of the joining surfaces, e.g. cleaning, machining
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/76Forming laminates or joined articles comprising at least one member in the form other than a sheet or disc, e.g. two tubes or a tube and a sheet or disc
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/84Joining of a first substrate with a second substrate at least partially inside the first substrate, where the bonding area is at the inside of the first substrate, e.g. one tube inside another tube

Description

本発明は、立方晶窒化硼素(以下、cBNとも記す)粒子と結合相とを含有するcBN焼結体が接合層を介して工具母材上に直接接合された構成のcBN焼結体工具に関する。   The present invention relates to a cBN sintered body tool in which a cBN sintered body containing cubic boron nitride (hereinafter also referred to as cBN) particles and a binder phase is directly bonded onto a tool base material via a bonding layer. .

従来から、cBNを用いた高硬度の焼結体は知られている。たとえば、特許文献1にcBNを20〜80体積%含有し、Tiセラミックス系の結合相を残部としたcBN焼結体が開示されている。しかし、このcBN焼結体は、断続切削や重切削・高速切削といった高能率切削に用いた場合、cBN焼結体と工具母材との接合強度が弱く、切削時にcBN焼結体が離脱するという問題があった。このため、工具の短寿命による経済的デメリットが指摘されるばかりではなく、さらに加工対象物に多大な損傷を与えることがあった。   Conventionally, a sintered body with high hardness using cBN is known. For example, Patent Document 1 discloses a cBN sintered body containing 20 to 80% by volume of cBN and having a Ti ceramic-based binder phase as the balance. However, when this cBN sintered body is used for high-efficiency cutting such as intermittent cutting, heavy cutting and high-speed cutting, the bonding strength between the cBN sintered body and the tool base material is weak, and the cBN sintered body is detached during cutting. There was a problem. For this reason, not only the economic demerit due to the short tool life is pointed out, but also the workpiece may be damaged greatly.

そこで、cBN焼結体と工具母材との接合強度を高める工夫がなされてきた。たとえば、特開平02−274405号公報(特許文献2)、特開平07−124804号公報(特許文献3)、特開平09−108912号公報(特許文献4)、特開平11−188510号公報(特許文献5)には、cBN焼結体を工具母材に接合する接合層(ロウ材とも呼ばれる)について、接合強度の高い接合層組成の選定や接合層と焼結体との界面に活性金属層を成膜する等により接合強度を高めることが提案されている。しかしながら、昨今、被削材の難削化に加え、より高能率、高速加工、高負荷加工が求められており、このような提案では、十分は信頼性が得られていない状況であり、更なる改良が求められている。   Thus, efforts have been made to increase the bonding strength between the cBN sintered body and the tool base material. For example, Japanese Patent Application Laid-Open No. 02-274405 (Patent Document 2), Japanese Patent Application Laid-Open No. 07-124804 (Patent Document 3), Japanese Patent Application Laid-Open No. 09-108912 (Patent Document 4), Japanese Patent Application Laid-Open No. 11-188510 (Patent Document). Reference 5) describes a bonding layer (also referred to as a brazing material) for bonding a cBN sintered body to a tool base material by selecting a bonding layer composition having high bonding strength and an active metal layer at the interface between the bonding layer and the sintered body. It has been proposed to increase the bonding strength by forming a film. However, in recent years, there has been a demand for higher efficiency, higher speed machining, and higher load machining in addition to the difficulty of cutting work materials. Such proposals are not sufficiently reliable. There is a need for improvements.

一方、異種材料を接合する技術に関し、たとえば国際公開第2007/072603号(特許文献6)、特開2009−208374号公報(特許文献7)、特開平08−336716号公報(特許文献8)、特開2009−226643号公報(特許文献9)、特開昭59−146986号公報(特許文献10)、特開平08−319174号公報(特許文献11)等が知られており、接合部にレーザーを照射することにより凹凸形状を施し、そのアンカー効果により接合強度を高めることが提案されている。特に、特許文献10は、レーザーで接合表面に深さ1mmの穴を空けて接合強度を高めることが提案されており、また特許文献11では、接合面の表面粗さと接合強度との相関が開示されており、表面粗さが粗い程、接合強度が高いことが示されている。   On the other hand, regarding techniques for joining different materials, for example, International Publication No. 2007/076023 (Patent Document 6), Japanese Patent Application Laid-Open No. 2009-208374 (Patent Document 7), Japanese Patent Application Laid-Open No. 08-336716 (Patent Document 8), Japanese Patent Application Laid-Open No. 2009-226643 (Patent Document 9), Japanese Patent Application Laid-Open No. 59-146986 (Patent Document 10), Japanese Patent Application Laid-Open No. 08-319174 (Patent Document 11), and the like are known. It has been proposed to provide an uneven shape by irradiating and to increase the bonding strength by its anchor effect. In particular, Patent Document 10 proposes to increase the bonding strength by forming a 1 mm deep hole in the bonding surface with a laser, and Patent Document 11 discloses the correlation between the surface roughness of the bonding surface and the bonding strength. It is shown that the stronger the surface roughness, the higher the bonding strength.

特開昭53−077811号公報JP-A-53-077781 特開平02−274405号公報Japanese Patent Laid-Open No. 02-274405 特開平07−124804号公報Japanese Patent Laid-Open No. 07-124804 特開平09−108912号公報JP 09-108912 A 特開平11−188510号公報Japanese Patent Laid-Open No. 11-188510 国際公開第2007/072603号International Publication No. 2007/076023 特開2009−208374号公報JP 2009-208374 A 特開平08−336716号公報JP 08-336716 A 特開2009−226643号公報JP 2009-226443 A 特開昭59−146986号公報JP 59-146986 A 特開平08−319174号公報Japanese Patent Laid-Open No. 08-319174

本発明は、上記のような現状に鑑みなされたものであって、その目的とするところは、高能率、高速加工、高負荷加工等の過酷な使用条件下においても、立方晶窒化硼素焼結体が工具母材から離脱することがないような、優れた接合強度を有する立方晶窒化硼素焼結体工具を提供することにある。   The present invention has been made in view of the current situation as described above, and its object is to sinter cubic boron nitride even under severe use conditions such as high efficiency, high speed processing, and high load processing. It is an object of the present invention to provide a cubic boron nitride sintered body tool having an excellent bonding strength so that the body does not detach from the tool base material.

本発明者は、cBN焼結体が工具母材から離脱することを低減するためには、cBN焼結体と接合層との接合強度を高めることが重要であると考え、cBN焼結体の表面状態をレーザー照射によって種々変化させることにより両者の接合強度を高める研究を続けた。その結果、cBN焼結体と接合層との接合面における凹凸の大きさや間隔、形状、表面の清浄化状態によって、接合強度が大きく変化することを見出した。さらに、凹凸が大きくなり過ぎると逆に接合強度が低下するという従来の知見に反する全く新たな知見を得、この知見に基づきさらに研究を続けたところ、その凹凸形状を特定の数値で規定すれば、使用時における工具母材からのcBN焼結体の離脱を大幅に低減できることを見出し、本発明を完成させたものである。   The present inventor considers that it is important to increase the bonding strength between the cBN sintered body and the bonding layer in order to reduce the separation of the cBN sintered body from the tool base material. We continued research to increase the bonding strength between the two by changing the surface condition by laser irradiation. As a result, it has been found that the bonding strength varies greatly depending on the size, spacing, shape, and surface cleaning state of the irregularities on the bonding surface between the cBN sintered body and the bonding layer. Furthermore, we obtained completely new knowledge contrary to the conventional knowledge that the joint strength decreases when the unevenness becomes too large, and we continued further research based on this knowledge. The present inventors have found that the separation of the cBN sintered body from the tool base material during use can be greatly reduced, and the present invention has been completed.

すなわち、本発明の立方晶窒化硼素焼結体工具は、立方晶窒化硼素焼結体が接合層を介して工具母材に接合されたものであって、立方晶窒化硼素焼結体と接合層との接合面のうち面積が最大となる接合面に対する垂直な面で立方晶窒化硼素焼結体工具を切断したときの任意の切断面において、立方晶窒化硼素焼結体は、その表面に凹凸形状を有し、該凹凸形状の面積を上下に二等分し、かつ接合層と工具母材との接合面に平行な直線を基準線とし、基準線と凹凸形状の極大値との距離の最大値と、基準線と凹凸形状の極小値との距離の最大値との和をaとし、凹凸形状において、隣接する極大値間の基準線方向の距離の最大値をbとすると、aは、0.02mm以上0.2mm以下であり、bは、0.02mm以上1mm以下であることを特徴とする。   That is, the cubic boron nitride sintered body tool of the present invention is a cubic boron nitride sintered body joined to a tool base material via a joining layer, and the cubic boron nitride sintered body and joining layer When the cubic boron nitride sintered body tool is cut along a plane perpendicular to the bonding surface having the largest area among the bonded surfaces, the cubic boron nitride sintered body has irregularities on its surface. The surface of the concavo-convex shape is divided into two equal parts, and a straight line parallel to the joint surface between the joining layer and the tool base material is a reference line, and the distance between the reference line and the maximum value of the concavo-convex shape is When the sum of the maximum value and the maximum value of the distance between the reference line and the minimum value of the concavo-convex shape is a and the maximum value of the distance in the reference line direction between adjacent maximum values in the concavo-convex shape is b, a is 0.02 mm or more and 0.2 mm or less, and b is 0.02 mm or more and 1 mm or less. To.

凹凸形状の極大値のうち、基準線との距離が最大となる点を最大点とし、該最大点から基準線に向けて垂直方向に0.02mm離れた点を通り、かつ基準線に平行な直線を切出線とすると、該切出線の長さLに対する、切出線が接合層を通る部分の和の長さCの比C/Lは、0.1以上0.6以下であり、aに対するbの比b/aは、1以上であることが好ましい。   Among the maximum values of the concavo-convex shape, the point having the maximum distance from the reference line is taken as the maximum point, passes through a point perpendicular to the reference line from the maximum point by 0.02 mm, and is parallel to the reference line When the straight line is a cut line, the ratio C / L of the sum length C of the portion where the cut line passes through the bonding layer to the length L of the cut line is 0.1 or more and 0.6 or less. The ratio b / a of b to a is preferably 1 or more.

上記の立方晶窒化硼素焼結体は、立方晶窒化硼素粒子と結合相とを含み、立方晶窒化硼素粒子の平均粒子径をxとすると、xに対するaの比a/xは、1以上であることが好ましい。   The cubic boron nitride sintered body includes cubic boron nitride particles and a binder phase. When the average particle diameter of the cubic boron nitride particles is x, the ratio a / x to x is 1 or more. Preferably there is.

立方晶窒化硼素焼結体は、立方晶窒化硼素粒子を75体積%以上含有することが好ましい。接合層は、TiとZrとCuとを含むことが好ましい。工具母材は、超硬合金、サーメット、またはセラミックスからなることが好ましい。   The cubic boron nitride sintered body preferably contains 75% by volume or more of cubic boron nitride particles. The bonding layer preferably contains Ti, Zr, and Cu. The tool base material is preferably made of cemented carbide, cermet, or ceramics.

