JPH0297492A - Production of chrysoberyl single crystal - Google Patents
Production of chrysoberyl single crystalInfo
- Publication number
- JPH0297492A JPH0297492A JP24925688A JP24925688A JPH0297492A JP H0297492 A JPH0297492 A JP H0297492A JP 24925688 A JP24925688 A JP 24925688A JP 24925688 A JP24925688 A JP 24925688A JP H0297492 A JPH0297492 A JP H0297492A
- Authority
- JP
- Japan
- Prior art keywords
- single crystal
- chrysoberyl
- partial pressure
- oxygen partial
- trivalent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 70
- 229910001602 chrysoberyl Inorganic materials 0.000 title claims abstract description 33
- 238000004519 manufacturing process Methods 0.000 title claims description 16
- 239000001301 oxygen Substances 0.000 claims abstract description 23
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 23
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 21
- 229910052719 titanium Inorganic materials 0.000 claims description 34
- 239000010936 titanium Substances 0.000 claims description 34
- -1 titanium ions Chemical class 0.000 claims description 16
- 239000011261 inert gas Substances 0.000 abstract description 10
- 239000003638 chemical reducing agent Substances 0.000 abstract description 6
- 239000000155 melt Substances 0.000 abstract description 6
- 239000000203 mixture Substances 0.000 abstract description 4
- 239000012024 dehydrating agents Substances 0.000 abstract description 3
- 229910009973 Ti2O3 Inorganic materials 0.000 abstract description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 abstract description 2
- 229910052593 corundum Inorganic materials 0.000 abstract description 2
- GQUJEMVIKWQAEH-UHFFFAOYSA-N titanium(III) oxide Chemical compound O=[Ti]O[Ti]=O GQUJEMVIKWQAEH-UHFFFAOYSA-N 0.000 abstract description 2
- 229910001845 yogo sapphire Inorganic materials 0.000 abstract description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 23
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 18
- 239000007789 gas Substances 0.000 description 17
- 238000010521 absorption reaction Methods 0.000 description 13
- 229910001873 dinitrogen Inorganic materials 0.000 description 10
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 9
- 229910052741 iridium Inorganic materials 0.000 description 8
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 230000010355 oscillation Effects 0.000 description 8
- 239000002994 raw material Substances 0.000 description 8
- 229910052757 nitrogen Inorganic materials 0.000 description 7
- 238000002844 melting Methods 0.000 description 6
- 230000008018 melting Effects 0.000 description 6
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 5
- 229910002091 carbon monoxide Inorganic materials 0.000 description 5
- 239000001257 hydrogen Substances 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- 150000002500 ions Chemical class 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000005284 excitation Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 230000002706 hydrostatic effect Effects 0.000 description 3
- 229910008649 Tl2O3 Inorganic materials 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- QTQRFJQXXUPYDI-UHFFFAOYSA-N oxo(oxothallanyloxy)thallane Chemical compound O=[Tl]O[Tl]=O QTQRFJQXXUPYDI-UHFFFAOYSA-N 0.000 description 2
- 150000002926 oxygen Chemical class 0.000 description 2
- LTPBRCUWZOMYOC-UHFFFAOYSA-N Beryllium oxide Chemical compound O=[Be] LTPBRCUWZOMYOC-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- LCKIEQZJEYYRIY-UHFFFAOYSA-N Titanium ion Chemical compound [Ti+4] LCKIEQZJEYYRIY-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910002090 carbon oxide Inorganic materials 0.000 description 1
- 229910001430 chromium ion Inorganic materials 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000011819 refractory material Substances 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000004781 supercooling Methods 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、3価のチタンをレーザー発振の活性イオンと
して用いる 3価のチタンイオンをドープしたクリソベ
リル(Be AJ z Oイ)単結晶の製造方法に関す
る。[Detailed Description of the Invention] [Industrial Application Field] The present invention uses trivalent titanium as an active ion for laser oscillation.Production of chrysoberyl (Be AJ z O) single crystal doped with trivalent titanium ions Regarding the method.
[従来技術]
固体レーザは小型で大出力であり、また装置の保守が容
易であり、しかも安定性に優れているため、工業的にも
応用分野が拡がりつつある。[Prior Art] Solid-state lasers are small in size, have high output, are easy to maintain, and have excellent stability, so their industrial applications are expanding.
