JPS6117366A - Method and device for automatic welding - Google Patents
Method and device for automatic weldingInfo
- Publication number
- JPS6117366A JPS6117366A JP13783384A JP13783384A JPS6117366A JP S6117366 A JPS6117366 A JP S6117366A JP 13783384 A JP13783384 A JP 13783384A JP 13783384 A JP13783384 A JP 13783384A JP S6117366 A JPS6117366 A JP S6117366A
- Authority
- JP
- Japan
- Prior art keywords
- welding
- molten pool
- width
- visual sensor
- inputted
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/095—Monitoring or automatic control of welding parameters
- B23K9/0956—Monitoring or automatic control of welding parameters using sensing means, e.g. optical
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Butt Welding And Welding Of Specific Article (AREA)
Abstract
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、自動溶接方法及びその装置の改良に関する。[Detailed description of the invention] [Industrial application field] TECHNICAL FIELD The present invention relates to improvements in automatic welding methods and apparatus.
周知の如く、溶接の自動化を図るためには開先倣いの他
、継手品質を直接左右する表・裏ビート形状、溶込量を
制御する技術が不可決である。例えば、第2図に示す如
く、開先間隔g。As is well known, in order to automate welding, in addition to groove tracing, technology to control the front and back beat shapes and penetration amount, which directly affect joint quality, is essential. For example, as shown in FIG. 2, the groove interval g.
開先角度θの母材1m、1bを溶接トーチ2により溶接
する際、溶接条件を一定とし、開先を正確に倣って施行
している場合でも、溶接中の開先状態の変化(図中の回
転変形、収縮変形)、及び母材1m、lbの温度変化(
溶接始終端部の熱反射、予熱の均一)により表・裏ビー
ト形状溶込量は大きく変動し、良好な溶接条件は得られ
ない。なお、第2図中の3はアーク、4は溶融池を夫々
示す。When welding base metals 1m and 1b with a groove angle θ using the welding torch 2, even if the welding conditions are constant and the groove is accurately traced, there will be a change in the groove condition during welding (as shown in the figure). (rotational deformation, shrinkage deformation), and temperature change of base material 1m, lb (
The amount of penetration into the front and back beat shapes varies greatly depending on heat reflection at the start and end of welding, uniformity of preheating, and good welding conditions cannot be obtained. In addition, 3 in FIG. 2 indicates an arc, and 4 indicates a molten pool.
しかるに、従来、これら溶接品質に直結する・ぐラメー
タを検出するセンサ、その制御技術はほとんど存在せず
、わずかに特願昭56−i02375、特願昭52−8
5041、特願昭52−85043等が出願されている
のみである。こうした公知例では、第3図に示す如く溶
融池からの温度を単色光高温計で検出し、設定温度と比
較してその差分を出力し、溶接入熱の制御を行うもので
ある。However, until now, there have been almost no sensors or control technology for detecting these parameters that are directly connected to welding quality, and only a few have been developed in Japanese Patent Applications No. 56-i02375 and No. 52-8.
No. 5041, Japanese Patent Application No. 52-85043, etc. have only been filed. In such a known example, as shown in FIG. 3, the temperature from the molten pool is detected by a monochromatic pyrometer, compared with a set temperature, and the difference is output to control the welding heat input.
第3図において、5は集光レンズ6を有した視覚センサ
を、7はこのセンサ5からの放射光を、8〜11は光フ
ァイバー12を介してセンサ5に順に接続するSiフォ
トセル、アンプ、善巷斗覧4躊温度変換器、比較演算回
路を夫々し、更に12は温度設定回路を、15は溶接電
源を示す。In FIG. 3, 5 is a visual sensor having a condensing lens 6, 7 is the emitted light from this sensor 5, and 8 to 11 are Si photocells, amplifiers, and Si photocells connected in order to the sensor 5 via an optical fiber 12. 4 shows a temperature converter and a comparison calculation circuit, 12 a temperature setting circuit, and 15 a welding power source.
