JPS61174193A - Molecular beam epitaxial growth method - Google Patents

Molecular beam epitaxial growth method

Info

Publication number
JPS61174193A
JPS61174193A JP1192585A JP1192585A JPS61174193A JP S61174193 A JPS61174193 A JP S61174193A JP 1192585 A JP1192585 A JP 1192585A JP 1192585 A JP1192585 A JP 1192585A JP S61174193 A JPS61174193 A JP S61174193A
Authority
JP
Japan
Prior art keywords
molecular beam
oxide
compd
group iii
epitaxial growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1192585A
Other languages
Japanese (ja)
Inventor
Masaki Ogawa
正毅 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1192585A priority Critical patent/JPS61174193A/en
Publication of JPS61174193A publication Critical patent/JPS61174193A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To grow the compd. of group III-V elements including high-quality Al at the substrate temp. lower than ever by incorporating Ga or In into an Al vaporization source, and carrying out the molecular beam epitaxial growth of the compd. of group III-V elements including Al. CONSTITUTION:The molecular beam epitaxial growth of the compd. of group III-V elements including Al (e.g., an AlGaAs liq. crystal) is carried out by incorporating 1-10 atom% Ga or In into an A vaporization source. A compd. of group III-V elements including high-quality Al can be grown at the substrate temp. lower than ever. By the previous addition of Ga or In into the Al vaporization source, a part of Ga of In into the Al vaporization source, a part of Ga or In takes in O2 by the reaction with the Al oxide under heating to form the oxide of Ga or In. Since the oxide is more vaporizable than the Al oxide and Ga or In is more vaporizable than Al, extremely high-purity Al remains in the crucible. Consequently, the O2 in the Al flux is remarkably reduced, and the compd. of group III-V elements including high-purity Al can be grown by the molecular beam epitaxial growth method.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、アルミニウムを含んだ高品質■−■化合物半
導体の分子線エピタキシー成長法に関するO 〔従来の技術〕 アルミニウムを含んだ■−v化合物の分子線エピタキシ
ー(以下MBEと称する)は半導体レーデなどの半導体
装置の製造上重要な技術である・アルミニウムを含んだ
■−■化合物として代表的なものにアルミニウム・ガリ
ウム・砒素混晶(以下幻ツaAsと称する)がある。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to a molecular beam epitaxy growth method for high-quality ■-■ compound semiconductors containing aluminum. [Prior Art] ■-V compounds containing aluminum Molecular beam epitaxy (hereinafter referred to as MBE) is an important technology for the production of semiconductor devices such as semiconductor radars.A typical example of a ■-■ compound containing aluminum is aluminum-gallium-arsenic mixed crystal (hereinafter referred to as phantom). (referred to as tsuaAs).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで高品質A拓aA−のMBE成長はAjを含まな
いGaAs MBE成長に較べて格段に難しい。この主
要な原因は、第16回置体素子コンファレンス(昭和5
9年、神戸)イクステンデッド・アブストラクト197
頁から200頁に記載されているように、Uが酸素と結
びつきやすいため、MBE成長中に幻℃aAs中に酸素
がとりこまれることにある。Uは高純度窒化Iロンのル
ツかに高純度Uをいれ、1000℃以上に加熱して蒸発
させる。同様な方法でGa、ムSを蒸発させてムjGm
Amを成長する。AjGaAsの高品質化が難しいのは
、ルツーから蒸発するムt7う、クスの中に酸素が混入
しているためである。
By the way, the MBE growth of high-quality A-tap aA- is much more difficult than the MBE growth of GaAs that does not contain Aj. The main reason for this is the 16th Annual Body Element Conference (1939).
9th year, Kobe) Extended Abstract 197
As described on pages 200 to 200, since U tends to combine with oxygen, oxygen is incorporated into the phantom aAs during MBE growth. High-purity U is put into a mixture of high-purity Iron nitride and heated to 1000° C. or higher to evaporate it. Ga and S are evaporated in a similar manner to obtain MujGm.
Grow Am. The reason why it is difficult to improve the quality of AjGaAs is that oxygen is mixed into the gas that evaporates from the gas.

成長温度°(基板温度)が低い場合には、酸素はん匁a
A−成長層中にとり込まれAμイムlの品質を低下させ
る。このため、低温MBK成長で高品質のAjGmAm
を得るためには、蒸発源から発生する酸素を低減する必
要があった。
When the growth temperature ° (substrate temperature) is low, the oxygen momme a
A- Incorporated into the growth layer and reduces the quality of Aμ iml. Therefore, high-quality AjGmAm can be obtained by low-temperature MBK growth.
In order to obtain this, it was necessary to reduce the amount of oxygen generated from the evaporation source.