このうち、3価のチタンイオンを活性イオンに用いるレ
ーザーは、発振の同調範囲が連続的にかつ極めて広い範
囲で実現でき、様々な用途への応用が期待できる。3価
のチタンをドープしたクリソベリル単結晶は、特開昭8
2−218288号公報に示されるように極めて有望な
結晶である。このt11結晶は500nmを中心とした
広い吸収帯を有し、6o。Among these, lasers that use trivalent titanium ions as active ions can achieve continuous oscillation tuning over an extremely wide range, and are expected to be applied to a variety of uses. Chrysoberyl single crystal doped with trivalent titanium was disclosed in Japanese Unexamined Patent Publication No. 8
As shown in Japanese Patent No. 2-218288, it is an extremely promising crystal. This t11 crystal has a broad absorption band centered at 500 nm, and has a 6o.
n11から 900nIIを越える広い領域で発光し、
この幅広い領域で同調可能な波長可変レーザー発振が期
待できる。この結晶において発光源はクリソベリル型酸
化物内に含有された3価のチタンイオンである。従って
クリソベリル単結晶の育成に際しては、3価のチタンイ
オンが安定に存在できる条件の下で行なう必要がある。It emits light in a wide range from n11 to over 900nII,
Tunable wavelength laser oscillation that can be tuned over this wide range is expected. In this crystal, the light source is trivalent titanium ions contained within the chrysoberyl oxide. Therefore, it is necessary to grow chrysoberyl single crystals under conditions where trivalent titanium ions can exist stably.
ツノ
そして、同公報においては、クリソベリル単結晶の育成
は、主に高周波加熱型チョクラルスキー法等が用いられ
、育成速度は0.5〜3.0m/hr。In the same publication, chrysoberyl single crystals are grown mainly by the high-frequency heating Czochralski method, and the growth rate is 0.5 to 3.0 m/hr.
その雰囲気は、水素ガス、窒素ガス、アルゴンガス等の
雰囲気が好ましいとされている。It is said that the atmosphere is preferably hydrogen gas, nitrogen gas, argon gas, or the like.
[発明が解決しようとする課題]
しかるに、3価チタンをクリソベリル単結晶内に安定し
て固定させることは、これら製造条件等を厳密に設定し
ても技術的に困難性があった。[Problems to be Solved by the Invention] However, it is technically difficult to stably fix trivalent titanium within a chrysoberyl single crystal even if these manufacturing conditions are set strictly.
また、一般に市販されているチッソや不活性ガスを、こ
の単結晶育成雰囲気ガスとして用いると、多量の4価の
チタンイオンを含んだ単結晶しか製造できない。このよ
うに3価のチタンイオンの少ない単結晶は500n11
を中心とした吸収帯での吸収強度が弱(、また800r
vから900niを越える領域での発光強度が弱いため
レーザー発振に利用できない。また4価チタンイオンを
多く含んだ単結晶は600nmから900nmを越える
領域に弱い吸収帯が見られる。この領域での吸収帯形成
はレーザー発振させる際には有害となる。Furthermore, if commercially available nitrogen or inert gas is used as the single crystal growth atmosphere gas, only a single crystal containing a large amount of tetravalent titanium ions can be produced. In this way, the single crystal with few trivalent titanium ions is 500n11
The absorption intensity in the absorption band centered on is weak (and 800 r
Since the emission intensity in the region exceeding 900 ni from v is weak, it cannot be used for laser oscillation. Furthermore, a single crystal containing a large amount of tetravalent titanium ions has a weak absorption band in the region from 600 nm to over 900 nm. Formation of an absorption band in this region is harmful to laser oscillation.
一方、チョクラルスキー法においては、得られた+li
結晶内にるつぼ材料であるイリジウムが混入するという
問題がある。しかも、安価に単結晶を製造するためには
、バブル包含物がなく、かつ早い育成速度で結晶を引き
あげる必要がある。On the other hand, in the Czochralski method, the obtained +li
There is a problem that iridium, which is a crucible material, gets mixed into the crystal. Moreover, in order to produce single crystals at low cost, it is necessary to have no bubble inclusions and to pull the crystals at a high growth rate.