本発明は、上記の立方晶窒化硼素焼結体工具の製造方法でもあり、立方晶窒化硼素焼結体の表面のうち面積が最大となる接合面に対し、水柱を光路とするレーザー加工装置を用いて、レーザー光を照射することによって、該接合面に凹凸形状を形成するステップと、立方晶窒化硼素焼結体を接合層を介して工具母材に接合するステップとを含み、レーザーのノズル径は、30〜100μmであり、レーザー光の波長は、500〜1100nmであり、レーザー光のパルス幅は、10〜300nsであり、レーザー光の出力は、1〜100Wであり、レーザー光の繰り返し周波数は、1〜100kHzであり、レーザー光の加工速度は、100〜3000mm/sであることを特徴とする。   The present invention is also a method for manufacturing the above-described cubic boron nitride sintered body tool, and a laser processing apparatus using a water column as an optical path with respect to a joint surface having the largest area among the surfaces of the cubic boron nitride sintered body. A laser nozzle comprising: forming a concavo-convex shape on the joining surface by irradiating a laser beam; and joining a cubic boron nitride sintered body to a tool base material via a joining layer. The diameter is 30 to 100 μm, the wavelength of the laser beam is 500 to 1100 nm, the pulse width of the laser beam is 10 to 300 ns, the output of the laser beam is 1 to 100 W, and the repetition of the laser beam The frequency is 1 to 100 kHz, and the processing speed of the laser beam is 100 to 3000 mm / s.

上記のレーザー光が照射された接合面に対し、ダイヤモンド砥粒ブラシによりラッピング加工を施すステップを含むことが好ましい。   It is preferable to include a step of lapping the bonding surface irradiated with the laser beam with a diamond abrasive brush.

本発明は、上記の立方晶窒化硼素焼結体工具の製造方法でもあり、立方晶窒化硼素焼結体の表面のうち面積が最大となる接合面に対し、ドライレーザー加工装置を用いて、レーザー光を照射することによって、該接合面に凹凸形状を形成するステップと、該レーザー光が照射された接合面に対し、ダイヤモンド砥粒ブラシによりラッピング加工を施すステップと、立方晶窒化硼素焼結体を接合層を介して工具母材に接合するステップと、を含むことを特徴とする。   The present invention is also a method for manufacturing the above-described cubic boron nitride sintered body tool, using a dry laser processing apparatus on the joining surface having the largest area among the surfaces of the cubic boron nitride sintered body. Forming a concavo-convex shape on the joint surface by irradiating light; wrapping the joint surface irradiated with the laser light with a diamond abrasive brush; and a cubic boron nitride sintered body Bonding to a tool base material through a bonding layer.

本発明の立方晶窒化硼素焼結体工具は、上記の構成を有することにより、高能率、高速加工、高負荷加工等の過酷な使用条件下においても、立方晶窒化硼素焼結体が工具母材から離脱することがないような、優れた接合強度を有する。   The cubic boron nitride sintered body tool of the present invention has the above-described configuration, so that the cubic boron nitride sintered body can be used even under severe usage conditions such as high efficiency, high speed machining, and high load machining. It has excellent bonding strength that does not detach from the material.

(a)は、本発明の立方晶窒化硼素焼結体工具の模式的な断面図であり、(b)は、立方晶窒化硼素焼結体と接合層との界面を拡大した模式的な断面図である。(A) is typical sectional drawing of the cubic boron nitride sintered compact tool of this invention, (b) is typical sectional which expanded the interface of a cubic boron nitride sintered compact and a joining layer. FIG. 立方晶窒化硼素焼結体と接合層との界面を拡大した模式的な断面図である。FIG. 4 is a schematic cross-sectional view in which an interface between a cubic boron nitride sintered body and a bonding layer is enlarged.

以下、本発明の立方晶窒化硼素焼結体工具についてさらに説明する。
<立方晶窒化硼素焼結体工具>
図1(a)は、本発明の立方晶窒化硼素焼結体工具の模式的な断面図である。本発明の立方晶窒化硼素焼結体工具1は、図1に示されるように、立方晶窒化硼素焼結体2が接合層3を介して工具母材4に接合されたものであって、立方晶窒化硼素焼結体2の表面に、図1(b)に示されるような凹凸形状を有することを特徴とする。
Hereinafter, the cubic boron nitride sintered body tool of the present invention will be further described.
<Cubic boron nitride sintered body tool>
Fig.1 (a) is typical sectional drawing of the cubic boron nitride sintered compact tool of this invention. A cubic boron nitride sintered body tool 1 of the present invention is a cubic boron nitride sintered body 2 bonded to a tool base material 4 via a bonding layer 3 as shown in FIG. The surface of the cubic boron nitride sintered body 2 has an uneven shape as shown in FIG. 1B.

すなわち、立方晶窒化硼素焼結体2と接合層3との接合面のうち面積が最大となる接合面に対する垂直な面で立方晶窒化硼素焼結体工具1を切断したときの任意の切断面において、立方晶窒化硼素焼結体2は、その表面に凹凸形状を有し、該凹凸形状の面積を上下に二等分し、かつ接合層3と工具母材4との接合面に平行な直線を基準線とし、該基準線と凹凸形状の極大値との距離の最大値と、基準線と凹凸形状の極小値との距離の最大値との和をaとし、凹凸形状において、隣接する極大値間の基準線方向の距離の最大値をbとすると、aは、0.02mm以上0.2mm以下であり、bは、0.02mm以上1mm以下であることを特徴とする。   That is, an arbitrary cut surface when the cubic boron nitride sintered body tool 1 is cut along a plane perpendicular to the bonding surface having the largest area among the bonding surfaces of the cubic boron nitride sintered body 2 and the bonding layer 3. The cubic boron nitride sintered body 2 has a concavo-convex shape on the surface thereof, and the area of the concavo-convex shape is divided into two equal parts, and parallel to the joining surface between the joining layer 3 and the tool base material 4. Using a straight line as a reference line, a is the sum of the maximum distance between the reference line and the maximum value of the uneven shape and the maximum value of the distance between the reference line and the minimum value of the uneven shape, When the maximum value of the distance in the reference line direction between the maximum values is b, a is 0.02 mm to 0.2 mm, and b is 0.02 mm to 1 mm.

ここで、「立方晶窒化硼素焼結体と接合層との接合面のうち面積が最大となる接合面」とは、立方晶窒化硼素焼結体工具1中、立方晶窒化硼素焼結体2と接合層3との接合面は通常複数存在するが、それらの接合面中、面積が最大となるものをいう。たとえば、立方晶窒化硼素焼結体工具1が底面を菱形とする四角柱の形状を有し、その四角柱のコーナー部において立方晶窒化硼素焼結体2が工具母材4に接合されている場合を例にとると、立方晶窒化硼素焼結体は、通常、底面を二等辺三角形とする三角柱の形状を呈し、3つある側面のうちの1つの側面と底面との二面で工具母材4と接合し、その側面と底面のうち面積が大きくなる方の接合面がここでいう面積が最大となる接合面に該当する。工具母材4と立方晶窒化硼素焼結体2が接合する場合は、その接合面に必ず接合層3が存在するためである。   Here, “the bonding surface having the largest area among the bonding surfaces of the cubic boron nitride sintered body and the bonding layer” refers to the cubic boron nitride sintered body 2 in the cubic boron nitride sintered body tool 1. In general, there are a plurality of bonding surfaces between the bonding layer 3 and the bonding layer 3, but the bonding surface has the largest area. For example, the cubic boron nitride sintered body tool 1 has a quadrangular prism shape whose bottom surface is rhombus, and the cubic boron nitride sintered body 2 is joined to the tool base material 4 at the corner portion of the square column. For example, a cubic boron nitride sintered body usually has a triangular prism shape whose bottom surface is an isosceles triangle, and the tool mother is formed by two surfaces of one of the three side surfaces and the bottom surface. The joining surface that is joined to the material 4 and has a larger area among the side surface and the bottom surface corresponds to the joining surface having the maximum area. This is because when the tool base material 4 and the cubic boron nitride sintered body 2 are joined, the joining layer 3 always exists on the joining surface.

また、「凹凸形状の面積を上下に二等分し」とは、上記切断面において、上記基準線により該凹凸形状を上下に分割した場合に、その基準線より上に存在する部分の面積の合計と、その基準線より下に存在する部分の面積の合計とが等しくなることをいう。なお、このような基準線は、上記切断面の顕微鏡写真をコンピュータを用いた画像解析により、求めることができる。   In addition, “dividing the area of the concavo-convex shape vertically into two” means that the area of the portion existing above the reference line when the concavo-convex shape is divided vertically by the reference line in the cut surface. The sum is equal to the sum of the areas of the portions existing below the reference line. Such a reference line can be obtained by analyzing a micrograph of the cut surface with an image analysis using a computer.

また、「接合層と工具母材との接合面に平行な直線」とは、接合層と工具母材との接合面を平面とみなし(すなわち上記切断面においてはこれを直線とみなし)、この直線に平行な直線をいう。   In addition, “a straight line parallel to the joining surface between the joining layer and the tool base material” means that the joining surface between the joining layer and the tool base material is a plane (that is, this is regarded as a straight line in the cut surface). A straight line parallel to a straight line.

また、「凹凸形状の極大値」および「凹凸形状の極小値」とは、上記切断面における凹凸形状を立方晶窒化硼素焼結体側から見て「山」と「谷」で構成される波線とみなした場合、「山」の頂部が「極大値」となり、「谷」の底部が「極小値」となる。また、「極大値との距離」とは、その極大値と基準線との最短距離を示し、同じく「極小値との距離」とは、その極小値と基準線との最短距離を示す。そして、上記「山」および上記「谷」は複数存在するから、その距離が最大となるものを「最大値」として選択する。なお、図1においては、上側が立方晶窒化硼素焼結体となっていることから、最大値、極大値、最小値等が形式的には上下逆転しているように見える。   In addition, the “maximum value of the concavo-convex shape” and the “minimum value of the concavo-convex shape” are a wavy line composed of “mountains” and “valleys” when the concavo-convex shape on the cut surface is viewed from the cubic boron nitride sintered body side. Assuming that the top of the “mountain” is the “maximum value”, the bottom of the “valley” is the “minimum value”. The “distance from the local maximum” indicates the shortest distance between the local maximum and the reference line, and the “distance from the local minimum” similarly indicates the shortest distance between the local minimum and the reference line. Since there are a plurality of “mountains” and “valleys”, the one with the maximum distance is selected as the “maximum value”. In FIG. 1, since the upper side is a cubic boron nitride sintered body, it seems that the maximum value, maximum value, minimum value, and the like are upside down in form.

また、「隣接する極大値間の基準線方向の距離」とは、上記で定義される「極大値」において、互いに隣接する極大値を直接直線で結んだ距離(すなわち両点間の最短距離)ではなく、基準線に対する、それぞれの極大値を通る垂線と基準線との交点を取り、それらの交点間の距離をいうものとする。   The “distance in the reference line direction between adjacent maximum values” is a distance obtained by directly connecting adjacent maximum values with a straight line in the “maximum value” defined above (ie, the shortest distance between both points). Instead, the intersection of the perpendicular line passing through each local maximum value and the reference line with respect to the reference line is taken, and the distance between these intersection points is meant.