しかしながら、従来技術によれば以下に示す間恒点を有
している。However, according to the prior art, there is a constant point as shown below.
(1)溶融池4又は継続ビードの1点から温度を計測し
て制御するため、検出エラーの確率が高く実用性に乏し
い。具体的には、測温点に若干のスラグ、酸化被膜等が
存在すると、放射率が大きく変化し、誤まった測定、制
御をする。(1) Since the temperature is measured and controlled from one point in the molten pool 4 or the continuous bead, the probability of detection errors is high and it is impractical. Specifically, if a small amount of slag, oxide film, etc. is present at the temperature measurement point, the emissivity will change significantly, leading to incorrect measurements and control.
(2)温度を測定するので、アーク3の影響度合が著し
い。具体的には、磁気吹き、表面状態の影響でアークフ
レームが広がる場合には測温部にアークフレームが重な
る。このとき、アークフレームの温度は数千塵℃である
ので、溶融池温度(1500〜2000℃)に対し致命
的に誤った計測結果となる。(2) Since the temperature is measured, the influence of the arc 3 is significant. Specifically, when the arc flame spreads due to magnetic blowing or surface conditions, the arc flame overlaps the temperature measuring section. At this time, since the temperature of the arc flame is several thousand degrees Celsius, the measurement results will be fatally incorrect for the molten pool temperature (1500 to 2000 degrees Celsius).
(3)計測位置による誤差の影響が大きく、実用性に乏
しい。具体的には、溶接トーチ2に対するセンサ5の取
付位置、角度により計測結果がバラツキ易く、その補正
が困難である。(3) The influence of errors due to measurement positions is large, and it is impractical. Specifically, the measurement results tend to vary depending on the mounting position and angle of the sensor 5 with respect to the welding torch 2, and correction thereof is difficult.
本発明は上記事情に鑑みてなされたもので、溶接工程の
自動化によりコスト低減をなし、かつ溶接継手の品質を
安定化し得る自動溶接方法及びその装置を提供すること
を目的とする。The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an automatic welding method and an apparatus therefor that can reduce costs by automating the welding process and stabilize the quality of welded joints.
本願第1の発明は、溶接トーチの直下に形成される溶融
池の少なくとも巾を検出した後、この検出データと予め
設定された値とを比較、演算し、この設定値となるよう
に溶接電流、溶接速度を制御して溶接を行なうことによ
って、コスト低減化と溶接継手の品質の安定化を図った
ものである。The first invention of the present application detects at least the width of the molten pool formed directly under the welding torch, then compares and calculates this detected data with a preset value, and adjusts the welding current to the set value. By controlling the welding speed and performing welding, we aim to reduce costs and stabilize the quality of welded joints.
本願第2の発明は、溶接トーチと、この溶接トーチの直
下に形成される溶融池を斜め上方より見て溶融池の少な
くとも巾を検出する視覚センサ系と、この視覚センサ系
からの検出データを記憶、処理する画像処理系と前記溶
融池の形状特性を読み取る画像特性測定器と、この画像
特性測定器に接続する演算系と、この演算系からの出力
信号を増巾、実行する制御対象系とを具備することによ
って、本願第1の発明と同様の効果を得ることを図′っ
たものである。A second invention of the present application includes a welding torch, a visual sensor system that detects at least the width of the molten pool by viewing the molten pool formed directly below the welding torch from diagonally above, and detecting data from the visual sensor system. An image processing system for storing and processing, an image characteristic measuring device for reading the shape characteristics of the molten pool, a computing system connected to this image characteristic measuring device, and a controlled system that amplifies and executes the output signal from this computing system. By providing the above, it is intended to obtain the same effect as the first invention of the present application.
まず、視覚センサにより溶融池を斜め上方より見てこれ
より検出データを画像処理系に送る。First, the molten pool is viewed diagonally from above using a visual sensor, and the detected data is sent to the image processing system.