本発明の目的は、かかる従来技術の課題に鑑み、クリソ
ベリル中に3価のチタンのみを安定的に取り込ませ、か
つバブル包含物の少ない、安価なりリソベリル単結晶の
製造方法を提供することを目的とする。In view of the problems of the prior art, it is an object of the present invention to provide an inexpensive method for producing lithoberyl single crystals that stably incorporates only trivalent titanium into chrysoberyl and has fewer bubble inclusions. shall be.
[課題を解決するための手段および作用]本発明の上記
目的は、クリソベリル単結晶の育成時の酸素分圧を一定
状態に制御することにより達成される。[Means and effects for solving the problems] The above objects of the present invention are achieved by controlling the oxygen partial pressure to a constant state during the growth of chrysoberyl single crystals.
すなわち本発明のクリソベリル単結晶の製造方法は、3
価のチタンイオンをドープしたクリソベリル単結晶の製
造方法において、該単結晶の育成時に、系内の酸素分圧
を10−9〜ro−17以下とすることを特徴とする。That is, the method for producing chrysoberyl single crystal of the present invention includes 3
A method for producing a chrysoberyl single crystal doped with valent titanium ions is characterized in that the oxygen partial pressure in the system is set to 10-9 to ro-17 or less during growth of the single crystal.
3(ilIiのチタンを含むクリソベリル単結晶は、高
周波加熱型チョクラルスキー法あるいは赤外線集光式フ
ローティングゾーン法等で育成されるが、本発明では高
周波加熱型チョクラルスキー法が好適に採用される。3 (ilIi) Chrysoberyl single crystals containing titanium are grown by the high-frequency heating Czochralski method or the infrared condensing floating zone method, but the high-frequency heating Czochralski method is preferably adopted in the present invention. .
また、本発明の製造方法で用いられる原料としては、酸
化ベリリウム(Be O)と酸化アルミニウム(Al2
O2)であり、発光イオンとして酸化チタン(m)
(TI 203 )を加える。3価のチタンは結晶中0
.OI〜1.0重量%含有されることが好ましく、チタ
ンの含有量が0.01重量%より小さいと螢光が弱く実
用上使用できない。また、チタンの含有量が 1,0重
量%を越えるとルチル(Tl 02 )の偏析がおこり
レーザとして使用できない。In addition, the raw materials used in the production method of the present invention include beryllium oxide (BeO) and aluminum oxide (Al2
O2) and titanium oxide (m) as a luminescent ion.
(TI 203) is added. Trivalent titanium is 0 in the crystal.
.. The titanium content is preferably 1.0% by weight. If the content of titanium is less than 0.01% by weight, the fluorescence is so weak that it cannot be used practically. Furthermore, if the titanium content exceeds 1.0% by weight, segregation of rutile (Tl 02 ) occurs and the laser cannot be used.
本発明では、このクリソベリル単結晶を、その白点(1
870℃)近傍の温度で育成する際に、系内の酸素分圧
を10−9〜10−lフ、好ましくは10−10〜10
−17で行なうことを特徴とするものである。In the present invention, this chrysoberyl single crystal is
When growing at a temperature near 870°C, the oxygen partial pressure in the system is set at 10-9 to 10-l, preferably 10-10 to 10
-17.
この酸素分圧がlo−9を越えた場合には、レーザー発
振の励起を行なう波長、すなわち500nm前後の吸収
係数が小さく、発振効率が低い。また、単結晶中に泡状
包含物が発生し、良質の単結晶を得ることができない。When this oxygen partial pressure exceeds lo-9, the absorption coefficient at the wavelength for excitation of laser oscillation, that is, around 500 nm, is small and the oscillation efficiency is low. Moreover, bubble-like inclusions occur in the single crystal, making it impossible to obtain a high-quality single crystal.
また、この酸素分圧が10−17未満では、炉を形成す
る耐火物(Zr 02およびAl2O3)の蒸発が著し
く、かつ融液からもAj20xが飛散するため、育成結
晶表面に多量のA J 203針状結晶が析出し、時に
は、種結晶を融液につけ結晶成長させる前に、種結晶が
多結晶化する。Furthermore, if this oxygen partial pressure is less than 10-17, the refractories (Zr 02 and Al2O3) forming the furnace will evaporate significantly, and Aj20x will also scatter from the melt, resulting in a large amount of Aj203 on the surface of the grown crystal. Needle-like crystals precipitate, and sometimes the seed crystals become polycrystalline before they are immersed in the melt and allowed to grow.