そして、本発明においては、上記基準線と凹凸形状の極大値との距離の最大値と、基準線と凹凸形状の極小値との距離の最大値との和をaとし、凹凸形状において、隣接する極大値間の基準線方向の距離の最大値をbとすると、aは、0.02mm以上0.2mm以下であり、bは、0.02mm以上1mm以下であることを特徴とし、この場合において、立方晶窒化硼素焼結体と接合層との接合強度が飛躍的に高まり、以って立方晶窒化硼素焼結体と工具母材との接合強度が飛躍的に高まることを見出したものである。この詳細なメカニズムは未だ十分には解明されていないが、恐らく接合界面の表面積の増大による接着面積の拡大効果とアンカー効果との相乗作用によるものではないかと考えられる。加えて、凹凸状態を上記のように制御することにより、熱応力が均一化されることも寄与しているものと推測される。   In the present invention, the sum of the maximum value of the distance between the reference line and the maximum value of the uneven shape and the maximum value of the distance between the reference line and the minimum value of the uneven shape is a, If the maximum value of the distance in the reference line direction between the local maximum values is b, a is 0.02 mm or more and 0.2 mm or less, and b is 0.02 mm or more and 1 mm or less. Found that the bonding strength between the cubic boron nitride sintered body and the bonding layer was dramatically increased, and the bonding strength between the cubic boron nitride sintered body and the tool base material was dramatically increased. It is. Although this detailed mechanism has not yet been fully elucidated, it is thought that it is probably due to a synergistic effect of the adhesion area expansion effect and the anchor effect by increasing the surface area of the bonding interface. In addition, it is assumed that the thermal stress is made uniform by controlling the uneven state as described above.

本発明で規定される立方晶窒化硼素焼結体の表面形状は、一定区間における表面粗さの最大値、および隣接する極大値間の基準線方向の距離に着目したものであるため、従来公知の表面粗さのパラメータ(たとえばRz、Ra、Sm等)のように、一定区間における表面粗さの最大値や平均値のみに着目したものとは技術的に無関係であり、RzやRa、Sm等のパラメータによって本発明の立方晶窒化硼素焼結体の表面形状を規定することは不可能である。すなわち、本発明は、従来公知のパラメータによって立方晶窒化硼素焼結体と接合層との接合強度を顕著に高めるための立方晶窒化硼素焼結体の表面形状を規定することは不可能であったため、従来公知のパラメータに代わる新たなパラメータによって接合層との密着性を顕著に高め得る立方晶窒化硼素焼結体の表面形状を規定したものである。   Since the surface shape of the cubic boron nitride sintered body defined in the present invention focuses on the maximum value of the surface roughness in a certain section and the distance in the reference line direction between adjacent maximum values, it is conventionally known. Such as Rz, Ra, Sm, etc., which are technically irrelevant to those that focus only on the maximum and average values of the surface roughness in a certain section, such as Rz, Ra, Sm. It is impossible to define the surface shape of the cubic boron nitride sintered body of the present invention by such parameters. That is, according to the present invention, it is impossible to define the surface shape of the cubic boron nitride sintered body for significantly increasing the bonding strength between the cubic boron nitride sintered body and the bonding layer by a conventionally known parameter. Therefore, the surface shape of the cubic boron nitride sintered body that can remarkably improve the adhesion with the bonding layer is defined by a new parameter that replaces the conventionally known parameter.

上記aは、より好ましくは0.05mm以上0.15mm以下であり、上記bは、より好ましくは0.05mm以上0.5mm以下であり、上記比b/aは、1以上であることが好ましく、より好ましくは1.5以上5以下である。aが0.02mm未満であると、凹凸形状によるアンカー効果、および接合面積の増加による接合力の向上効果が得られず、0.2mmを超えると、相対的に接合層が厚くなることにより、接合層内に隙間が発生する頻度が高まり、接合層が破壊しやすくなるという問題がある。また、bが、0.02mm未満であると、立方晶窒化硼素焼結体の谷部にロウ材が侵入しにくく、接合層に隙間が発生しやすいため、接合強度にバラつきが生じる。一方、bが1mmを超えると、アンカー効果による接合強度の向上を図ることができないという問題がある。b/aが1未満であると、立方晶窒化硼素焼結体の谷部にロウ材が侵入しにくく、接合層に隙間が発生しやすいことに加え、接合断面において、立方晶窒化硼素焼結体の凹凸が相対的に尖った形状になるため、該尖った形状部分に応力が集中し、切削時に欠損を生じやすくなる。   The a is more preferably 0.05 mm or more and 0.15 mm or less, the b is more preferably 0.05 mm or more and 0.5 mm or less, and the ratio b / a is preferably 1 or more. More preferably, it is 1.5 or more and 5 or less. If a is less than 0.02 mm, the anchor effect due to the concavo-convex shape and the effect of improving the bonding force due to the increase in the bonding area cannot be obtained, and if it exceeds 0.2 mm, the bonding layer becomes relatively thick, There is a problem that the frequency with which gaps are generated in the bonding layer increases and the bonding layer is easily broken. If b is less than 0.02 mm, the brazing material is unlikely to enter the valleys of the cubic boron nitride sintered body, and gaps are likely to occur in the bonding layer, resulting in variations in bonding strength. On the other hand, if b exceeds 1 mm, there is a problem in that it is impossible to improve the bonding strength due to the anchor effect. If b / a is less than 1, the brazing material is less likely to enter the valleys of the cubic boron nitride sintered body and gaps are likely to occur in the bonding layer. Since the unevenness of the body has a relatively pointed shape, stress concentrates on the pointed shape portion, and defects are likely to occur during cutting.

さらに本発明は、図2に示されるように、上記凹凸形状の極大値のうち、基準線との距離が最大となる点を最大点とし、該最大点から基準線に向けて垂直方向に0.02mm離れた点を通り、かつ基準線に平行な直線を切出線とすると、該切出線の長さLに対する、該切出線が接合層を通る部分の和の長さCの比C/Lは、0.1以上0.6以下とすることが好ましい。これにより立方晶窒化硼素焼結体と接合層との接合界面に応力が集中することを緩和でき、かつ接合界面における接合強度の不均一性を低減できることから、工具寿命を飛躍的に延長することができる。比C/Lは、より好ましくは0.3以上0.5以下である。C/Lが0.1未満であると、最大点を有する山のみが突出して高く、それ以外の山が適当な高さを有しないため、最大点を有する山に応力が集中して加わるのに加えて、極大点を有する山が尖った形状となるため、応力集中によって立方晶窒化硼素焼結体に亀裂が生じやすくなり、接合界面における強度の均一性が損なわれる。一方、0.6を超えると、突出して高い山を有しておらず、アンカー効果による接合強度の向上効果を十分に得ることができない可能性がある。   Further, as shown in FIG. 2, the present invention sets the maximum point of the concavo-convex shape as a maximum point that is the distance to the reference line, and sets the maximum point to 0 in the vertical direction from the maximum point to the reference line. When a straight line passing through a point 0.02 mm apart and parallel to the reference line is a cut line, the ratio of the length C of the sum of the part where the cut line passes through the bonding layer to the length L of the cut line C / L is preferably 0.1 or more and 0.6 or less. This can relieve stress concentration at the bonding interface between the cubic boron nitride sintered body and the bonding layer, and can reduce non-uniform bonding strength at the bonding interface, greatly extending tool life. Can do. The ratio C / L is more preferably 0.3 or more and 0.5 or less. If C / L is less than 0.1, only the peak having the maximum point protrudes and is high, and the other peaks do not have an appropriate height, so stress is concentrated on the peak having the maximum point. In addition, since the peak having the maximum point has a pointed shape, cracks are likely to occur in the cubic boron nitride sintered body due to stress concentration, and the uniformity of strength at the joint interface is impaired. On the other hand, if it exceeds 0.6, it does not protrude and does not have a high peak, and there is a possibility that the effect of improving the bonding strength by the anchor effect cannot be obtained sufficiently.

上記のような特性を有する本発明の立方晶窒化硼素焼結体工具は、高硬度焼入れ鋼や焼結合金や難削鋳鉄の高能率粗加工において特に有効に用いることができる他、これら以外の一般的な金属の各種加工においても好適に用いることができる。   The cubic boron nitride sintered body tool of the present invention having the above-mentioned characteristics can be used particularly effectively in high-efficiency roughing of high-hardness quenched steel, sintered alloy and difficult-to-cut cast iron, and in addition to these It can also be suitably used in various general metal processing.

本発明の立方晶窒化硼素焼結体工具を切削加工の用途に用いる場合、たとえばドリル、エンドミル、フライス加工用または旋削加工用刃先交換型切削チップ、メタルソー、歯切工具、リーマ、タップ、またはクランクシャフトのピンミーリング加工用チップ等として極めて有用に用いることができる。   When the cubic boron nitride sintered body tool of the present invention is used for cutting applications, for example, drills, end mills, milling or turning edge cutting type cutting tips, metal saws, gear cutting tools, reamers, taps, or cranks. It can be used very effectively as a pin for pin milling processing of a shaft.

なお、図1(a)においては、立方晶窒化硼素焼結体工具1の刃先の一箇所に立方晶窒化硼素焼結体2を接合したものを例示しているが、本発明の立方晶窒化硼素焼結体工具は、このような態様のみに限られるものではない。たとえば、刃先が複数存在する場合は、各刃先毎に立方晶窒化硼素焼結体が接合されていてもよいし、また刃先を構成しない部分に立方晶窒化硼素焼結体が接合されていてもよい。また、工具母材の片面または両面に平板形状の立方晶窒化硼素焼結体を接合するというように、立方晶窒化硼素焼結体と工具母材との接合界面が一面のみで接合されていてもよい。   In FIG. 1 (a), the cubic boron nitride sintered body 2 is joined to one portion of the cutting edge of the cubic boron nitride sintered body tool 1, but the cubic nitride of the present invention is illustrated. The boron sintered body tool is not limited to such an embodiment. For example, when there are a plurality of cutting edges, a cubic boron nitride sintered body may be bonded to each cutting edge, or a cubic boron nitride sintered body may be bonded to a portion that does not constitute the cutting edge. Good. In addition, the joining interface between the cubic boron nitride sintered body and the tool base material is joined on only one side, such as joining a flat plate-shaped cubic boron nitride sintered body on one side or both sides of the tool base material. Also good.

<立方晶窒化硼素焼結体>
本発明の立方晶窒化硼素焼結体は、立方晶窒化硼素粒子と結合相とを含む。この2成分を含む限り、不可避不純物や他の成分が含まれていても差し支えない。
<Cubic boron nitride sintered body>
The cubic boron nitride sintered body of the present invention includes cubic boron nitride particles and a binder phase. As long as these two components are included, unavoidable impurities and other components may be included.

そして、この立方晶窒化硼素粒子の平均粒子径をxとすると、xに対する上記aの比a/xは、1以上であることが好ましい。これにより、上記凹凸形状における凸部(立方晶窒化硼素焼結体が接合層側に張り出している部分)において、理論上立方晶窒化硼素焼結体粒子が1個以上存在することとなり、該凸部において立方晶窒化硼素焼結体粒子と結合相との界面が必ず存在することになる。これにより、その界面部分が応力の緩衝領域として作用するため、立方晶窒化硼素焼結体の工具母材への接合強度の更なる向上に寄与するものと考えられる。比a/xは、より好ましくは10以上60以下である。   When the average particle diameter of the cubic boron nitride particles is x, the ratio a / x of a to x is preferably 1 or more. As a result, theoretically, one or more cubic boron nitride sintered body particles are present in the convex portion (the portion where the cubic boron nitride sintered body projects to the bonding layer side) in the concave and convex shapes. Therefore, there is always an interface between the cubic boron nitride sintered particles and the binder phase. As a result, the interface portion acts as a stress buffer region, which is considered to contribute to further improvement in the bonding strength of the cubic boron nitride sintered body to the tool base material. The ratio a / x is more preferably 10 or more and 60 or less.