ここで、視覚センサで得られた撮影像は、画像処理系で
時間平均化処理、2値化画像処理される。そして、2値
化画像が画像特性測定器に出力されると、この測定器に
ょシ溶融池の形状特性が読み取られる。更に読み取られ
た特性値は、演算系で比較・演算され、溶接電流、溶接
速度が制御されて溶接が行なわれる。Here, the photographed image obtained by the visual sensor is subjected to time averaging processing and binarized image processing in an image processing system. Then, when the binarized image is output to an image characteristic measuring device, the shape characteristics of the molten pool are read by this measuring device. Further, the read characteristic values are compared and calculated by a calculation system, and welding is performed by controlling the welding current and welding speed.
以下、本発明の一実施例を第1図を参照して説明する。 An embodiment of the present invention will be described below with reference to FIG.
なお、第2図と同部材のものは同符号を付して説明を省
略する。It should be noted that the same members as those in FIG. 2 are given the same reference numerals and their explanations will be omitted.
図中の21は、近赤外領域のバンド9パスフイルタ(又
はシャープカットフィルタ)22と同領域に感度を有す
る視覚センサ23よ)構成される視覚センサ系である。Reference numeral 21 in the figure is a visual sensor system composed of a band 9 pass filter (or sharp cut filter) 22 in the near-infrared region and a visual sensor 23 having sensitivity in the same region.
前記視覚センサ23は、溶接トーチ2の直下の面積S1
長さt、巾dの溶融池4を斜め上方より見るように設け
られている。前記視覚センサ系21より、撮像に悪影響
を与える放射光強度の強い紫外〜赤外光が除去され、溶
融池情報を収集するのに有益な波長光(赤外〜赤外域)
のみが得られる。The visual sensor 23 has an area S1 directly under the welding torch 2.
The molten pool 4 having a length t and a width d is provided so as to be viewed diagonally from above. From the visual sensor system 21, ultraviolet to infrared light with strong radiation intensity that adversely affects imaging is removed, and wavelength light (infrared to infrared range) useful for collecting molten pool information is removed.
only can be obtained.
前記視覚センサ系2ノには、該センサ系21からの検出
データを記憶、処理する画像処理系24が接続されてい
る。前記画像処理系24は、視覚センサ23からの撮影
像25を数画面分−時的に記憶するビデオRAM R6
と、このビデオRAM 26に接続され時間平均化処理
及び2値化画像処理される画像処理器27と、予め溶融
池4の輪郭を検出するのに一適したレベルのしきい値全
設定するレベル設定器28とから構成されている。なお
、上記時間平均化処理は溶融池表面の浮遊スラグ等によ
る計測エラーを防止する働きを意味する。An image processing system 24 that stores and processes detection data from the sensor system 21 is connected to the visual sensor system 2 . The image processing system 24 includes a video RAM R6 that temporally stores several frames of captured images 25 from the visual sensor 23.
, an image processor 27 connected to this video RAM 26 and performing time averaging processing and binarization image processing, and a threshold level that is set in advance at a level suitable for detecting the outline of the molten pool 4. It is composed of a setting device 28. Note that the above-mentioned time averaging process serves to prevent measurement errors caused by floating slag on the surface of the molten pool.
前記画像処理系24には、画像処理器27から2値化画
像29が出力される画像特性測定器30が接続されてし
る。この測定器30によって、2値化画像29から溶融
池4の面積、長さ、巾等の溶融池特性が読み取られる。An image characteristic measuring device 30 to which a binarized image 29 is output from the image processor 27 is connected to the image processing system 24 . This measuring device 30 reads the molten pool characteristics such as the area, length, and width of the molten pool 4 from the binarized image 29.