このように、本発明では、単結晶を育成する際に、系内
の酸素分圧を10−9〜zo−17とするものであるが
、その際の系内の雰囲気ガスは、チッ素やアルゴン等の
不活性ガスと水素または一酸化炭素の混合ガス、あるい
は水素と二酸化炭素または一酸化炭素と二酸化炭素の混
合ガス等が例示され、具体的には、例えば次のような雰
囲気ガスとして、酸素分圧を上記範囲内にすることが必
要である。In this way, in the present invention, when growing a single crystal, the oxygen partial pressure in the system is set to 10-9 to zo-17, but the atmospheric gas in the system at that time is nitrogen or Examples include a mixed gas of an inert gas such as argon and hydrogen or carbon monoxide, or a mixed gas of hydrogen and carbon dioxide or carbon monoxide and carbon dioxide. Specifically, the following atmospheric gases include: It is necessary to keep the oxygen partial pressure within the above range.
(1)チッ素あるいは不活性ガスに、水素ガスを0.1
〜3.0容量%加え、上記範囲の酸素分圧とする。(1) Add 0.1 hydrogen gas to nitrogen or inert gas
~3.0% by volume is added to obtain an oxygen partial pressure within the above range.
(2)チッ素あるいは不活性ガスに、−酸化炭素ガスを
0.05〜1.0容量%加え、上記範囲の酸素分圧とす
る。(2) Add 0.05 to 1.0% by volume of -carbon oxide gas to nitrogen or inert gas to obtain an oxygen partial pressure within the above range.
(3)チッ素あるいは不活性ガスを、還元剤および脱水
剤を用いて、上記範囲の酸素分圧とする。(3) Bring nitrogen or an inert gas to an oxygen partial pressure within the above range using a reducing agent and a dehydrating agent.
(4)市販のチッ素あるいは不活性ガスを、還元剤およ
び脱水剤を通過させ、しかる後に、1〜1000 pp
liの酸素および0.1〜3.0%の水素ガスを混合し
、上記範囲の酸素分圧とする〇
なお、いずれの雰囲気ガス組成においても、過剰の水素
あるいは一酸化炭素ガスを混合すると爆発の危険性があ
るため、水素あるいは一酸化炭素ガスの濃度を好ましく
は3.0%以下とすべきである。(4) Commercially available nitrogen or inert gas is passed through a reducing agent and a dehydrating agent, and then 1 to 1000 pp.
Mix li of oxygen and 0.1 to 3.0% hydrogen gas to obtain an oxygen partial pressure within the above range. Note that in any atmospheric gas composition, mixing excess hydrogen or carbon monoxide gas will cause an explosion. Therefore, the concentration of hydrogen or carbon monoxide gas should preferably be 3.0% or less.
このような条件下でのクリソベリル単結晶の育成におい
ては、その育成速度は0.5〜3.0rnIR/hrが
一般的である。When growing chrysoberyl single crystals under such conditions, the growth rate is generally 0.5 to 3.0 rnIR/hr.
このような、3価のチタンをドープしたクリソベリル単
結晶の育成において、系内の酸素分圧を上記範囲とする
のは、以下の理由による。In growing such trivalent titanium-doped chrysoberyl single crystals, the oxygen partial pressure in the system is set within the above range for the following reason.
すなわち、チョクラルスキー法は、レーザー結晶の製造
方法として用いられ、例えばアレキサンドライト(3価
のクロムイオンをドープしたクリソベリル)単結晶で示
されるように安価で良質な結晶を製造できる。しかるに
、るつぼを用いて原料を溶融するため、一般的には、る
つぼ材の混入を防止する育成条件を検討する必要がある
。このためアレキサンドライト結晶製造時は0,1〜2
.0%程度の酸素ガスを不活性ガスに意図的に添加する
。That is, the Czochralski method is used as a method for producing laser crystals, and can produce inexpensive and high-quality crystals, as shown in, for example, alexandrite (chrysoberyl doped with trivalent chromium ions) single crystal. However, since raw materials are melted using a crucible, it is generally necessary to consider growth conditions that prevent contamination of crucible materials. For this reason, when producing alexandrite crystals, 0.1 to 2
.. About 0% oxygen gas is intentionally added to the inert gas.