また、本発明の立方晶窒化硼素焼結体は、立方晶窒化硼素粒子を75体積%以上含有することが好ましい。これにより、立方晶窒化硼素焼結体の工具母材への接合強度を更に向上させることができる。これは、上記のように立方晶窒化硼素焼結体と接合層との接合界面の凹凸形状を上記のように規定したことにより、従来技術に比し、立方晶窒化硼素焼結体粒子自体と接合層との接合強度が向上し、立方晶窒化硼素焼結体粒子が本来有する高硬度等の特性と接合強度向上との相乗作用が発現したものと考えられる。立方晶窒化硼素焼結体粒子の含有量は、より好ましくは、85体積%以上98体積%以下である。立方晶窒化硼素粒子が75体積%未満であると、立方晶窒化硼素焼結体の高硬度な特性を十分に得ることができないため好ましくない。   The cubic boron nitride sintered body of the present invention preferably contains 75% by volume or more of cubic boron nitride particles. Thereby, the joint strength to the tool base material of a cubic boron nitride sintered compact can further be improved. This is because, as described above, the concave / convex shape of the bonding interface between the cubic boron nitride sintered body and the bonding layer is defined as described above. It is considered that the bonding strength with the bonding layer was improved, and a synergistic effect between the characteristics such as the high hardness inherent in the cubic boron nitride sintered particles and the improved bonding strength was developed. The content of the cubic boron nitride sintered particles is more preferably 85% by volume to 98% by volume. If the cubic boron nitride particles are less than 75% by volume, the high hardness characteristics of the cubic boron nitride sintered body cannot be obtained sufficiently, which is not preferable.

このような立方晶窒化硼素焼結体の形状および大きさは、特に限定されず、従来公知の形状および大きさのものを特に限定なく採用することができる。   The shape and size of such a cubic boron nitride sintered body is not particularly limited, and a conventionally known shape and size can be employed without particular limitation.

<結合相>
本発明において、立方晶窒化硼素焼結体に含まれる結合相は、立方晶窒化硼素粒子同士を結合する作用を示すものであり、立方晶窒化硼素焼結体中に25質量%以下、好ましくは2質量%以上15質量%以下含まれることが好適である。
<Binder phase>
In the present invention, the binder phase contained in the cubic boron nitride sintered body has an action of binding cubic boron nitride particles to each other, and is 25% by mass or less in the cubic boron nitride sintered body, preferably It is preferable that it is contained in an amount of 2 to 15% by mass.

このような結合相は、周期律表のIVa族元素、Va族元素、およびVIa族元素からなる群より選択される少なくとも一種の元素と、窒素、炭素、硼素、および酸素からなる群より選ばれる少なくとも一種の元素とからなる化合物、または該化合物の固溶体の他、W、Co、Al、Zr、およびCrからなる群より選択される少なくとも一種の元素の炭化物、硼化物、炭窒化物、または酸化物、ならびにこれらの相互固溶体から選択される少なくとも一種により構成することができる。   Such a binder phase is selected from the group consisting of at least one element selected from the group consisting of group IVa elements, group Va elements, and group VIa elements of the periodic table, and nitrogen, carbon, boron, and oxygen. A compound comprising at least one element, or a solid solution of the compound, and a carbide, boride, carbonitride, or oxidation of at least one element selected from the group consisting of W, Co, Al, Zr, and Cr And at least one selected from these solid solutions.

<接合層>
本発明の接合層3は、立方晶窒化硼素焼結体2と工具母材4とを接合するための役割を果たすものであり、ロウ材と呼ばれることもある。このような接合層は、従来公知の組成のものを特に限定することなく採用することができるが、TiとZrとCuとを含むことが好ましい。TiとZrとCuとを含むことにより、高温強度に優れるため、高能率切削等により高温に曝された場合でも軟化しにくく、接合層自体の損傷を防止することができるためである。
<Junction layer>
The bonding layer 3 of the present invention plays a role for bonding the cubic boron nitride sintered body 2 and the tool base material 4 and is sometimes called a brazing material. Although such a joining layer can employ | adopt without specifically limiting the thing of a conventionally well-known composition, it is preferable that Ti, Zr, and Cu are included. This is because the inclusion of Ti, Zr, and Cu is excellent in high-temperature strength, so that it is difficult to soften even when exposed to high temperatures by high-efficiency cutting or the like, and damage to the bonding layer itself can be prevented.

このような接合層3は、その全体に対して、5質量%以上のTiと、5質量%以上のZrとを含み、かつTiおよびZrの合計が90質量%以下であり、その残部にCuを含むことが好ましい。Cuは、TiおよびZrを主成分とする接合層を構成する材料の融点を下げる効果があるため、低温での接合加工を可能とする。また、Cuは高い弾性率を有するため、Cuを含むことにより、加工時に発生する加工熱が立方晶窒化硼素焼結体2を通して工具母材4に流入する際に、立方晶窒化硼素焼結体2と工具母材4との熱膨張差による歪みを吸収する効果が得られる。Cuが10質量%未満の場合は、それらの効果が得られず、90質量%を超えると相対的にTiおよびZrの含有量が低下し、接合強度が低下する。   Such a bonding layer 3 contains 5% by mass or more of Ti and 5% by mass or more of Zr with respect to the whole, and the total of Ti and Zr is 90% by mass or less, and the balance is Cu. It is preferable to contain. Since Cu has the effect of lowering the melting point of the material constituting the bonding layer mainly composed of Ti and Zr, bonding processing at a low temperature is possible. Also, since Cu has a high elastic modulus, when Cu is contained, when the processing heat generated during processing flows into the tool base material 4 through the cubic boron nitride sintered body 2, the cubic boron nitride sintered body 2 and the tool base material 4 have an effect of absorbing distortion due to a difference in thermal expansion. When Cu is less than 10% by mass, those effects cannot be obtained, and when it exceeds 90% by mass, the contents of Ti and Zr are relatively lowered, and the bonding strength is lowered.

上記のTiおよびZrは、Cuに比し、高い高温強度を有することに加え、接合層を構成する材料の濡れ性が大幅に向上し、立方晶窒化硼素焼結体2と接合層3との接合強度を高める効果がある。TiまたはZrが5質量%未満の場合は、高温での強度や接合強度の向上効果が得られず、逆にTiとZrとの両者の合計が90質量%を超えると、融点の上昇を招き、接合時の歪みや亀裂を誘発するため好ましくない。TiおよびZrの含有量の合計の好適な範囲は10質量%以上90質量%以下であり、上記のCuの含有量の好適範囲と組み合わせて用いることにより接合強度が最大となり特に好ましい。   In addition to Cu having a high high-temperature strength, Ti and Zr described above significantly improve the wettability of the material constituting the bonding layer, and the cubic boron nitride sintered body 2 and the bonding layer 3 There is an effect of increasing the bonding strength. When Ti or Zr is less than 5% by mass, the effect of improving the strength at high temperatures and the bonding strength cannot be obtained. Conversely, when the total of both Ti and Zr exceeds 90% by mass, the melting point increases. This is not preferable because it induces distortion and cracking during bonding. A preferable range of the total content of Ti and Zr is 10% by mass or more and 90% by mass or less, and the combined strength is particularly preferable when used in combination with the preferable range of the Cu content.

特に、接合層3に含まれるTiの含有量が20質量%以上30質量%以下であり、かつZrの含有量が20質量%以上30質量%以下であれば、TiとZrとCuとの3元共晶による融点降下が顕著に現われ、より低融点での接合が可能となり好ましい。   In particular, if the content of Ti contained in the bonding layer 3 is 20% by mass or more and 30% by mass or less and the content of Zr is 20% by mass or more and 30% by mass or less, 3 of Ti, Zr and Cu. A melting point drop due to the original eutectic appears remarkably, and bonding at a lower melting point becomes possible, which is preferable.

なお、このような接合層は、立方晶窒化硼素焼結体と工具母材との接合界面に存在し、立方晶窒化硼素焼結体と工具母材とは、この接合層を介して接合される。この場合、接合層の厚みは、特に限定されるものではないが、通常10μm以上200μm以下とすることができる。   Such a bonding layer exists at the bonding interface between the cubic boron nitride sintered body and the tool base material, and the cubic boron nitride sintered body and the tool base material are bonded via this bonding layer. The In this case, the thickness of the bonding layer is not particularly limited, but can usually be 10 μm or more and 200 μm or less.

<工具母材>
本発明において、立方晶窒化硼素焼結体が接合される工具母材は、この種の工具母材として知られる従来公知のものであればいずれのものであっても採用することができ、特に限定されない。たとえば、超硬合金、サーメット、またはセラミックスからなるものを好適に用いることができる。
<Tool base material>
In the present invention, the tool base material to which the cubic boron nitride sintered body is joined may be any conventionally known material known as this type of tool base material, and in particular, It is not limited. For example, those made of cemented carbide, cermet, or ceramics can be suitably used.

<立方晶窒化硼素焼結体工具の製造方法>
本発明の立方晶窒化硼素焼結体工具の製造方法は、次のような工程を含むことができる。すなわち、当該製造方法は、立方晶窒化硼素焼結体の表面のうち面積が最大となる接合面に対し、水柱を光路とするレーザー加工装置を用いて、レーザー光を照射することによって、該接合面に凹凸形状を形成するステップと、立方晶窒化硼素焼結体を接合層を介して工具母材に接合するステップとを含み、該レーザーのノズル径は、30〜100μmであり、該レーザー光の波長は、500〜1100nmであり、該レーザー光のパルス幅は、10〜300nsであり、該レーザー光の出力は、1〜100Wであり、該レーザー光の繰り返し周波数は、1〜100kHzであり、該レーザー光の加工速度は、100〜3000mm/sとすることが好ましい。
<Method for Manufacturing Cubic Boron Nitride Sintered Tool>
The manufacturing method of the cubic boron nitride sintered compact tool of this invention can include the following processes. That is, the manufacturing method irradiates a laser beam using a laser processing apparatus having a water column as an optical path to the bonding surface having the largest area among the surfaces of the cubic boron nitride sintered body. Forming a concavo-convex shape on the surface, and joining a cubic boron nitride sintered body to a tool base material via a joining layer, wherein the laser nozzle diameter is 30 to 100 μm, and the laser beam The wavelength of the laser beam is 500 to 1100 nm, the pulse width of the laser beam is 10 to 300 ns, the output of the laser beam is 1 to 100 W, and the repetition frequency of the laser beam is 1 to 100 kHz The processing speed of the laser beam is preferably 100 to 3000 mm / s.

また、上記の製造方法は、さらに該レーザー光が照射された接合面に対し、ダイヤモンド砥粒ブラシによりラッピング加工を施すステップを含むことが好ましい。   Moreover, it is preferable that said manufacturing method further includes the step of lapping with a diamond abrasive brush with respect to the joint surface irradiated with the laser beam.