前記画像特性測定器30には、演算系31が接続されて
いる。この演算系3ノは、基準データ設定器32と比較
・演算器33と不感域設定器34とから構成されている
。前記画像特性測定器34で読み取られた特性値は、前
記演算器33によって基準データ設定器32からの基準
値(面積S6s長さtOs巾do)35及び不感域設定
器34からの不感値(ΔS、ΔR)と比較・演算される
。このときの比較・演算方法は、第4図に示す通っであ
る。A calculation system 31 is connected to the image characteristic measuring device 30 . This calculation system 3 is composed of a reference data setter 32, a comparator/calculator 33, and a dead area setter 34. The characteristic values read by the image characteristic measuring device 34 are converted into the standard value (area S6s length tOs width do) 35 from the standard data setting device 32 and the dead value (ΔS) from the dead zone setting device 34 by the calculating device 33. , ΔR). The comparison/calculation method at this time is as shown in FIG.
ここで、測定データ(S 、t/d)と基準値(5OX
to/ do )との差分量に対する電源への出力量Δ
工は、第5図の溶融池面積(Sm)と溶接電流(I)と
の特性図より求められる。Here, the measurement data (S, t/d) and the reference value (5OX
output amount Δ to the power supply with respect to the difference amount with (to/do)
The welding temperature can be determined from the characteristic diagram of the molten pool area (Sm) and welding current (I) shown in FIG.
前記演算系31には、この演算系31からの出力信号を
増巾、実行する制御対象系36が接続されている。この
制御対象系36は、前記母材1aに接続された溶接電源
37と、走行台車78を駆動する台車駆動モー々39と
、了ンデ40とから構成されている。前記演算器33に
よって比較・演算された結果に応じて出力信号が溶接電
源37もしくは台車駆動モータ39に出力される。ここ
で、台車駆動モータ39への出力量ΔEは、第6図の溶
融池形状比(tm / dm )と台車、駆動モータ出
力電圧(E)との特性図より求められる。なお、台車、
駆動モータ出力電圧と溶接速度vw (cm)とは比例
関係にある。また、前述したデータは、前記基準データ
設定器32の中に予め設定されている。The arithmetic system 31 is connected to a controlled system 36 that amplifies and executes the output signal from the arithmetic system 31. This controlled system 36 is composed of a welding power source 37 connected to the base material 1a, a truck drive motor 39 for driving the traveling truck 78, and a transfer unit 40. An output signal is outputted to the welding power source 37 or the truck drive motor 39 according to the results of comparison and calculation by the calculator 33. Here, the output amount ΔE to the truck drive motor 39 is determined from the characteristic diagram of the molten pool shape ratio (tm/dm) and the truck and drive motor output voltage (E) shown in FIG. In addition, the trolley,
There is a proportional relationship between the drive motor output voltage and the welding speed vw (cm). Further, the above-mentioned data is set in advance in the reference data setter 32.
次に、こうした構造を有した自動溶接装置の作用につい
て説明する。まず、視覚センサ23により溶融池4を斜
め上方より見てこれより検出データを画像処理系24に
送る。ここで、視覚センサ23で得られた撮影像25は
、画像処理系24で時間平均化処理、2値化画像処理さ
れる。そして、2値化画像29が画像特性測定器30に
出力されると、この測定器30により溶融池4の面積S
、長さt1巾d等の溶融池形状特性が読み取られる。更
に、読み取られた特性値は、演算計31で比較・演算さ
れ、その結果に応じて出力信号が溶接電源37もしくは
台車、駆動モータ39に出力される。このように、前記
検出データと予め設定された値とを比較し、この設定値
となるように溶接電流、溶接速度を制御して溶接を行な
う。Next, the operation of the automatic welding device having such a structure will be explained. First, the molten pool 4 is viewed diagonally from above using the visual sensor 23 and detected data is sent to the image processing system 24 . Here, the captured image 25 obtained by the visual sensor 23 is subjected to time averaging processing and binarized image processing by the image processing system 24. Then, when the binarized image 29 is output to the image characteristic measuring device 30, the area S of the molten pool 4 is measured by this measuring device 30.