これに対して3価のチタンイオンをレーザーの発光イオ
ンとして用いるTI ”; B e AJ 204結晶
も、このような雰囲気下で育成可能であるが、4価のチ
タンが多量に混入し好ましくない。そこで、本発明では
、クリソベリル単結晶育成時に。On the other hand, TI''; B e AJ 204 crystal, which uses trivalent titanium ions as laser light emitting ions, can also be grown in such an atmosphere, but this is not preferable because a large amount of tetravalent titanium is mixed therein. Therefore, in the present invention, during chrysoberyl single crystal growth.
チッ素や不活性ガスあるいはそれらのガスと水素や一酸
化炭素などの混合ガスを用いて、系内の酸素分圧を上記
範囲とすることにより、結晶中に3価のチタンのみを有
効に取り込み、かつ包含物を極少にすることを可能とし
たのである。Only trivalent titanium can be effectively incorporated into the crystal by using nitrogen, an inert gas, or a mixed gas of these gases and hydrogen or carbon monoxide to keep the oxygen partial pressure in the system within the above range. This made it possible to minimize inclusions.
[実施例コ 以下、実施例等に基づき本発明を具体的に説明する。[Example code] Hereinafter, the present invention will be specifically explained based on Examples and the like.
比較例1
純度99.99%のBe O,純度99.999%のA
l2O2および純度99,9%のTi2O3をモル比で
1:1:0.01または0.02の比となるように混合
し、静水圧プレスで原料内のガスを抜いて圧粉体とした
。Comparative Example 1 Be O with a purity of 99.99%, A with a purity of 99.999%
12O2 and Ti2O3 with a purity of 99.9% were mixed in a molar ratio of 1:1:0.01 or 0.02, and the gas in the raw materials was removed using a hydrostatic press to obtain a green compact.
次に、市販のチッ素ガス雰囲気下とした系内(チョクラ
ルスキー炉内)のイリジウムるつぼに圧粉体を導入し、
溶融後、チョクラルスキー炉で0.5m/hrの速度で
ゆっくり引き上げクリソベリル単結晶を製造した。この
チッ素ガスに含まれる酸素および水分量から、系内の酸
素分圧は10−5と計算された。Next, the green compact was introduced into an iridium crucible in a system (Czochralski furnace) under a commercially available nitrogen gas atmosphere,
After melting, it was slowly pulled up in a Czochralski furnace at a speed of 0.5 m/hr to produce a chrysoberyl single crystal. From the oxygen and water content contained in this nitrogen gas, the oxygen partial pressure in the system was calculated to be 10-5.
このようにして得られたクリソベリル単結晶のチタン濃
度と497tvにおける吸収係数の関係を第1図に示す
。FIG. 1 shows the relationship between the titanium concentration of the chrysoberyl single crystal thus obtained and the absorption coefficient at 497 tv.
また、育成された結晶は、固化率(融液が結晶になった
比率)が7.6%を越えた時点から、周辺部に泡状の含
有物が観測され、19.9%を越えるとほぼ全面に包含
物が発生しており、レーザー発振に供することができな
かった。また、融液から結晶へのチタンイオンの取り込
み係数は0.07と見積られた。In addition, bubble-like inclusions were observed in the periphery of the grown crystals when the solidification rate (ratio of melt to crystal) exceeded 7.6%, and when it exceeded 19.9%. Inclusions were generated on almost the entire surface, and it could not be used for laser oscillation. Furthermore, the coefficient of incorporation of titanium ions from the melt into the crystal was estimated to be 0.07.
実施例1
純度’!’1.99%のBaO2純度’l19.9’l
’1%のA103および純度99,9%のTl2O3を
モル比で1=1:0.01の比となるように混合し、静
水圧プレスで原料内のガスを抜いて圧粉体とした。Example 1 Purity'! '1.99% BaO2 purity'l19.9'l
'1% A103 and 99.9% purity Tl2O3 were mixed in a molar ratio of 1=1:0.01, and the gas in the raw materials was removed using a hydrostatic press to form a green compact.
次に、系内(チョクラルスキー炉内)を10T orr
以下の真空に保った後、市販のチッ素ガスを還元剤に通
過させた状態の雰囲気とした後、系内のイリジウムるつ
ぼに圧粉体を導入し、溶融後、チョクラルスキー炉で、
常圧下、0.!onm/hrの速度でゆっくり引き上げ
クリソベリル単結晶を製造した。この際の系内の酸素分
圧は10−9と計算された。Next, the inside of the system (inside the Czochralski furnace) was set to 10T orr.