また、本発明の立方晶窒化硼素焼結体工具の別の製造方法は、立方晶窒化硼素焼結体の表面のうち面積が最大となる接合面に対し、ドライレーザー加工装置を用いて、レーザー光を照射することによって、該接合面に凹凸形状を形成するステップと、該レーザー光が照射された接合面に対し、ダイヤモンド砥粒ブラシによりラッピング加工を施すステップと、立方晶窒化硼素焼結体を接合層を介して工具母材に接合するステップと、を含むことができる。   Further, another manufacturing method of the cubic boron nitride sintered body tool according to the present invention uses a dry laser processing apparatus on a bonding surface having the largest area among the surfaces of the cubic boron nitride sintered body, and uses a laser. Forming a concavo-convex shape on the joint surface by irradiating light; wrapping the joint surface irradiated with the laser light with a diamond abrasive brush; and a cubic boron nitride sintered body Bonding to the tool base via a bonding layer.

本発明の立方晶窒化硼素焼結体工具の製造方法は、上記のようなステップを含む限り、他の任意のステップを含むことができる。このような他の任意のステップとしては、たとえば立方晶窒化硼素焼結体を準備するステップ等を挙げることができる。以下、さらに説明する。   The manufacturing method of the cubic boron nitride sintered body tool of the present invention can include other arbitrary steps as long as the above steps are included. Examples of such other optional steps include a step of preparing a cubic boron nitride sintered body. This will be further described below.

<立方晶窒化硼素焼結体を準備するステップ>
本発明に用いられる立方晶窒化硼素焼結体は、次のようにして作製することにより準備することができる。まず、立方晶窒化硼素粒子と結合相を構成する原料粉末とを超高圧装置に導入した上で、これらの粉末を超高圧焼結することにより、バルク焼結体を作製する。ここで、超高圧焼結時の圧力は、具体的には3GPa以上7GPa以下であることが好ましい。また、超高温焼結時の温度は、1100℃以上1900℃以下であることが好ましく、超高温焼結の処理時間は10分以上180分以下であることが好ましい。
<Step of preparing a cubic boron nitride sintered body>
The cubic boron nitride sintered body used in the present invention can be prepared by manufacturing as follows. First, the cubic boron nitride particles and the raw material powder constituting the binder phase are introduced into an ultrahigh pressure apparatus, and these powders are subjected to ultrahigh pressure sintering to produce a bulk sintered body. Here, the pressure during the ultrahigh pressure sintering is preferably 3 GPa or more and 7 GPa or less. Further, the temperature at the time of ultra-high temperature sintering is preferably 1100 ° C. or more and 1900 ° C. or less, and the treatment time for ultra-high temperature sintering is preferably 10 minutes or more and 180 minutes or less.

次に、上記で得られたバルク焼結体を放電加工機にセットした後に、真鍮ワイヤーを用いて所望の形状にカットすることにより、立方晶窒化硼素焼結体を得る。真鍮ワイヤーを用いたカットは、生産効率の観点から水中で行なうことが好ましい。バルク焼結体は、レーザー切断機を用いて切断してもよい。レーザー切断器を用いて切断することにより、高能率に切断することができるため、より好ましい。   Next, after setting the bulk sintered body obtained above in an electric discharge machine, it is cut into a desired shape using a brass wire to obtain a cubic boron nitride sintered body. The cutting using a brass wire is preferably performed in water from the viewpoint of production efficiency. The bulk sintered body may be cut using a laser cutting machine. Since it can cut | disconnect highly efficiently by cut | disconnecting using a laser cutter, it is more preferable.

バルク焼結体をカットして形成される立方晶窒化硼素焼結体は、工具母材に貼り合わせて用いることができる形状であれば、特に限定されることはなく、たとえば直方体、三角柱、三角錐、角柱、円柱状等の形状にすることができる。そして、上記の真鍮ワイヤーでカットした面の表面を研磨することにより、立方晶窒化硼素焼結体を得ることができる。   The cubic boron nitride sintered body formed by cutting the bulk sintered body is not particularly limited as long as it has a shape that can be used by being bonded to a tool base material. For example, a rectangular parallelepiped, a triangular prism, a triangle A shape such as a cone, a prism, or a column can be used. And the cubic boron nitride sintered compact can be obtained by grind | polishing the surface of the surface cut with said brass wire.

<接合面に凹凸形状を形成するステップ>
本ステップは、上記で準備された立方晶窒化硼素焼結体の表面のうち面積が最大となる接合面に対し、水柱を光路とするレーザー加工装置を用いて、レーザー光を照射することによって、その接合面に凹凸形状を形成するステップである。このように水柱を光路とするレーザー加工装置を用いることにより、立方晶窒化硼素焼結体の表面が酸化されにくく、またその表面にダメージ層が形成されにくい。このため、立方晶窒化硼素焼結体の表面と接合層を構成する材料との反応性が高められ、立方晶窒化硼素焼結体と接合層との接合強度を高めることができる。
<Step of forming an uneven shape on the joint surface>
This step is performed by irradiating a laser beam using a laser processing apparatus having a water column as an optical path, with respect to the joint surface having the largest area among the surfaces of the cubic boron nitride sintered body prepared above. This is a step of forming an uneven shape on the joint surface. By using the laser processing apparatus using the water column as the optical path in this way, the surface of the cubic boron nitride sintered body is hardly oxidized, and a damage layer is not easily formed on the surface. For this reason, the reactivity between the surface of the cubic boron nitride sintered body and the material constituting the bonding layer is increased, and the bonding strength between the cubic boron nitride sintered body and the bonding layer can be increased.

この工程に用いる水柱を光路とするレーザー加工装置の諸条件は以下の通りである。すなわち、該レーザーのノズル径は、30〜100μmであり、該レーザー光の波長は、500〜1100nmであり、該レーザー光のパルス幅は、10〜300nsであり、該レーザー光の出力は、1〜100Wであり、該レーザー光の繰り返し周波数は、1〜100kHzであり、該レーザー光の加工速度は、100〜3000mm/sとすることが好ましい。このような条件で立方晶窒化硼素焼結体の接合面を加工することにより、上記で規定したような凹凸形状を形成することができる。   Various conditions of the laser processing apparatus using the water column used in this step as the optical path are as follows. That is, the nozzle diameter of the laser is 30 to 100 μm, the wavelength of the laser light is 500 to 1100 nm, the pulse width of the laser light is 10 to 300 ns, and the output of the laser light is 1 It is -100W, The repetition frequency of this laser beam is 1-100 kHz, and it is preferable that the processing speed of this laser beam shall be 100-3000 mm / s. By processing the joint surface of the cubic boron nitride sintered body under such conditions, the uneven shape as defined above can be formed.

なお、レーザー加工装置としては、上記のような水柱を光路とするレーザー加工装置ではなく、ドライレーザー加工装置を用いることもできる。この場合の諸条件としても、上記とほぼ同様の条件を採用することができる。   In addition, as a laser processing apparatus, the dry laser processing apparatus can also be used instead of the laser processing apparatus which uses the above water columns as an optical path. As conditions in this case, substantially the same conditions as described above can be employed.

<ラッピング加工を施すステップ>
本ステップは、上記のようにレーザー光が照射された接合面に対し、ダイヤモンド砥粒ブラシによりラッピング加工を施すステップである。このステップは、レーザー加工装置として水柱を光路とするレーザー加工装置を用いる場合は任意であるが、ドライレーザー加工装置を用いる場合は、同ステップを組み入れることで、より接合強度を高めることができる。このラッピング加工を施すステップにより、レーザーによる加工表面のダメージ層や酸化層を除去すれば、立方晶窒化硼素焼結体と接合層との反応性が高まり、接合強度を高めることができる。また、レーザー加工面は凸部が尖っているため応力が集中しやすいが、ラッピング加工により凸部を丸めることにより、応力集中を抑制する効果が期待できる。
<Step of lapping processing>
This step is a step of lapping the bonding surface irradiated with laser light as described above with a diamond abrasive brush. This step is optional when a laser processing device using a water column as an optical path is used as the laser processing device, but when a dry laser processing device is used, the bonding strength can be further increased by incorporating this step. If the damaged layer or the oxide layer on the processed surface by the laser is removed in the lapping process, the reactivity between the cubic boron nitride sintered body and the bonding layer is increased, and the bonding strength can be increased. Further, since the laser-processed surface has sharp convex portions, stress tends to concentrate. However, by rounding the convex portions by lapping, an effect of suppressing stress concentration can be expected.

このようなダイヤモンド砥粒ブラシとしては、たとえば6μmの粒子径のダイヤモンド砥粒を含んだペーストをブラシに練りこんだものを採用することができ、ラッピングの条件としては、ブラシの回転数を200〜500rpmとして、1〜10分程度の処理時間を採用することができる。   As such a diamond abrasive brush, for example, a paste in which a paste containing diamond abrasive grains having a particle diameter of 6 μm is kneaded into the brush can be employed. A processing time of about 1 to 10 minutes can be employed at 500 rpm.

<立方晶窒化硼素焼結体を接合層を介して工具母材に接合するステップ>
本ステップは、上記のように接合面が処理された立方晶窒化硼素焼結体を接合層を介して工具母材に接合するステップである。本ステップは、上記のように接合面が処理された立方晶窒化硼素焼結体と工具母材とで接合層を構成する材料を挟み込み、真空炉内に設置する。そして、真空炉内の圧力を2×10-2Pa以下に減圧するとともに、炉内の温度を750℃以上にすることにより、接合層を構成する材料を溶解させ、立方晶窒化硼素焼結体と工具母材とを接合する。
<Step of Joining Cubic Boron Nitride Sinter to Tool Base Material via Joining Layer>
This step is a step of bonding the cubic boron nitride sintered body whose bonding surface is processed as described above to the tool base material through the bonding layer. In this step, the material constituting the bonding layer is sandwiched between the cubic boron nitride sintered body whose bonding surface has been treated as described above and the tool base material, and is placed in a vacuum furnace. Then, the pressure in the vacuum furnace is reduced to 2 × 10 −2 Pa or lower, and the temperature in the furnace is set to 750 ° C. or higher to dissolve the material constituting the bonding layer, so that the cubic boron nitride sintered body is obtained. And the tool base material.

次いで、接合加工した立方晶窒化硼素焼結体と工具母材とを真空炉内で徐冷することにより溶解した接合層を構成する材料を固化させる(この放冷で接合層を構成する材料が固化して接合層となる)。そして、立方晶窒化硼素焼結体と工具母材との接合面を研磨処理することにより、立方晶窒化硼素焼結体と工具母材との接合面を滑らかにし、本発明の立方晶窒化硼素焼結体工具を得ることができる。   Next, the material forming the bonded layer is solidified by slowly cooling the bonded cubic boron nitride sintered body and the tool base material in a vacuum furnace (the material that forms the bonded layer by this cooling). Solidifies to become a bonding layer). Then, by polishing the joint surface between the cubic boron nitride sintered body and the tool base material, the joint surface between the cubic boron nitride sintered body and the tool base material is smoothed, and the cubic boron nitride of the present invention is obtained. A sintered tool can be obtained.

以下、実施例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail, this invention is not limited to these.

<実施例1>
以下のようにして、せん断試験用のサンプルを作製した。
<Example 1>
A sample for a shear test was produced as follows.

<立方晶窒化硼素焼結体を準備するステップ>
まず、TiN粉末とAl粉末とを質量比で、TiN:Al=4:1となるように混合した。そして、その混合物を真空中で1250℃、30分間熱処理した。熱処理して得られた混合物をφ4mmの超硬合金製ボールと、超硬合金製ポットとを用いて粉砕することにより、結合相を構成する原料粉末を得た。
<Step of preparing a cubic boron nitride sintered body>
First, TiN powder and Al powder were mixed at a mass ratio of TiN: Al = 4: 1. The mixture was then heat-treated at 1250 ° C. for 30 minutes in a vacuum. The mixture obtained by the heat treatment was pulverized using a cemented carbide ball having a diameter of 4 mm and a cemented carbide pot to obtain a raw material powder constituting the binder phase.