, length t1 width d, and other molten pool shape characteristics are read. Furthermore, the read characteristic values are compared and calculated by the arithmetic meter 31, and an output signal is outputted to the welding power source 37, the truck, or the drive motor 39 according to the result. In this way, the detected data is compared with a preset value, and welding is performed by controlling the welding current and welding speed so that the set value is achieved.
しかして、本発明方法によれば、母材1a。According to the method of the present invention, the base material 1a.
1bの開先状態の変化に伴う溶融池4の面積、長さ、巾
を検出してこの検出データと予め設定さ五た値とを比較
し、演算等を行なうため、第2図の如きV開先付の母材
を裏波溶接する場合、溶接条件を適応制御でき、常に良
好々清適と、表ビード、裏波状態を得ることができると
ともに、溶接工程の自動化を図ってコストを低減できる
。以下、これについて詳述する。In order to detect the area, length, and width of the molten pool 4 due to changes in the groove condition of the groove 1b, and to compare this detected data with five preset values and perform calculations, etc., the V When performing Uranami welding on grooved base metals, welding conditions can be adaptively controlled to always obtain a good clean surface bead and Uranami condition, and the welding process can be automated to reduce costs. can. This will be explained in detail below.
(1)入熱不足の場合;開先間隙gの減少等により入熱
不足の場合は溶融池4の面積Sが減少するので、これを
第4図に示す手順で基準値&と比較し、その差分量に比
例して溶接電流を増加させれば良好な溶造が確保される
。この時、入熱変化により溶融池形状比t/dが不良と
なった場合は基準形状16/d(1と比較し、その差分
量に比例して溶接速度を変化させれば良好な表ビード及
び裏波形状が得られる。(1) In the case of insufficient heat input: In the case of insufficient heat input due to a decrease in the groove gap g, etc., the area S of the molten pool 4 decreases, so compare this with the reference value & according to the procedure shown in Fig. 4, Good welding can be ensured by increasing the welding current in proportion to the difference. At this time, if the molten pool shape ratio t/d becomes poor due to a change in heat input, compare it with the standard shape 16/d (1) and change the welding speed in proportion to the difference to obtain a good surface bead. And a Uranami shape is obtained.
(2)入熱が過熱の場合;一方、開先間隙gの増大、母
材端部での熱反射等により母材温度が上昇して相対的に
入熱が過大となる場合には溶は落ち等の悪影響が発生す
るが、上記(1)の逆の制御を実施することにより、溶
は落ちを防止して良好な表・裏ピード形状を得ることが
可能となる。(2) When the heat input is overheated; On the other hand, if the base metal temperature rises due to an increase in the groove gap g, heat reflection at the base metal edge, etc., and the heat input becomes relatively excessive, the melt will not melt. Although adverse effects such as dropping occur, by performing the reverse control of the above (1), it is possible to prevent the melt from dropping and obtain a good top and bottom bead shape.
また、本発明装置によれば、溶接十−チ2と、溶融池4
を斜め上方より見る視覚センサ系21と、この視覚セン
サ系からの検査データを記憶、処理する画像処理系24
と、溶融池4の形状特性を読みとる画像特性測定器30
と、演算系31と、制御対象系36とから構成すること
Kより、前記と同様、常に良好な清適と、表ビード、裏
波状態を得ることができるとともに、溶接工程を自動化
してコスト低減を図ることができる。Further, according to the device of the present invention, the welding chie 2 and the molten pool 4
A visual sensor system 21 that views the image from diagonally above, and an image processing system 24 that stores and processes inspection data from this visual sensor system.
and an image characteristic measuring device 30 that reads the shape characteristics of the molten pool 4.