After maintaining the following vacuum, creating an atmosphere in which commercially available nitrogen gas was passed through a reducing agent, the green compact was introduced into an iridium crucible in the system, and after melting, it was heated in a Czochralski furnace.
Under normal pressure, 0. ! A chrysoberyl single crystal was produced by slowly pulling at a rate of onm/hr. The oxygen partial pressure in the system at this time was calculated to be 10-9.
このようにして得られたクリソベリル単結晶のチタン濃
度と497n!1における吸収係数の関係を第1図に示
す。The titanium concentration of the chrysoberyl single crystal thus obtained and 497n! Figure 1 shows the relationship between the absorption coefficients in 1.
実施例2
純度99.99%のBaO2純度99.999%のAl
2O2および純度9969%のTl2O3をモル比で1
:1 : 0.005の比となるように混合し、静水
圧プレスで原料内のガスを抜いて圧粉体とした。Example 2 BaO with a purity of 99.99% Al with a purity of 99.999%
2O2 and Tl2O3 with a purity of 9969% in a molar ratio of 1
:1:0.005 ratio, and the gas in the raw materials was removed using a hydrostatic press to obtain a green compact.
次に、系内(チョクラルスキー炉内)を市販のチッ素ガ
スに0,5容量%の水素ガスを添加した混合ガス雰囲気
とした後、系内のイリジウムるつぼに圧粉体を導入し、
溶融後、チョクラルスキー炉で、常圧下、0.71WI
t/hrの速度でゆっくり引き上げクリソベリル単結晶
を製造した。この際の系内の酸素分圧は10−12と計
算された。Next, after creating a mixed gas atmosphere in the system (inside the Czochralski furnace) of commercially available nitrogen gas and adding 0.5% by volume of hydrogen gas, a green compact was introduced into the iridium crucible in the system,
After melting, in a Czochralski furnace under normal pressure, 0.71WI
A chrysoberyl single crystal was produced by slowly pulling at a rate of t/hr. The oxygen partial pressure within the system at this time was calculated to be 10-12.
このようにして得られたクリソベリル単結晶のチタン濃
度と497nmlこおける吸収係数の関係を第1図に示
す。FIG. 1 shows the relationship between the titanium concentration of the chrysoberyl single crystal thus obtained and the absorption coefficient at 497 nm.
また、育成された結晶は、泡状包含物が全くなく、チタ
ンイオンの取り込み係数は0.24であった。Furthermore, the grown crystal had no bubble-like inclusions at all, and the titanium ion uptake coefficient was 0.24.
従って、原料中のチタン濃度のモル比が小さくとも、包
含物のない、充分に高濃度の単結晶が得られることが判
った。Therefore, it has been found that even if the molar ratio of the titanium concentration in the raw material is small, a single crystal with a sufficiently high concentration without inclusions can be obtained.
さらに、第1図の結果から判るように、実施例1〜2は
、比較例1と比較して、レーザー発振に供し得る497
na+で高い吸収を示し、特に実施例2は著しく高い吸
収を示す。Furthermore, as can be seen from the results in FIG. 1, Examples 1 and 2 have 497
It shows a high absorption at na+, especially Example 2 shows a significantly high absorption.
[発明の効果コ
以上説明したように、クリソベリル単結晶の育成時に、
系内の酸素分圧を一定範囲とする本発明の製造方法によ
って、次に示す効果を奏する。[Effects of the invention] As explained above, when growing chrysoberyl single crystals,
The production method of the present invention, in which the oxygen partial pressure in the system is kept within a certain range, provides the following effects.
(1)結晶内に取り込まれたチタンイオンのほとんどが
3価のチタンイオンの状態となるため、レーザーの励起
波長域の吸収係数が増加し、励起効率が増加する。(1) Since most of the titanium ions taken into the crystal become trivalent titanium ions, the absorption coefficient in the laser excitation wavelength range increases and the excitation efficiency increases.