そして、上記で得られた結合相を構成する原料粉末と平均粒子径4μmの立方晶窒化硼素粒子とを立方晶窒化硼素含有率が90体積%になるように配合した。配合して得られたものを、真空炉に入れて950℃に昇温した後に30分間保持することにより、これらの粉末の脱ガスを行なった。   The raw material powder constituting the binder phase obtained above and cubic boron nitride particles having an average particle size of 4 μm were blended so that the cubic boron nitride content was 90% by volume. These powders were put in a vacuum furnace, heated to 950 ° C., and held for 30 minutes to degas these powders.

次に、脱ガスが行なわれたこれらの粉末を超硬合金製支持板に積層してNb製カプセルに充填した。そして、そのカプセルごと超高圧装置に設置し、超高圧装置内の圧力を6GPaとし、温度1500℃で20分間焼結した。ついで、Mo製カプセルから焼結体を取り出し、その焼結体を研削し、さらに研磨を施すことにより形状を整え、直径60mmで厚み1.2mmの円盤状のバルク焼結体を作製した。   Next, these degassed powders were laminated on a cemented carbide support plate and filled into Nb capsules. Then, the capsule was installed in an ultrahigh pressure apparatus, the pressure in the ultrahigh pressure apparatus was 6 GPa, and sintering was performed at a temperature of 1500 ° C. for 20 minutes. Subsequently, the sintered body was taken out from the Mo capsule, the sintered body was ground, and further polished to prepare a shape, and a disc-shaped bulk sintered body having a diameter of 60 mm and a thickness of 1.2 mm was produced.

<接合面に凹凸形状を形成するステップ>
上記バルク焼結体を水柱(ウォータージェット)を光路としたレーザー処理装置にセットし、バルク焼結体の表裏の一方の面に対し、レーザー光を照射した。かかるレーザー光の波長は1064nmとし、レーザー光のパルス幅を100nsとし、レーザー光の出力を60Wとし、レーザーの繰り返し周波数を6kHzとし、レーザー光の加工速度を1000mm/sとし、ピッチ幅を0.4mmとした。
<Step of forming an uneven shape on the joint surface>
The bulk sintered body was set in a laser processing apparatus using a water column (water jet) as an optical path, and laser light was irradiated to one surface of the front and back of the bulk sintered body. The wavelength of the laser beam is 1064 nm, the laser beam pulse width is 100 ns, the laser beam output is 60 W, the laser repetition frequency is 6 kHz, the laser beam processing speed is 1000 mm / s, and the pitch width is 0.1 mm. It was 4 mm.

そして、上記のバルク焼結体を放電加工機によって切断することにより、二辺が2.5mm×2.5mmの正方形の底面で、かつその厚みが1.2mmの四角柱状の立方晶窒化硼素焼結体を得た。   Then, the bulk sintered body is cut by an electric discharge machine to form a square-bottomed cubic boron nitride sintered body having a square bottom surface with two sides of 2.5 mm × 2.5 mm and a thickness of 1.2 mm. A ligature was obtained.

<立方晶窒化硼素焼結体を接合層を介して超硬合金に接合するステップ>
次に、長手方向が10mmで断面が2.5×2.5mmの四角形形状である棒状の超硬合金を準備した。かかる超硬合金の2.5×2.5mmの1面と立方晶窒化硼素焼結体のレーザー処理された面とに、質量比が、50質量%のCuと25質量%のZrと25質量%のTiとからなる接合層を構成する材料を配置した上で真空炉に設置した。そして、真空炉内の圧力を1×10-5Paとし、その内部の温度を900℃まで昇温させて、接合層を構成する材料を溶解させることにより、立方晶窒化硼素焼結体を超硬合金に接合した。
<Step of bonding cubic boron nitride sintered body to cemented carbide through bonding layer>
Next, a rod-shaped cemented carbide having a rectangular shape with a longitudinal direction of 10 mm and a cross section of 2.5 × 2.5 mm was prepared. The mass ratio of one surface of 2.5 × 2.5 mm of the cemented carbide to the surface of the cubic boron nitride sintered body treated with laser is 50 mass% Cu, 25 mass% Zr, and 25 mass. A material constituting a bonding layer made of% Ti was placed and then placed in a vacuum furnace. Then, the pressure in the vacuum furnace is set to 1 × 10 −5 Pa, the internal temperature is raised to 900 ° C., and the material constituting the bonding layer is melted, so that the cubic boron nitride sintered body is increased. Bonded to hard alloy.

そして、超硬合金に立方晶窒化硼素焼結体が接合されたものを反応炉から取り出して放冷した。次に、立方晶窒化硼素焼結体と超硬合金が接合された四角柱状のサンプルの側面に対し、研削加工を施すことにより、せん断試験用のサンプルを作製した。該せん断試験用のサンプルは、2mm×2mmの正方形を底面に有する直方体に仕上げ加工したものである。   Then, the cemented carbide bonded with the cubic boron nitride sintered body was taken out of the reactor and allowed to cool. Next, the side surface of the square columnar sample joined with the cubic boron nitride sintered body and the cemented carbide was ground to prepare a sample for a shear test. The sample for the shear test is a finish processed into a rectangular parallelepiped having a 2 mm × 2 mm square on the bottom surface.

<実施例2〜5、比較例1〜2>
実施例1のせん断試験用のサンプルに対し、レーザー処理の条件を以下の表1のように変えたことが異なる他は、実施例1と同様の方法により、実施例2〜5のせん断試験用のサンプルを作製した。一方、比較例1では、バルク焼結体に対し、レーザー処理を行なわずにラッピング処理を施して表面を鏡面仕上げし、立方晶窒化硼素焼結体を得て、これを用いてせん断試験用のサンプルを作製した。比較例2では、バルク焼結体に対し、レーザー処理を行なわずに研磨面のままで立方晶窒化硼素焼結体を作製し、これを用いてせん断試験用のサンプルを作製した。
<Examples 2-5, Comparative Examples 1-2>
The shear test samples of Examples 2 to 5 were made in the same manner as in Example 1 except that the conditions for laser treatment were changed as shown in Table 1 below with respect to the sample for shear test of Example 1. A sample of was prepared. On the other hand, in Comparative Example 1, the bulk sintered body was lapped without performing laser treatment, and the surface was mirror-finished to obtain a cubic boron nitride sintered body, which was used for a shear test. A sample was made. In Comparative Example 2, a cubic boron nitride sintered body was produced on the bulk sintered body without performing laser treatment on the polished surface, and a sample for a shear test was produced using the cubic boron nitride sintered body.

Figure 0005821088
Figure 0005821088

<実施例6>
以下のようにして、本実施例の立方晶窒化硼素焼結体工具を作製した。
<Example 6>
The cubic boron nitride sintered body tool of this example was produced as follows.

<立方晶窒化硼素焼結体を準備するステップ>
まず、平均粒度2.0μmのWC粉末と平均粒度1.5μmのCo粉末と平均粒度4μmのAl粉末を質量比で、WC:Co:Al=20:70:10となるように混合し、真空中で1000℃、30分間熱処理した。上記で熱処理した化合物を、φ4mmの超硬合金製ボールを用いて粉砕し、結合相を構成する原料粉末を得た。
<Step of preparing a cubic boron nitride sintered body>
First, a WC powder having an average particle size of 2.0 μm, a Co powder having an average particle size of 1.5 μm, and an Al powder having an average particle size of 4 μm are mixed at a mass ratio of WC: Co: Al = 20: 70: 10, and vacuum Heat treatment was performed at 1000 ° C. for 30 minutes. The compound heat-treated above was pulverized using a φ4 mm cemented carbide ball to obtain a raw material powder constituting the binder phase.

そして、上記で得られた結合相を構成する原料粉末と平均粒子径8μmの立方晶窒化硼素粒子とを立方晶窒化硼素粒子の含有率が90体積%になるように配合した。ここで配合して得られたものを、真空炉に入れて950℃に昇温した後に30分間保持することにより、これらの粉末の脱ガスを行なった。   Then, the raw material powder constituting the binder phase obtained above and cubic boron nitride particles having an average particle diameter of 8 μm were blended so that the content of cubic boron nitride particles was 90% by volume. The powder obtained here was degassed by putting it in a vacuum furnace and raising the temperature to 950 ° C. and holding it for 30 minutes.

次に、脱ガスが行なわれたこれらの粉末を超硬合金製支持板に積層してNb製カプセルに充填した。そして、そのカプセルごと超高圧装置に設置し、超高圧装置内の圧力を7GPaとし、温度1700℃で20分間焼結した。ついで、Mo製カプセルから焼結体を取り出し、その焼結体を研削し、さらに研磨を施すことにより形状を整え、直径60mmで厚み1.2mmの円盤状のバルク焼結体を作製した。   Next, these degassed powders were laminated on a cemented carbide support plate and filled into Nb capsules. Then, the capsule was placed in an ultrahigh pressure apparatus, the pressure in the ultrahigh pressure apparatus was set to 7 GPa, and sintering was performed at a temperature of 1700 ° C. for 20 minutes. Subsequently, the sintered body was taken out from the Mo capsule, the sintered body was ground, and further polished to prepare a shape, and a disc-shaped bulk sintered body having a diameter of 60 mm and a thickness of 1.2 mm was produced.

<接合面に凹凸形状を形成するステップ>
上記バルク焼結体をドライレーザー処理装置にセットし、バルク焼結体の表裏の一方の面に対し、レーザー光を照射した。かかるレーザー光の波長は1064nmとし、レーザー光のパルス幅を100nsとし、レーザー光の出力55Wとし、レーザーの繰り返し周波数を6kHzとし、レーザー光の加工速度を1100mm/sとし、ピッチ幅を0.4mmとした。
<Step of forming an uneven shape on the joint surface>
The bulk sintered body was set in a dry laser processing apparatus, and one side of the front and back surfaces of the bulk sintered body was irradiated with laser light. The wavelength of the laser beam is 1064 nm, the laser beam pulse width is 100 ns, the laser beam output is 55 W, the laser repetition frequency is 6 kHz, the laser beam processing speed is 1100 mm / s, and the pitch width is 0.4 mm. It was.

同バルク焼結体を二辺が3.5mmで、頂角80°の二等辺三角形の底面で、1.2mmの厚みに切断した。そして、所定形状の超硬台金に、上記で切断した立方晶窒化硼素焼結体を接合するためのザグリ加工を施し、レーザー加工面を接合面として、Cu:50質量%、Zr:25質量%、Ti:25質量%の質量比の接合層を構成する材料を用いて、真空炉中で接合した。そして、立方晶窒化硼素焼結体と超硬合金とを接合層を介して接合した後に、研削加工を施し、CNGA120408の工具形状に整えた。   The bulk sintered body was cut to a thickness of 1.2 mm on the bottom surface of an isosceles triangle having two sides of 3.5 mm and an apex angle of 80 °. The cemented carbide base metal having a predetermined shape is subjected to counterboring for joining the cubic boron nitride sintered body cut as described above, with the laser-machined surface as the joining surface, Cu: 50% by mass, Zr: 25% by mass. %, Ti: Joined in a vacuum furnace using the material constituting the bonding layer having a mass ratio of 25% by mass. And after joining the cubic boron nitride sintered compact and the cemented carbide through the joining layer, it grind | polished and adjusted to the tool shape of CNGA120408.

