JPS61191905A - Beveling position detecting device - Google Patents

Beveling position detecting device

Info

Publication number
JPS61191905A
JPS61191905A JP3339785A JP3339785A JPS61191905A JP S61191905 A JPS61191905 A JP S61191905A JP 3339785 A JP3339785 A JP 3339785A JP 3339785 A JP3339785 A JP 3339785A JP S61191905 A JPS61191905 A JP S61191905A
Authority
JP
Japan
Prior art keywords
circuit
groove
image
slit
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3339785A
Other languages
Japanese (ja)
Inventor
Hisatsugu Ishizu
石津 久嗣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP3339785A priority Critical patent/JPS61191905A/en
Publication of JPS61191905A publication Critical patent/JPS61191905A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To detect a beveling position accurately by calculating a distance between a calculated assuming datum line and a center position of a bright portion and thus forming to obtain a shoulder portion based on a variation of this distance. CONSTITUTION:A light-source 3 irradiates so as to cross a beveling 2 and an image-taking device 5 takes a slit photo-image 4' of an irradiated slit light 4. The signal is fed to a signal processing circuit 20a and stored in a video- memory 6 after being converted by an A/D converter 5'. Then the photo-image signal is binaryfied at a binaryfication circuit 8 and fed to a noise removing circuit 9 inevery scanning line, where the width of a bright portion is calculated and output to an averaging circuit 11 after the bright portion is converted to the dark portion as noise. The circuit 11 outputs the input signal to a linearization circuit 12 and the circuit 12 calculates an assuming detum straight line. And, by outputting those data to a shoulder detecting circuit 13, the circuit 13 obtains the shoulder portion of a steel plate 1. The obtained locations of the both shoulders are fed to a welding position detecting circuit 14 and are judged correctly. And a welding torch drive control operating circuit 15 calculates a necessary amount to move for a welding torch 17.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は溶接を行う開先の位置を光切断法により検出す
る装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a device for detecting the position of a groove to be welded by optical cutting.

〔従来技術〕[Prior art]

大径鋼管、鋼板等を突合せ溶接する際、その溶接は一般
に突合せ部に開先を形成し、開先部分を溶接している。
When butt welding large diameter steel pipes, steel plates, etc., generally a groove is formed at the butt portion and the groove portion is welded.

斯かる溶接を自動化するに際し、開先位置を検出するこ
とはその倣い制御をする上で非常に重要なことであり、
その検出装置としては従来より種々の方式の開先位置検
出装置が報告されており、近年では光切断法により開先
位置を検出する装置が提案されている(特開昭56−1
18604号)。
When automating such welding, detecting the groove position is extremely important for controlling the welding process.
Various types of groove position detection devices have been reported as detection devices, and in recent years, a device that detects the groove position using an optical cutting method has been proposed (Japanese Patent Laid-Open No. 56-1
No. 18604).