<2)また、チタンイオンの融液から結晶へ取り込まれ
る(分配係数)が増加するため3価のチタンイオンを高
濃度に含む結晶製造が容易で、かつ熾液中の不純物(こ
の結晶ではチタンイオン)量を低下させることができる
ので、組成的過冷却現象に基づく包含物の発生を防止で
きる。<2) In addition, since the amount of titanium ions taken into the crystal from the melt (partition coefficient) increases, it is easy to manufacture crystals containing a high concentration of trivalent titanium ions, and impurities in the melt (in this crystal, titanium Since the amount of ions) can be reduced, the generation of inclusions due to compositional supercooling phenomenon can be prevented.
(3)原理的にイリジウムるつぼの酸化を防止できるた
め、結晶中に随伴するイリジウム包含物量を減らすこと
ができる。(3) Since oxidation of the iridium crucible can be prevented in principle, the amount of iridium inclusions accompanying the crystal can be reduced.
従って、本番発明は、3価のチタンを含有したクリソベ
リル単結晶の製造方法として好適に用いられ、得られた
単結晶は固体レーザーホスト等の用途に用いられる。Therefore, the present invention is suitably used as a method for producing a chrysoberyl single crystal containing trivalent titanium, and the obtained single crystal is used for applications such as a solid-state laser host.
第1図は、実施例1〜2および比較例1で得られたクリ
ソベリル単結晶のチタン濃度と 497nmにおける吸
収係数の関係を示すグラフ。
特許出願人 三井金属鉱業株式会社
代理人 弁理士 伊 東 辰 雄
代理人 弁理士 伊 東 哲 也
図
手続補正書4.え、
昭和63年12月3日
特許庁長官 吉 1)文 股 殿
1、事件の表示
昭和63年 特 許 願第249256号2、発明の名
称
クリソベリル単結晶の製造方法
3、補正をする者
事件との関係 特許出願人
住 所 東京都中央区日本橋室町2丁目1番1号名 称
(618)三井金属鉱業株式会社代表者真島公三部
4、代理人〒105
住 所 東京都港区虎ノ門二丁目8番1号6、補正の対
象
明細書中、「特許請求の範囲の欄」およびr発明の詳細
な説明の欄」
7、補正の内容
1、特許請求の範囲を別紙の通り訂正する。
2、明細M第4頁第10行<7) ”10−9〜to−
+7以下″ヲrlO−9〜10−17 Jに訂正する。
3、同書第6頁第1行の゛種結晶が″を「蒸発物と反応
し、種結晶がJに訂正する。
4、同書第1O頁第4〜6行の“市販のチッ素ガス ・
・・・・・ 溶融後、”を「系内のイリジウムるつぼに
圧粉体を導入し、市販のチッ素ガスを還元剤にA通させ
た状態の雰囲気に保ち、原料を溶融し、」に訂正する。
5、同書第10頁第19行〜第11頁第2行の“市販の
チッ素ガス ・・・ 川 溶融後、”を「系内のイリジ
ウムるつぼに圧粉体を導入し、市販のチッ素ガスを還元
剤に通過させた状、態の雰囲気に保ち、原料を溶融し、
」に訂正する。
別紙
特許請求の範囲
「1)3価のチタンイオンをドープしたクリソベリル単
結晶の製造方法において、該単結晶の育成時に、系内の
酸素分圧を10−9〜10−17とすることを特徴とす
るクリソベリル単結晶の製造方法。」FIG. 1 is a graph showing the relationship between the titanium concentration and the absorption coefficient at 497 nm of chrysoberyl single crystals obtained in Examples 1 to 2 and Comparative Example 1. Patent applicant Mitsui Kinzoku Mining Co., Ltd. Agent Patent attorney Tatsuo Ito Agent Patent attorney Tetsuya Ito Draft procedure amendment 4. Yoshi, Director General of the Patent Office, December 3, 1988 1) Statement of the case 1988 Patent Application No. 249256 2, Name of the invention Method for producing chrysoberyl single crystal 3, Person making amendment case Relationship with Patent Applicant Address: 2-1-1 Nihonbashi Muromachi, Chuo-ku, Tokyo Name (618) Mitsui Kinzoku Mining Co., Ltd. Representative: Kosanbe Mashima 4, Agent: 105 Address: 2 Toranomon, Minato-ku, Tokyo 8-1-6, ``Claims column'' and ``Detailed description of the invention column'' in the specification to be amended. 7. Contents of the amendment 1. The claims are corrected as shown in the attached sheet. 2. Specification M, page 4, line 10 <7) “10-9~to-
+7 or below is corrected to ``WorlO-9~10-17 J.'' 3. In the first line of page 6 of the same book, ``The seed crystal reacts with the evaporated substance, and the seed crystal is corrected to J.'' 4. The same book. “Commercially available nitrogen gas” on page 1O, lines 4-6
... After melting, change ``to'' to ``Introduce the green compact into the iridium crucible in the system, maintain the atmosphere in which commercially available nitrogen gas is passed through the reducing agent A, and melt the raw material.'' correct. 5. In the same book, page 10, line 19 to page 11, line 2, "After melting commercially available nitrogen gas...", replace "commercially available nitrogen gas... after melting" with "a green compact is introduced into an iridium crucible in the system, and commercially available nitrogen gas is The gas is passed through the reducing agent and the raw material is melted,
” is corrected. Attached Patent Claim: ``1) A method for producing a chrysoberyl single crystal doped with trivalent titanium ions, characterized in that the oxygen partial pressure in the system is set to 10-9 to 10-17 during growth of the single crystal. A method for producing chrysoberyl single crystals.