, a calculation system 31, and a controlled system 36. As mentioned above, it is possible to always obtain good cleanliness, surface bead, and back wave conditions, and also to automate the welding process and reduce costs. It is possible to reduce the
なお、溶接条件の適応制御を行わない場合、入熱不足で
融合不良の欠陥や生じ、逆に入熱過熱で溶は落ち等が生
じ、良好な溶接結果は得られない。In addition, if the welding conditions are not adaptively controlled, defects such as poor fusion may occur due to insufficient heat input, and conversely, melt drop may occur due to overheating input, and good welding results cannot be obtained.
なお、上記実施例では、溶融池形状として溶融池の面積
、長さ、巾を夫々検出したが、これに限らず、少なくと
も巾だけでも検出すればよい。即ち、溶融池の形状、裏
波ビードの形状は巾と密接な関係がある事が発明者の実
験で確認されているため、実施の簡略化を図る場合、測
定対象は巾だけで代用できる。しかるに、かかる場合、
視覚センサは1次元の固体撮像素子を用いて簡略化を図
ることができる。In the above embodiment, the area, length, and width of the molten pool are detected as the molten pool shape, but the present invention is not limited to this, and at least the width may be detected. That is, since the inventor's experiments have confirmed that the shape of the molten pool and the shape of the Uranami bead have a close relationship with the width, in order to simplify implementation, only the width can be used as the measurement target. However, if it takes
The visual sensor can be simplified using a one-dimensional solid-state image sensor.
また、上記実施例では、アークを伴なった溶接の場合に
ついて述べたが、これに限らない。Furthermore, in the above embodiments, the case of welding involving an arc has been described, but the present invention is not limited to this.
例えば、レーザ、電子ビーム溶接のごときアークを伴な
わない溶融溶接においても、溶融池を本装置、方法で計
測、制御すれば同様な効果を期待できる。For example, even in fusion welding that does not involve an arc, such as laser or electron beam welding, similar effects can be expected if the molten pool is measured and controlled using the present device and method.
以上詳述した如く本発明によれば、溶接工程の自動化に
よりコスト低減をなし、かつ溶接継手の品質を安定化し
得る溶融池が未溶融ブラックスで覆われない溶融溶接全
般に適用可能な自動溶接方法及びその装置を提供できる
。As detailed above, according to the present invention, automatic welding can reduce costs by automating the welding process, stabilize the quality of welded joints, and is applicable to general fusion welding in which the molten pool is not covered with unmolten black. A method and apparatus thereof can be provided.
第1図は本発明の一実施例に係る自動溶接装置の説明図
、第2図は開先状態が変化する場合の母材間の溶接を説
明するための斜視図、第3図は溶融池の温度を検出する
ことによる溶接法を説明するための図、第4図は本発明
装置に係る比較・演算器の比較・演算方法を説明するた
めのブロック図、第5図は溶融池面積と溶接電流の関係
を示す特性図、第6図は溶融池形状比と台車駆動モータ
出力電圧の関係を示す特性図である。
Its 、lb・・・母材、2・・・溶接トーチ、3・
・・アーク、4・・・溶融池、21・・・視覚センサ系
、22・・・バンド・母スフィルタ(又はシャープカッ
トフィルタ)、23・・・視覚センサ、24・・・画像
処理系、25・・・撮影像、26・・・ビデオRAM、
27・・・画像処理器、28・・・レベル設定器、29
・・・2値−化画像、30・・・画像特性測定器、31
・・・演算系、32・・・基準データ設定器、33・・
・比較・演算器、34・・・不感域設定器、35・・・
基準値、36・・・制御対象系、37・・・溶接電源、
38・・・走行台車、39・・・台車駆動モータ、40
・・・アンプ。
第2図
第3図
第5図
(A)
第6図Fig. 1 is an explanatory diagram of an automatic welding device according to an embodiment of the present invention, Fig. 2 is a perspective view for explaining welding between base materials when the groove condition changes, and Fig. 3 is a molten pool. Fig. 4 is a block diagram to explain the comparison/calculation method of the comparison/calculation unit of the device of the present invention, and Fig. 5 shows the welding pool area and FIG. 6 is a characteristic diagram showing the relationship between welding current and FIG. 6 is a characteristic diagram showing the relationship between molten pool shape ratio and truck drive motor output voltage. Its, lb... Base metal, 2... Welding torch, 3...