この装置は、第9図に示す如く、鋼板1,1の開先2及
びその近傍へ向けてスリット光104を照射せしめるべ
く設けた光学装置103と、スリット光104による鋼
ifの開先及びその近傍のスリット光像104 ’ 、
つまり開先断面形状を例えば開先2の延在する方向を主
走査方向としてtieする撮像装置105と、スリット
光@104’が撮像された明部たるスリット画像を含む
画像信号を記憶する記憶回路107と、該記憶回路10
7の出力信号に基づき1走査線上の最明点の位置をすべ
ての走査線について検出する最明点検出回路108と、
最明点検出回路108にて検出された各走査線上の最明
点の位置をスリット光像104′の形状に関連づけるべ
く平滑化したのち微分する平滑化微分回路109と、平
滑化微分された結果より鋼板1上面における開先延在方
向と直交する方向(以下幅方向という)の開先端縁、所
謂肩を判定する肩判定回路110と、判定された両肩の
中心位置を求める開先中心位置演算回路111とを備え
ている。
As shown in FIG. 9, this device includes an optical device 103 provided to irradiate a slit beam 104 toward the groove 2 of the steel plates 1, 1 and its vicinity, and an optical device 103 provided to irradiate the groove 2 of the steel plates 1, 1 and the vicinity thereof, and the groove of the steel if and its vicinity by the slit beam 104. Nearby slit light image 104',
That is, an imaging device 105 that ties the groove cross-sectional shape, for example, with the direction in which the groove 2 extends as the main scanning direction, and a storage circuit that stores an image signal including a slit image, which is a bright area where the slit light @ 104' is imaged. 107 and the memory circuit 10
a brightest point detection circuit 108 that detects the position of the brightest point on one scanning line for all scanning lines based on the output signal of 7;
A smoothing differentiation circuit 109 smoothes and differentiates the position of the brightest point on each scanning line detected by the brightest point detection circuit 108 in order to relate it to the shape of the slit optical image 104', and smoothing and differentiation results. A shoulder determination circuit 110 that determines the groove edge in the direction perpendicular to the groove extension direction (hereinafter referred to as the width direction) on the upper surface of the steel plate 1, so-called shoulder, and a groove center position that determines the center position of both determined shoulders. and an arithmetic circuit 111.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながらこの装置にて開先位置を検出する場合には
前述の最明点を開先中心部分としているが、例えば被溶
接材たる鋼板の開先部又はその近傍に切削疵がある場合
には最明点検出回路がスリット画像に係る明部の1点を
最明点として検出せずに切削疵、プレス疵に関する画@
!信号を最明点として検出し、検出した開先位置と実際
のそれとの間に誤差が生じることがあった。またこの装
置による場合は撮像装置に生ずるスパッタノイズに起因
する誤差、撮像装置がスリット光像を撮像する際の外部
光により生ずる誤差を完全に除去できなかった。
However, when detecting the groove position with this device, the brightest point mentioned above is the central part of the groove. The bright point detection circuit does not detect one point in the bright part of the slit image as the brightest point, and the image related to cutting flaws and press flaws @
! The signal is detected as the brightest point, and an error may occur between the detected groove position and the actual groove position. Further, with this device, it was not possible to completely eliminate errors caused by sputter noise generated in the imaging device and errors caused by external light when the imaging device took a slit light image.

更に、最明点位置の平滑化微分により肩の位置を求める
ので肩の位置部分の画像信号も平滑化されて、例えば開
先中心側へずれた位置で両肩位置が検出されることにな
り、検出精度が悪かった。
Furthermore, since the shoulder position is determined by smoothing differentiation of the brightest point position, the image signal at the shoulder position is also smoothed, and for example, both shoulder positions are detected at a position shifted toward the center of the groove. , the detection accuracy was poor.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は斯かる事情に鑑みてなされたものであり、各走
査線上における明部の広狭に基づいてスパッタノイズ等
の雑音成分を除去し、また開先部分以外の明部の位置を
近似する仮想基準線を算出し、その仮想基準線と明部の
中心位置との距離を算出し、この距離変化に基づき肩の
位置を求める構成とすることにより、開先位置を正確に
検出し得る開先位置検出装置を提供することを目的とす
る。
The present invention has been made in view of the above circumstances, and eliminates noise components such as sputter noise based on the width of the bright area on each scanning line, and also uses virtual virtualization to approximate the position of the bright area other than the groove area. By calculating the reference line, calculating the distance between the virtual reference line and the center position of the bright area, and determining the position of the shoulder based on the change in this distance, the groove position can be detected accurately. The purpose of the present invention is to provide a position detection device.

本発明に係る開先位fif検出装置は、被溶接材表面に
開先を横断するスリット光を照射し、スリット光像をラ
スタスキャン型の撮像装置にて撮像し、そのスリット画
像を含む画像信号に基づいて開先位置を検出する装置に
おいて、前記撮像装置が出力する画像信号の2値化回路
と、該2値化回路の出力のうち時間幅が所定値以下であ
る明部を暗部に変換する雑音除去回路と、該雑音除去回
路出力に基づきスリット画像の開先以外の部分を近似す
る線を特定する線決定手段と、前記雑音除去回路出力に
基づきスリット画像が前記線から偏位する線の延在方向
位置を特定する開先端縁検知手段とを具備することを特
徴とする。
The groove position fif detection device according to the present invention irradiates the surface of a workpiece with a slit light that crosses the groove, captures a slit light image with a raster scan type imaging device, and generates an image signal including the slit image. A device for detecting a groove position based on a binarization circuit for an image signal outputted by the imaging device, and converting a bright part of the output of the binarization circuit whose time width is equal to or less than a predetermined value into a dark part. a line determining means for identifying a line that approximates a portion other than the groove of the slit image based on the output of the noise removal circuit; and a line from which the slit image deviates from the line based on the output of the noise removal circuit. and a groove edge detection means for specifying the position in the extending direction of the groove.