<実施例7〜10、比較例3〜4>
実施例7〜10においては、実施例6と同様の条件のレーザー処理を行なった後に、該レーザー処理を行なった加工面に対し、ダイヤモンド砥粒ブラシによって60〜300秒のラッピング加工を施すことによって、立方晶窒化硼素焼結体のaおよびcの値を調整した。また、比較例3においては、レーザー処理を実施せずにラッピング処理を施し、表面を鏡面仕上げした上で、接合層を用いて工具母材に接合した。比較例4においては、砥石によって深さ0.5mmであって、かつ溝幅が0.5mmの溝を1mm間隔の凹凸を立方晶窒化硼素焼結体の底面に作製した。
<Examples 7 to 10 and Comparative Examples 3 to 4>
In Examples 7 to 10, after performing laser treatment under the same conditions as in Example 6, the processed surface subjected to the laser treatment is subjected to lapping for 60 to 300 seconds with a diamond abrasive brush. The values of a and c of the cubic boron nitride sintered body were adjusted. In Comparative Example 3, lapping treatment was performed without laser treatment, the surface was mirror-finished, and then joined to the tool base material using a joining layer. In Comparative Example 4, a groove having a depth of 0.5 mm and a groove width of 0.5 mm was formed on the bottom surface of the cubic boron nitride sintered body by using a grindstone at intervals of 1 mm.

Figure 0005821088
Figure 0005821088

<立方晶窒化硼素焼結体工具の特性測定>
上記で作製した実施例1〜5および比較例1〜2のせん断試験用サンプルにおいて、レーザー加工面を接合面として、該接合面に垂直な面の1側面側から観察し、直線部分の長さ2mmの領域を対象として、実体顕微鏡(製品名:Leica MZ16(ライカマイクロシステム社製))を用いてaおよびbを測定した。その結果を表1の「a」、「b」、および「b/a」の欄に示す。
<Characteristic measurement of cubic boron nitride sintered tool>
In the shear test samples of Examples 1 to 5 and Comparative Examples 1 and 2 prepared above, the laser-processed surface is used as the bonding surface, and the length of the straight portion is observed from one side of the surface perpendicular to the bonding surface A and b were measured using a stereomicroscope (product name: Leica MZ16 (manufactured by Leica Microsystem)) for a 2 mm region. The results are shown in the columns “a”, “b”, and “b / a” in Table 1.

また、実施例6〜10および比較例3〜4の立方晶窒化硼素焼結体工具においては、面積が最大となる接合面であるレーザー加工面に対し、垂直な面である工具母材の両側面から観察し、直線部分の長さ1.5mmの領域を対象として、上記の実施例1〜5で用いた装置と同様の装置を用いてaおよびbを測定した。その結果を表2の「a」、「b」、および「b/a」の欄に示す。   Further, in the cubic boron nitride sintered body tools of Examples 6 to 10 and Comparative Examples 3 to 4, both sides of the tool base material that are perpendicular to the laser machined surface that is the bonding surface having the largest area. Observed from the surface, a and b were measured using a device similar to the device used in Examples 1 to 5 above for a region having a straight line length of 1.5 mm. The results are shown in the “a”, “b”, and “b / a” columns of Table 2.

また、実施例6〜10および比較例3〜4の立方晶窒化硼素焼結体工具においては、凹凸形状の極大値のうち、基準線との距離が最大となる点を最大点とし、該最大点から基準線に向けて垂直方向に0.02mm離れた点を通り、かつ基準線に平行な切出線を引いた。そして、該切出線の長さL=1.5mmに対する、切出線が接合層を通る部分の和の長さCの比C/Lを算出した。その結果を表2の「C/L」の欄に示す。   Moreover, in the cubic boron nitride sintered body tools of Examples 6 to 10 and Comparative Examples 3 to 4, the maximum point is the point where the distance from the reference line is the maximum among the maximum values of the uneven shape, and the maximum A cut line passing through a point 0.02 mm in the vertical direction from the point toward the reference line and parallel to the reference line was drawn. And ratio C / L of the sum length C of the part through which a cutting line passes a joining layer with respect to length L = 1.5mm of this cutting line was computed. The results are shown in the column “C / L” in Table 2.

さらに、各実施例および各比較例において、立方晶窒化硼素焼結体を構成する立方晶窒化硼素焼結体粒子の平均粒子径をxとしたときのxに対するaの比a/xを表1および表2の「a/x」の欄に示す。   Further, in each example and each comparative example, the ratio a / x of x to x when the average particle diameter of the cubic boron nitride sintered body particles constituting the cubic boron nitride sintered body is x is shown in Table 1. And in the column “a / x” in Table 2.

<立方晶窒化硼素焼結体工具の評価>
上記の実施例1〜5および比較例1〜2のせん断試験用サンプルに対し、圧縮破壊試験機(製品名:Autograph(株式会社島津製作所製))を用いて、荷重速度1mm/minでせん断強度(kgf/mm2)を測定した。
<Evaluation of cubic boron nitride sintered body tool>
For the shear test samples of Examples 1 to 5 and Comparative Examples 1 and 2, using a compression fracture tester (product name: Autograph (manufactured by Shimadzu Corporation)), shear strength at a load speed of 1 mm / min. (Kgf / mm 2 ) was measured.

表1に示されるせん断試験の結果から、実施例1〜5の立方晶窒化硼素焼結体工具は、比較例1〜2のそれに比して、3倍以上のせん断強度を有することが明らかとなった。実施例1〜5および比較例1〜2の破断面を確認したところ、実施例1〜5の立方晶窒化硼素焼結体工具はいずれも、立方晶窒化硼素焼結体と接合層との界面でせん断破壊せずに、立方晶窒化硼素焼結体または工具母材が破壊されていた。これに対し、比較例1〜2の立方晶窒化硼素焼結体工具は、立方晶窒化硼素焼結体と接合層との界面で剥離していた。   From the results of the shear test shown in Table 1, it is clear that the cubic boron nitride sintered body tools of Examples 1 to 5 have a shear strength of 3 times or more compared with that of Comparative Examples 1 and 2. became. When the fracture surfaces of Examples 1 to 5 and Comparative Examples 1 and 2 were confirmed, the cubic boron nitride sintered body tools of Examples 1 to 5 were all interfaces between the cubic boron nitride sintered body and the bonding layer. The cubic boron nitride sintered body or the tool base material was broken without shear fracture. On the other hand, the cubic boron nitride sintered body tools of Comparative Examples 1 and 2 were peeled off at the interface between the cubic boron nitride sintered body and the bonding layer.

このように実施例1〜5および比較例1〜2の立方晶窒化硼素焼結体工具の接合強度が異なるのは、実施例1〜5の立方晶窒化硼素焼結体の接合面には凹凸が形成されているのに対し、比較例1〜2の立方晶窒化硼素焼結体の接合面には凹凸が形成されていなかったか、または凹凸が形成されていてもその形状が小さかったことによるものと考えられる。   As described above, the bonding strengths of the cubic boron nitride sintered body tools of Examples 1 to 5 and Comparative Examples 1 and 2 are different from each other in that the bonding surfaces of the cubic boron nitride sintered bodies of Examples 1 to 5 are uneven. Is not formed on the joint surfaces of the cubic boron nitride sintered bodies of Comparative Examples 1 and 2, or even if the unevenness is formed, the shape is small. It is considered a thing.

上記の実施例6〜10および比較例3〜4の立方晶窒化硼素焼結体工具に対し、以下の切削条件の切削加工を行なったときのブランク外れ寿命(分)を算出した。   With respect to the cubic boron nitride sintered body tools of Examples 6 to 10 and Comparative Examples 3 to 4, the blank removal life (minutes) when cutting under the following cutting conditions was calculated.

(切削条件)
被削材:SUJ2(HRC64)
切削条件:Vc=150m/min
f=0.5mm/rev
=0.3mm
乾式切削
表2に示されるブランク外れ寿命の結果から、実施例6はC/Lが5であり、極大値を有する山が尖った形状となるため、応力集中により同接合部分の立方晶窒化硼素焼結体に亀裂が生じ、実施例7〜9に比してブランク外れ寿命が短かったものと考えられる。一方、実施例10は、C/Lが80であり、最大値を有する山の形状が小さいため、アンカー効果による接合強度の向上効果を十分に得ることができず、実施例7〜9に比してブランク外れ寿命が短かったものと考えられる。
(Cutting conditions)
Work material: SUJ2 (HRC64)
Cutting conditions: Vc = 150 m / min
f = 0.5mm / rev
a p = 0.3 mm
From the result of the blank cutting life shown in Table 2, C / L is 5 and Example 6 has a peak with a peak having a maximum value. It is considered that cracks occurred in the sintered body, and the blank removal life was shorter than in Examples 7-9. On the other hand, in Example 10, since C / L is 80 and the shape of the peak having the maximum value is small, the effect of improving the bonding strength by the anchor effect cannot be sufficiently obtained, which is compared with Examples 7-9. Thus, it is considered that the blank removal life was short.

また、比較例3は、立方晶窒化硼素焼結体の接合面に凹凸が形成されていないため、ブランク外れ寿命が著しく短かった。比較例4は、山の高さを示すaの値が小さかったことにより、ブランク外れ寿命が著しく短かったものと推察される。   Further, in Comparative Example 3, since the unevenness was not formed on the joint surface of the cubic boron nitride sintered body, the blank removal life was remarkably short. In Comparative Example 4, it is presumed that the blank removal life was remarkably short because the value of a indicating the height of the peak was small.

以上のように本発明の実施の形態および実施例について説明を行なったが、上述の実施の形態および実施例の構成を適宜組み合わせることも当初から予定している。   Although the embodiments and examples of the present invention have been described above, it is also planned from the beginning to appropriately combine the configurations of the above-described embodiments and examples.

今回開示された実施の形態および実施例は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   It should be understood that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

1 立方晶窒化硼素焼結体工具、2 立方晶窒化硼素焼結体、3 接合層、4 工具母材。   1 Cubic boron nitride sintered body tool, 2 Cubic boron nitride sintered body, 3 bonding layer, 4 tool base material.