... Arc, 4... Molten pool, 21... Visual sensor system, 22... Band/matrix filter (or sharp cut filter), 23... Visual sensor, 24... Image processing system, 25... Photographed image, 26... Video RAM,
27... Image processor, 28... Level setting device, 29
...binarized image, 30...image characteristic measuring device, 31
...Arithmetic system, 32...Reference data setter, 33...
・Comparison/calculator, 34... Dead area setting device, 35...
Reference value, 36... Controlled system, 37... Welding power source,
38... Traveling trolley, 39... Trolley drive motor, 40
···Amplifier. Figure 2 Figure 3 Figure 5 (A) Figure 6
Claims (2)
も巾を検出した後、この検出データと予め設定された値
とを比較、演算し、この設定値となるように溶接電流、
溶接速度を制御して溶接を行なうことを特徴とする自動
溶接方法。(1) After detecting at least the width of the molten pool formed directly under the welding torch, this detected data is compared and calculated with a preset value, and the welding current is adjusted to the set value.
An automatic welding method characterized by controlling welding speed to perform welding.
る溶融池を斜め上方より見て溶融池の少なくとも巾を検
出する視覚センサ系と、この視覚センサ系からの検出デ
ータを記憶、処理する画像処理系と、前記溶融池の形状
特性を読み取る画像特性測定器と、この画像特性測定器
に接続する演算系と、この演算系からの出力信号を増巾
、実行する制御対象系とを具備することを特徴とする自
動溶接装置。(2) A welding torch, a visual sensor system that detects at least the width of the molten pool by looking at the molten pool formed directly below the welding torch from diagonally above, and storing and processing the detection data from this visual sensor system. Equipped with an image processing system, an image characteristic measuring device that reads the shape characteristics of the molten pool, a calculation system connected to the image characteristic measuring device, and a control target system that amplifies and executes the output signal from the calculation system. An automatic welding device characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13783384A JPS6117366A (en) | 1984-07-03 | 1984-07-03 | Method and device for automatic welding |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13783384A JPS6117366A (en) | 1984-07-03 | 1984-07-03 | Method and device for automatic welding |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6117366A true JPS6117366A (en) | 1986-01-25 |
Family
ID=15207896
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13783384A Pending JPS6117366A (en) | 1984-07-03 | 1984-07-03 | Method and device for automatic welding |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6117366A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63154263A (en) * | 1986-12-15 | 1988-06-27 | Yaskawa Electric Mfg Co Ltd | Control method for automatic welding machine |
FR2618224A1 (en) * | 1987-01-13 | 1989-01-20 | Hitachi Ltd | METHOD AND DEVICE FOR CONTROLLING THE QUALITY OF TREATMENT APPLIED TO A WORKPIECE. |
JPH0523851A (en) * | 1991-07-24 | 1993-02-02 | Nkk Corp | Penetration depth control method for all position welding |
JP2005081418A (en) * | 2003-09-10 | 2005-03-31 | Nippon Steel Corp | Method for automatically controlling deposited amount of narrow bevel multilayer arc welding |
WO2009060764A1 (en) * | 2007-11-05 | 2009-05-14 | Nippon Steel Corporation | Apparatus for heating the welded portion of steel pipe material, and method for the apparatus |
JP2009107024A (en) * | 2002-04-05 | 2009-05-21 | Volvo Aero Corp | Method and device for monitoring welding area |
CN110802305A (en) * | 2019-11-19 | 2020-02-18 | 龙岩学院 | Online monitoring device and monitoring method for arc welding process parameters |
CN111061231A (en) * | 2019-11-29 | 2020-04-24 | 上海交通大学 | Weld assembly gap and misalignment feed-forward molten pool monitoring system and penetration monitoring method |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59212172A (en) * | 1983-05-17 | 1984-12-01 | Mitsubishi Heavy Ind Ltd | Controlling method of welding |