Claims (1)
晶の製造方法において、該単結晶の育成時に、系内酸素
分圧を10^−^9〜10^−^1^7とすることを特
徴とするクレソベリル単結晶の製造方法。1) A method for producing a chrysoberyl single crystal doped with trivalent titanium ions, characterized by setting the oxygen partial pressure in the system to 10^-^9 to 10^-^1^7 during growth of the single crystal. A method for producing cresoberyl single crystal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24925688A JPH0297492A (en) | 1988-10-03 | 1988-10-03 | Production of chrysoberyl single crystal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24925688A JPH0297492A (en) | 1988-10-03 | 1988-10-03 | Production of chrysoberyl single crystal |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0297492A true JPH0297492A (en) | 1990-04-10 |
Family
ID=17190255
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24925688A Pending JPH0297492A (en) | 1988-10-03 | 1988-10-03 | Production of chrysoberyl single crystal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0297492A (en) |
-
1988
- 1988-10-03 JP JP24925688A patent/JPH0297492A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5164041A (en) | Method of growing rare earth doped orthosilicates(ln2-xrexsio5) | |
US4711696A (en) | Process for enhancing Ti:Al2 O3 tunable laser crystal fluorescence by controlling crystal growth atmosphere | |
US4836953A (en) | Processes for enhancing fluorescence of TI:A1203 tunable laser crystals | |
US3959442A (en) | Preparing single crystals of Li(Ho,Y,Er,Tm,Dy)F4 in HF atmosphere | |
EP0374880B1 (en) | Processes for enhancing fluorescence of tunable titanium-doped oxide laser crystals | |
JPH0297492A (en) | Production of chrysoberyl single crystal | |
JP5326865B2 (en) | Method for producing sapphire single crystal | |
JPH0297493A (en) | Production of chrysoberyl single crystal | |
JP5471398B2 (en) | Sapphire single crystal wafer for epitaxial growth and manufacturing method thereof | |
US5493984A (en) | Terbium aluminate and method for its production | |
JPH042558B2 (en) | ||
JP3207983B2 (en) | Method for producing single crystal of group I-III-VI2 compound | |
JP3334182B2 (en) | Laser crystal and manufacturing method thereof | |
JP3183192B2 (en) | Method for producing oxide single crystal and oxide single crystal | |
EP4083276A1 (en) | Absorbing material based on samarium-doped garnet for suppression of amplified spontaneous emission of the active medium of solid-state laser, use of this material, method of its production and monolithic element containing this absorbing material | |
JPH02192493A (en) | Production of forsterite single crystal | |
JPH06350181A (en) | Laser crystal and its manufacture | |
JP3286680B2 (en) | Laser crystal and manufacturing method thereof | |
JPH01108124A (en) | Titanium-added gadolinium scandium, aluminum garnet crystal and its production | |
JP2887978B2 (en) | Method for synthesizing III-V compound semiconductor composition | |
JPH06314838A (en) | Laser crystal and manufacture thereof | |
JPS6128639B2 (en) | ||
JPH06350180A (en) | Laser crystal and its manufacture | |
JP2712247B2 (en) | (II)-Method for producing bulk single crystal of group VI compound | |
JPH06350182A (en) | Perovskite laser crystal and its manufacture |