Claims (6)

立方晶窒化硼素焼結体が接合層を介して工具母材に接合された立方晶窒化硼素焼結体工具であって、
前記立方晶窒化硼素焼結体は、立方晶窒化硼素粒子を75体積%以上含有し、
前記接合層は、TiとZrとCuとを含み、
前記立方晶窒化硼素焼結体と前記接合層との接合面のうち面積が最大となる接合面に対する垂直な面で前記立方晶窒化硼素焼結体工具を切断したときの任意の切断面において、前記立方晶窒化硼素焼結体は、その表面に凹凸形状を有し、
前記凹凸形状の面積を上下に二等分し、かつ前記接合層と前記工具母材との接合面に平行な直線を基準線とし、
前記基準線と前記凹凸形状の極大値との距離の最大値と、前記基準線と前記凹凸形状の極小値との距離の最大値との和をaとし、
前記凹凸形状において、隣接する極大値間の基準線方向の距離の最大値をbとすると、
前記aは、0.02mm以上0.2mm以下であり、
前記bは、0.02mm以上1mm以下であり、
前記凹凸形状の極大値のうち、前記基準線との距離が最大となる点を最大点とし、該最大点から前記基準線に向けて垂直方向に0.02mm離れた点を通り、かつ前記基準線に平行な直線を切出線とすると、
前記切出線の長さLに対する、前記切出線が前記接合層を通る部分の和の長さCの比C/Lは、0以上0.6以下であり、前記aに対する前記bの比b/aは、1以上である、立方晶窒化硼素焼結体工具。
A cubic boron nitride sintered body tool in which a cubic boron nitride sintered body is bonded to a tool base material via a bonding layer,
The cubic boron nitride sintered body contains 75% by volume or more of cubic boron nitride particles,
The bonding layer includes Ti, Zr, and Cu,
In an arbitrary cut surface when the cubic boron nitride sintered body tool is cut by a plane perpendicular to the bonding surface having the largest area among the bonding surfaces of the cubic boron nitride sintered body and the bonding layer, The cubic boron nitride sintered body has an uneven shape on its surface,
Dividing the area of the uneven shape into two equal parts, and using a straight line parallel to the joining surface of the joining layer and the tool base material as a reference line,
The sum of the maximum value of the distance between the reference line and the maximum value of the uneven shape and the maximum value of the distance between the reference line and the minimum value of the uneven shape is a,
In the uneven shape, if the maximum value of the distance in the reference line direction between adjacent maximum values is b,
A is 0.02 mm or more and 0.2 mm or less,
Said b is 0.02 mm or more and 1 mm or less,
Among the maximum values of the concavo-convex shape, the point having the maximum distance from the reference line is taken as the maximum point, passes through a point 0.02 mm away from the maximum point in the vertical direction toward the reference line, and the reference If a straight line parallel to the line is a cut line,
The ratio C / L of the sum length C of the portion where the cut line passes through the bonding layer with respect to the length L of the cut line is 0 or more and 0.6 or less, and the ratio of b to the a The cubic boron nitride sintered body tool , wherein b / a is 1 or more .
前記立方晶窒化硼素焼結体は、立方晶窒化硼素粒子と結合相とを含み、
前記立方晶窒化硼素粒子の平均粒子径をxとすると、前記xに対する前記aの比a/xは、1以上である、請求項に記載の立方晶窒化硼素焼結体工具。
The cubic boron nitride sintered body includes cubic boron nitride particles and a binder phase,
The cubic boron nitride sintered body tool according to claim 1 , wherein a ratio a / x of a to x is 1 or more, where x is an average particle diameter of the cubic boron nitride particles.
前記工具母材は、超硬合金、サーメット、またはセラミックスからなる、請求項1または請求項2に記載の立方晶窒化硼素焼結体工具。 The cubic boron nitride sintered body tool according to claim 1 or 2 , wherein the tool base material is made of cemented carbide, cermet, or ceramics. 請求項1〜のいずれかに記載の立方晶窒化硼素焼結体工具の製造方法であって、
前記立方晶窒化硼素焼結体の表面のうち面積が最大となる接合面に対し、水柱を光路とするレーザー加工装置を用いて、レーザー光を照射することによって、該接合面に前記aは、0.02mm以上0.2mm以下であり、前記bは、0.02mm以上1mm以下である凹凸形状を形成するステップと、
前記立方晶窒化硼素焼結体を接合層を介して工具母材に接合するステップとを含み、
前記レーザーのノズル径は、30〜100μmであり、
前記レーザー光の波長は、500〜1100nmであり、
前記レーザー光のパルス幅は、10〜300nsであり、
前記レーザー光の出力は、3〜100Wであり、
前記レーザー光の繰り返し周波数は、1〜100kHzであり、
前記レーザー光の加工速度は、100〜3000mm/sであり、
前記レーザーのピッチ幅は0.02mm〜1mmである、立方晶窒化硼素焼結体工具の製造方法。
It is a manufacturing method of the cubic boron nitride sintered compact tool according to any one of claims 1 to 3 ,
By irradiating a laser beam using a laser processing apparatus having a water column as an optical path for the bonding surface having the largest area among the surfaces of the cubic boron nitride sintered body, the a is applied to the bonding surface . A step of forming a concavo-convex shape that is 0.02 mm to 0.2 mm, and b is 0.02 mm to 1 mm ;
Bonding the cubic boron nitride sintered body to a tool base material through a bonding layer,
The laser nozzle diameter is 30-100 μm,
The wavelength of the laser beam is 500 to 1100 nm,
The pulse width of the laser light is 10 to 300 ns,
The output of the laser beam is 3 to 100 W,
The repetition frequency of the laser light is 1 to 100 kHz,
The processing speed of the laser beam is 100 to 3000 mm / s,
A method for manufacturing a cubic boron nitride sintered body tool, wherein the pitch width of the laser is 0.02 mm to 1 mm .
前記レーザー光が照射された前記接合面に対し、ダイヤモンド砥粒ブラシによりラッピング加工を施すステップを含む、請求項記載の立方晶窒化硼素焼結体工具の製造方法。 The manufacturing method of the cubic boron nitride sintered compact tool of Claim 4 including the step of lapping with a diamond abrasive brush with respect to the said joint surface irradiated with the said laser beam. 請求項1〜のいずれかに記載の立方晶窒化硼素焼結体工具の製造方法であって、
前記立方晶窒化硼素焼結体の表面のうち面積が最大となる接合面に対し、ドライレーザー加工装置を用いて、レーザー光を照射することによって、該接合面に前記aは、0.02mm以上0.2mm以下であり、前記bは、0.02mm以上1mm以下である凹凸形状を形成するステップと、
前記レーザー光が照射された前記接合面に対し、ダイヤモンド砥粒ブラシによりラッピング加工を施すステップと、
前記立方晶窒化硼素焼結体を接合層を介して工具母材に接合するステップとを含み、
前記レーザーのノズル径は、30〜100μmであり、
前記レーザー光の波長は、500〜1100nmであり、
前記レーザー光のパルス幅は、10〜300nsであり、
前記レーザー光の出力は、3〜100Wであり、
前記レーザー光の繰り返し周波数は、1〜100kHzであり、
前記レーザー光の加工速度は、100〜3000mm/sであり、
前記レーザーのピッチ幅は0.02mm〜1mmである、立方晶窒化硼素焼結体工具の製造方法。
It is a manufacturing method of the cubic boron nitride sintered compact tool according to any one of claims 1 to 3 ,
By irradiating a laser beam using a dry laser processing apparatus to the bonding surface having the largest area among the surfaces of the cubic boron nitride sintered body, the a is 0.02 mm or more. A step of forming a concavo-convex shape that is 0.2 mm or less and b is 0.02 mm or more and 1 mm or less ;
A step of lapping with a diamond abrasive brush on the joint surface irradiated with the laser beam;
Bonding the cubic boron nitride sintered body to a tool base material through a bonding layer,
The laser nozzle diameter is 30-100 μm,
The wavelength of the laser beam is 500 to 1100 nm,
The pulse width of the laser light is 10 to 300 ns,
The output of the laser beam is 3 to 100 W,
The repetition frequency of the laser light is 1 to 100 kHz,
The processing speed of the laser beam is 100 to 3000 mm / s,
A method for manufacturing a cubic boron nitride sintered body tool, wherein the pitch width of the laser is 0.02 mm to 1 mm .
JP2010288040A 2010-12-24 2010-12-24 Cubic boron nitride sintered body tool and manufacturing method thereof Active JP5821088B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010288040A JP5821088B2 (en) 2010-12-24 2010-12-24 Cubic boron nitride sintered body tool and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010288040A JP5821088B2 (en) 2010-12-24 2010-12-24 Cubic boron nitride sintered body tool and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2012135822A JP2012135822A (en) 2012-07-19
JP5821088B2 true JP5821088B2 (en) 2015-11-24

Family

ID=46673715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010288040A Active JP5821088B2 (en) 2010-12-24 2010-12-24 Cubic boron nitride sintered body tool and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5821088B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101456395B1 (en) * 2012-04-03 2014-10-31 스미또모 덴꼬오 하드메탈 가부시끼가이샤 Cubic boron nitride sintered body tool
CN108541228B (en) * 2015-11-05 2019-10-08 住友电气工业株式会社 The manufacturing method of cubic boron nitride sintered body tool, the cubic boron nitride sintered body used in it and cubic boron nitride sintered body tool
EP3819051A4 (en) * 2018-07-03 2022-05-04 Sumitomo Electric Hardmetal Corp. Cutting insert and manufacturing method thereof
JP7218880B2 (en) * 2021-06-17 2023-02-07 株式会社オリジン Chip manufacturing device, chip manufacturing method, cutting tool chip and pedestal
JP7254317B1 (en) 2022-05-18 2023-04-10 株式会社オリジン Tip part for tip, tip for cutting tool, and method for manufacturing tip for cutting tool

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3549424B2 (en) * 1998-03-02 2004-08-04 住友電気工業株式会社 Hard sintered body tool and manufacturing method thereof
JP2000326111A (en) * 1999-05-18 2000-11-28 Mitsubishi Materials Corp Throw away tip
SE528920C2 (en) * 2005-03-16 2007-03-13 Sandvik Intellectual Property Cut with ceramic cutting tip where the cutting tip is mounted in a recess
JP5224331B2 (en) * 2008-02-28 2013-07-03 富山県 Cutting tool and method for producing waviness shape
JP5152667B2 (en) * 2008-10-09 2013-02-27 住友電工ハードメタル株式会社 Cubic boron nitride sintered tool

Also Published As

Publication number Publication date
JP2012135822A (en) 2012-07-19

Similar Documents

Publication Publication Date Title
JP5927685B2 (en) Cutting tools
KR101456395B1 (en) Cubic boron nitride sintered body tool
JP5610357B2 (en) Cubic boron nitride sintered tool
CN106312843B (en) A kind of skive and its production method
JP5821088B2 (en) Cubic boron nitride sintered body tool and manufacturing method thereof
JP2012045635A (en) Cutting insert with excellent deposition resistance
JP6191839B2 (en) Diamond sintered ball end mill and manufacturing method thereof
JP5464493B2 (en) Cutting insert
CN206200777U (en) A kind of skive
WO2017077829A1 (en) Cubic boron nitride sintered body tool, cubic boron nitride sintered body used therein and production method for cubic boron nitride sintered body tool
JP5663807B2 (en) Cubic boron nitride sintered tool
JP5152667B2 (en) Cubic boron nitride sintered tool
JP5485117B2 (en) Zygote
JP5725441B2 (en) Cubic boron nitride sintered tool
JP5283016B2 (en) Diamond sintered body for cutting tools containing coarse diamond particles
JP2003011067A (en) Super-abrasive grain tool provided with sintered super- abrasive grain tip
JP5283017B2 (en) Diamond sintered compact tool for ultra-precision cutting
JPH11320219A (en) Hard sintered body throw-away chip and manufacture thereof
JP2013014002A (en) Cubic boron nitride sintered body tool
CN115635426A (en) Brazed diamond saw blade and preparation method thereof
JP5327740B2 (en) Cutting tip
JP2000271810A (en) Diamond sintered body rotation cutting tool
JP2017052080A (en) Diamond grindstone
JP2009148802A (en) Wc-based cemented carbide member joined by brazing
KR20100006006A (en) Method manufacturing of a cutting tip for saw

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20130619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140425

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150911

R150 Certificate of patent or registration of utility model

Ref document number: 5821088

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250