-
1984
- 1984-07-03 JP JP13783384A patent/JPS6117366A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59212172A (en) * | 1983-05-17 | 1984-12-01 | Mitsubishi Heavy Ind Ltd | Controlling method of welding |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63154263A (en) * | 1986-12-15 | 1988-06-27 | Yaskawa Electric Mfg Co Ltd | Control method for automatic welding machine |
FR2618224A1 (en) * | 1987-01-13 | 1989-01-20 | Hitachi Ltd | METHOD AND DEVICE FOR CONTROLLING THE QUALITY OF TREATMENT APPLIED TO A WORKPIECE. |
JPH0523851A (en) * | 1991-07-24 | 1993-02-02 | Nkk Corp | Penetration depth control method for all position welding |
JP2009107024A (en) * | 2002-04-05 | 2009-05-21 | Volvo Aero Corp | Method and device for monitoring welding area |
JP2005081418A (en) * | 2003-09-10 | 2005-03-31 | Nippon Steel Corp | Method for automatically controlling deposited amount of narrow bevel multilayer arc welding |
WO2009060764A1 (en) * | 2007-11-05 | 2009-05-14 | Nippon Steel Corporation | Apparatus for heating the welded portion of steel pipe material, and method for the apparatus |
JP2009113070A (en) * | 2007-11-05 | 2009-05-28 | Nippon Steel Corp | Apparatus and method for heating weld part of steel pipe material |
US8383978B2 (en) | 2007-11-05 | 2013-02-26 | Nippon Steel Corporation | Steel pipe material weld zone heating apparatus and method |
CN110802305A (en) * | 2019-11-19 | 2020-02-18 | 龙岩学院 | Online monitoring device and monitoring method for arc welding process parameters |
CN110802305B (en) * | 2019-11-19 | 2021-07-27 | 龙岩学院 | Online monitoring device and monitoring method for arc welding process parameters |
CN111061231A (en) * | 2019-11-29 | 2020-04-24 | 上海交通大学 | Weld assembly gap and misalignment feed-forward molten pool monitoring system and penetration monitoring method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6084205A (en) | Method for enhanced control of welding processes | |
KR20050044429A (en) | Method and device for evaluation of jointing regions on workpieces | |
JPS6117366A (en) | Method and device for automatic welding | |
JPH06344167A (en) | Laser beam machine | |
JP3719764B2 (en) | Seam copying method in laser welding pipe making | |
JPS6233064A (en) | Automatic multi-layer welding equipment | |
JPH1058170A (en) | Method and device for judging quality of laser beam welding | |
JPH05261564A (en) | Manufacture of electric resistance welded tube | |
JPH0371946B2 (en) | ||
JPH11226766A (en) | Method for controlling laser welding position | |
JPH0740061A (en) | Pressure welding quantity detector for high-frequency resistance welding process | |
JPH1177363A (en) | Method for inspecting fillet weld part, and device used therefor | |
JPH1133621A (en) | Method and device for measuring welding temperature and manufacture of welded tube and device therefor | |
JPH0356829B2 (en) | ||
JPS61191905A (en) | Beveling position detecting device | |
JPH11314114A (en) | Device for detecting position of seam part of electric resistance welded tube | |
JPH05318142A (en) | Method and device for monitoring resistance welded tube welding and resistance welded tube welding controller | |
JP3232269B2 (en) | Glass container thickness measuring device | |
JPH04127983A (en) | Laser welding equipment | |
JPH0413070B2 (en) | ||
JPH0610607B2 (en) | Minute interval measurement method | |
JPH10244385A (en) | Weld seam detecting method, welding method and welding equipment of laser beam welding | |
JPH0371220B2 (en) | ||
JPH0413068B2 (en) | ||
JPH1190658A (en) | Manufacturing device for welded tube |