本発明の目的は、Uを含む■−■化合物半導体を高品質
化するMBE成長方法を提供するところにある。
An object of the present invention is to provide an MBE growth method for improving the quality of a 1-2 compound semiconductor containing U.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、Atの蒸発源中にガリウム(Ga)もしくは
インジウム(In)を1ないし10原子チを混入してA
tを含む■−v族化合物の分子線エピタキシー成長を行
うことを特徴とする分子線エピタキシー成長方法。
In the present invention, 1 to 10 atoms of gallium (Ga) or indium (In) are mixed into an At evaporation source.
A molecular beam epitaxy growth method characterized by performing molecular beam epitaxy growth of a ■-v group compound containing t.

〔作用・原理〕[Action/Principle]

MBE成長に用いる高純度klは内部は高純度であって
も表面はアルミナ(A1203)を主体とした酸化物で
覆われている。成長中のAtフラ、クス中に含まれてい
る酸素はこの酸化物が分解して放出されることによる。
Although the high purity kl used for MBE growth has a high purity inside, the surface is covered with an oxide mainly composed of alumina (A1203). Oxygen contained in the At flux and gas during growth is released by decomposition of this oxide.

本発明では、蒸発源の紅と一緒にあらかじめGaあるい
はInを添加している。添加されたGaあるいはInの
一部は加熱中KAtの酸化物と反応して酸素をうぽい、
GaあるいはInの酸化物をつくる。GaあるいはIn
の酸化物はAtの酸化物よりはるかに蒸発しやすく、G
1あるいはInもAtより蒸発しやすい。したがって、
加熱中に酸化物およびGaあるいはInは蒸発してしま
い、ルツデ中には真に高純度の紅が残る。このため、A
tフラ、クスの中の酸素は大巾に低減し、高純度のkt
を含む■−v化合物がMBEKより成長可能となる。
In the present invention, Ga or In is added in advance together with red as an evaporation source. A part of the added Ga or In reacts with the KAt oxide during heating and releases oxygen.
Create Ga or In oxide. Ga or In
The oxide of G evaporates much more easily than the oxide of At.
1 or In also evaporates more easily than At. therefore,
During heating, the oxide and Ga or In evaporate, leaving a truly pure red color in the syrup. For this reason, A
Oxygen in the t-flax and gas is greatly reduced, resulting in high-purity kt
A -v compound containing the following can be grown from MBEK.

〔実施例〕〔Example〕

以下に本発明の実施例について図面を用いて詳細に説明
する。
Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は本発明の実施例に用いたMBE装置の概略を示
す図である。図中、1は真空容器、2はGaAg基板、
3は砒素(A−)加熱炉、4はGa加熱炉、5はAt加
熱炉、6はSi加熱炉を示している。各加熱炉には、ル
ツ?が内蔵されており、ルツが中には蒸発源が入ってい
る。At加熱炉5のルツI中に99.9999%のAt
279と99.99999%のGa3jlを入れ、10
50℃で10時間真空中で加熱した。加熱前のAt蒸発
源中の01は5原子チであり、蒸発源の体積は10.5
ccであった。G1は1050℃でAtより25倍蒸気
圧が高いため、10時間加熱中にすべて蒸発した。加熱
后の蒸発源の体積は9.6 ccとなりた。10時間加
熱后のAt蒸発源を用いてSlを1刈0 ” cm−’
ドープしたA10030m0.7A8をGaAs基板2
上に厚さ1.0μm成長した。成長中のGaAs基板2
の温度は520℃に保った。成阜したAt6.5G *
 o、7 A aの7オトルミネツセンス強度は、Ga
を添加しないで1050℃10時間加熱したU蒸発源を
用い同一基板温度(520℃)で成長した時と較べ30
倍大きかった。またこの強度は、At中にGaを添加し
ない蒸発源で基板温度700℃で成長したAtg、5G
ao、7AIと同等であった。すなわち、Gaを添加し
たU蒸発源を用いることにより、従来よりも180℃低
い温度で高品質のAtGaAmの成長が可能となった。
FIG. 1 is a diagram schematically showing an MBE apparatus used in an embodiment of the present invention. In the figure, 1 is a vacuum container, 2 is a GaAg substrate,
3 is an arsenic (A-) heating furnace, 4 is a Ga heating furnace, 5 is an At heating furnace, and 6 is a Si heating furnace. Each furnace has a Ruth? is built in, and Ruth has an evaporation source inside. 99.9999% At in Ruth I of At heating furnace 5
279 and 99.99999% Ga3jl, 10
Heated in vacuo at 50° C. for 10 hours. 01 in the At evaporation source before heating is 5 atoms, and the volume of the evaporation source is 10.5
It was cc. Since G1 has a vapor pressure 25 times higher than At at 1050°C, all of it evaporated during 10 hours of heating. The volume of the evaporation source after heating was 9.6 cc. After heating for 10 hours, 1 sl was removed using an At evaporation source at 0 cm-'
Doped A10030m0.7A8 on GaAs substrate 2
A layer of 1.0 μm thick was grown on top. Growing GaAs substrate 2
The temperature was maintained at 520°C. Successful At6.5G *
o, 7 A The 7 otoluminescence intensity of a is Ga
30% compared to when grown at the same substrate temperature (520°C) using a U evaporation source heated at 1050°C for 10 hours without adding
It was twice as big. Moreover, this strength is similar to that of Atg grown at a substrate temperature of 700°C using an evaporation source without adding Ga to At, 5G.
ao and 7AI. That is, by using a Ga-added U evaporation source, it has become possible to grow high-quality AtGaAm at a temperature 180° C. lower than before.

これはあきらかに、本発明の方法によりAtフラックス
中の有害な不純物が除去されたためである。この結果、
AtGaAm中にとり込まれる不純物密度が少なくなり
高品質化した。従来のA/、蒸発源でも基板温度を52
0℃から700℃に高めると高品質juGaAmが得ら
れる。このことは不純物の結晶表面への付着係数が基板
温度に敏感であることを示している。このような不純物
としては酸素が考えられる。ルツかにいれた尼は高純度
であっても、表面はAtの酸化物で覆われており、加熱
溶融するとU中に酸化物がとけ込むからである。とけ込
んだAtの酸化物は蒸気圧が低いため、長時間加熱層も
消滅せず、Atフラックス中の微量酸素の供給源として
いつまでも働く、酸素はAtDaAm表面に付着すると
多数の結晶欠陥を生成させるため、At7う、クス中の
酸素低減は極めて重要である。
This is clearly because harmful impurities in the At flux were removed by the method of the present invention. As a result,
The density of impurities incorporated into AtGaAm was reduced, resulting in higher quality. Even with conventional A/, evaporation sources, the substrate temperature can be reduced to 52
High quality juGaAm can be obtained by increasing the temperature from 0°C to 700°C. This indicates that the adhesion coefficient of impurities to the crystal surface is sensitive to the substrate temperature. Oxygen can be considered as such an impurity. This is because even if the aluminum in the ruts crab is of high purity, the surface is covered with At oxides, and when heated and melted, the oxides dissolve into the U. Because the dissolved At oxide has a low vapor pressure, the heated layer does not disappear over a long period of time, and it continues to work as a source of trace amounts of oxygen in the At flux.When oxygen adheres to the AtDaAm surface, it generates many crystal defects. , At7, oxygen reduction in the gas is extremely important.

実施例によるAt蒸発源にはあらかじめGaが添加され
【いる。QaはAt酸化物と反応して酸素を奪いQa酸
化物となる。Qa酸化物は蒸気圧が高いので1050℃
10時間の加熱により蒸発してしまい、At蒸発源中の
酸素量は大巾に低減する。このため、高品質のA拓mA
s成長が可能となったのである。
Ga is added in advance to the At evaporation source according to the example. Qa reacts with At oxide to take away oxygen and become Qa oxide. Qa oxide has a high vapor pressure, so the temperature is 1050℃
It is evaporated by heating for 10 hours, and the amount of oxygen in the At evaporation source is greatly reduced. For this reason, high quality A
s growth became possible.

一方、従来のMBE成長法で高品質のAtGaAsを得
るためKは、700℃という高温に基板温度を保持する
必要があった。この温度はGaAsの分解温度より10
0℃も高いため、平滑なんωmAg表面は得られず、ま
た半導体レーデ等を作製しようとするとA&iAaとG
aAsの界面がみだれるため、充分な光出力が得られな
かった。本実施例によるMBE成長法では、520℃と
いう低温で高品質のAtGaAgを成長できるため、表
面も平滑でAtGaAsとGaAsの界面のみだれもな
い。このため、高光出力の半導体レーザ作製が可能とな
った。
On the other hand, in order to obtain high quality AtGaAs using the conventional MBE growth method, it was necessary to maintain the substrate temperature at a high temperature of 700°C. This temperature is 10 times higher than the decomposition temperature of GaAs.
Because it is as high as 0°C, it is not possible to obtain a smooth ωmAg surface, and when trying to fabricate a semiconductor radar, etc., A&iAa and G
Sufficient optical output could not be obtained because the aAs interface was degraded. In the MBE growth method according to this embodiment, high-quality AtGaAg can be grown at a low temperature of 520° C., so the surface is smooth and there is no blemish at the interface between AtGaAs and GaAs. Therefore, it has become possible to fabricate a semiconductor laser with high optical output.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の分子線エピタキシー法に
よれば、従来より低い基板温度で高品質のUを含むm−
■化合物が成長できる。実施例ではα中に添加するGa
を5原子チとしであるが、実験的には、1原子チ以上で
大きな効果が得られた。
As explained above, according to the molecular beam epitaxy method of the present invention, high quality m-containing U-containing
■ Compounds can grow. In the example, Ga added to α
is assumed to be 5 atoms, but experimentally, great effects were obtained with 1 or more atoms.

10原子−以上では、At蒸発源中のGaが枯渇するま
で20時間以上の加熱を要し、しかもAt量も減少する
ため実用的ではなかった。また実施例ではAt中に添加
する材料をGaとしたが、インジウム(In)でもよい
。とくKInとAtを含むm−■化合物を成長する場合
には、Inを添加するのがよい。本発明の方法は、At
蒸発源を高純度化する方法であるから、AtGaAs以
外のAtを含む■−v族化合物の成長にすべて適用でき
るのはいうまでもない。
At 10 atoms or more, heating for 20 hours or more is required until Ga in the At evaporation source is exhausted, and the amount of At also decreases, which is not practical. Further, in the embodiment, Ga was used as the material added to At, but indium (In) may also be used. In particular, when growing an m-2 compound containing KIn and At, it is preferable to add In. The method of the present invention comprises At
Since this is a method for highly purifying the evaporation source, it goes without saying that this method can be applied to the growth of all group (IV) compounds containing At other than AtGaAs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例に用いた分子線エピタキシー装
置の概要を示す図である。 10−・・真空容器、2〜6・・・加熱炉。
FIG. 1 is a diagram showing an outline of a molecular beam epitaxy apparatus used in an example of the present invention. 10-...Vacuum container, 2-6...Heating furnace.

Claims (1)

【特許請求の範囲】[Claims] (1)アルミニウムの蒸発源中にガリウムもしくはイン
ジウムを1ないし10原子%を混入してアルミニウムを
含むIII−V族化合物の分子線エピタキシー成長を行う
ことを特徴とする分子線エピタキシー成長方法。
(1) A molecular beam epitaxy growth method characterized by mixing 1 to 10 atomic % of gallium or indium in an aluminum evaporation source to perform molecular beam epitaxy growth of a III-V group compound containing aluminum.
JP1192585A 1985-01-25 1985-01-25 Molecular beam epitaxial growth method Pending JPS61174193A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1192585A JPS61174193A (en) 1985-01-25 1985-01-25 Molecular beam epitaxial growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1192585A JPS61174193A (en) 1985-01-25 1985-01-25 Molecular beam epitaxial growth method

Publications (1)

Publication Number Publication Date
JPS61174193A true JPS61174193A (en) 1986-08-05

Family

ID=11791258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1192585A Pending JPS61174193A (en) 1985-01-25 1985-01-25 Molecular beam epitaxial growth method

Country Status (1)

Country Link
JP (1) JPS61174193A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7339118B1 (en) 1997-03-13 2008-03-04 Ibiden Co., Ltd. Printed wiring board and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7339118B1 (en) 1997-03-13 2008-03-04 Ibiden Co., Ltd. Printed wiring board and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JPS61174193A (en) Molecular beam epitaxial growth method
CA1234036A (en) Lpe growth on group iii-v compound semiconductor substrates containing phosphorus
Seeber et al. Progress in single crystal growth of V3Si
Nakajima et al. Phase Diagram of Al‐Ga‐In‐As Quaternary System
US3353912A (en) Preparation of high-purity materials
Kondo et al. High purity LPE growth of InGaAs by adding Al to melt
JP3101753B2 (en) Vapor growth method
JPS6017969A (en) Light emitting semiconductor device
Makita et al. Oxygen addition purification effect in InGaAs growth by hydride VPE
JPH02163328A (en) Method for synthesizing iii-v compound semiconductor
JPS6230697A (en) Production of gaas single crystal
JPS6153186A (en) Heater for resistance heating
JP2721683B2 (en) Method for growing compound semiconductor thin film crystal
JPS63248796A (en) Molecular beam epitaxy and its device
JPS61197499A (en) Method of growing single crystal of inorganic compound
JP2593148B2 (en) Method for growing single crystal of compound semiconductor
JPS623408Y2 (en)
JPH0529221A (en) Molecular beam crystal growing method
JPH02137792A (en) Production of iii-v compound semiconductor
JPS62137821A (en) Vapor growth method for semiconductor
JPH0610085B2 (en) Method for purifying indium solution using indium as solvent
JPH02120297A (en) Production of iii-v compound semiconductor single crystal
JPH0369588A (en) Molecular beam crystal growth method
JPS59161814A (en) Purification of indium solution and vapor phase epitaxial growth
JPH0297492A (en) Production of chrysoberyl single crystal