〔実施例〕〔Example〕

以下本発明を図面に基づき具体的に説明する。 The present invention will be specifically explained below based on the drawings.

第1図は本発明の実施例を示す模式図であり、図中1は
被溶接材たる長方形状の鋼板を示す。鋼板1.1は夫々
の幅端面同士を突合せられており、突合せ部には開先2
が設けられている。
FIG. 1 is a schematic diagram showing an embodiment of the present invention, in which numeral 1 indicates a rectangular steel plate as a material to be welded. The steel plates 1.1 have their respective width end surfaces butted against each other, and a groove 2 is provided at the butt portion.
is provided.

鋼板lの上方には開先位置検出装置20が切板1の長手
方向(白抜矢符方向)に走行できるように設けられてお
り、開先位置検出装置20の近傍には溶接1−−チ17
が鋼板1の幅方向及び長手方向の位置m整可能にして、
長手方向に溶接を進行させるように設けられている。
A groove position detection device 20 is provided above the steel plate 1 so as to be able to travel in the longitudinal direction of the cutting plate 1 (in the direction of the white arrow), and a groove position detection device 20 is provided in the vicinity of the groove position detection device 20. Chi17
makes it possible to adjust the position m of the steel plate 1 in the width direction and longitudinal direction,
It is provided so that welding progresses in the longitudinal direction.

開先位置検出装置20は開先2に向けてスリット光4を
照射する光源3.スリット光4が照射されている鋼板1
.1の上方に真下に向けて設けられた撮像装置5及び撮
像装置5の出力信号たる画像信号に基づき開先位置を検
出する信号処理回路20aを備えている。
The groove position detection device 20 includes a light source 3. which emits slit light 4 toward the groove 2. Steel plate 1 irradiated with slit light 4
.. 1 and a signal processing circuit 20a that detects the groove position based on an image signal that is an output signal of the imaging device 5.

光源3はスリット光4の長さ方向を鋼板1の幅方向に一
致させて開先2を横切るように照射する。
The light source 3 irradiates the slit light 4 across the groove 2 with the length direction of the steel plate 1 aligned with the width direction of the steel plate 1.

撮像装置5は例えば512 X 512の画素数を有し
ており、照射されたスリット光4の鋼板l上のスリット
光像4′を鋼板1の長さ方向を主走査方向として撮像す
る。
The imaging device 5 has, for example, 512 x 512 pixels, and captures a slit light image 4' of the irradiated slit light 4 on the steel plate l with the longitudinal direction of the steel plate 1 as the main scanning direction.

スリット画像4″は第2図にハンチングにて示すように
左側を頂部とする7字の両端から上下方向、つまり鋼板
1の幅方向に直線が短く伸びた形をしており、■字部分
は開先2に相当する部分であり、直線部分はそれに近い
鋼板1上に相当する部分である。
The slit image 4'' has the shape of a short straight line extending vertically from both ends of the character 7 with the top on the left side, that is, in the width direction of the steel plate 1, as shown by the hunting in FIG. This is a portion corresponding to the groove 2, and the straight portion is a portion corresponding to the steel plate 1 close to it.

このスリット画像4″を含む画像信号は撮像装置5の出
力端子に接続された信号処理回路20aへ与えられる。
An image signal containing this slit image 4'' is given to a signal processing circuit 20a connected to an output terminal of the imaging device 5.

信号処理回路20aへ入力された信号はまずA/D変換
器5′にてアナログ/ディジタル変換されてビデオメモ
リ6へ与えられてここに格納される。
The signal input to the signal processing circuit 20a is first converted into an analog/digital signal by an A/D converter 5', and is applied to a video memory 6 and stored therein.

第3図はビデオメモリ6から読出した画像信号の処理を
する2値化回路8.雑音除去回路9.闇値判定回路10
.平均化回路11の処理内容を示すフローチャートであ
る。ビデオメモリ6に格納されている画像信号は第2図
の左右方向を主走査方向、上下方向を副走査方向とする
順序で読出されて2値化回路8へ入力され、これに予め
設定されている闇値に基づいて画像信号を2値化する。
FIG. 3 shows a binarization circuit 8 which processes the image signal read out from the video memory 6. Noise removal circuit 9. Dark value judgment circuit 10
.. 5 is a flowchart showing the processing contents of the averaging circuit 11. FIG. The image signals stored in the video memory 6 are read out in the order in which the horizontal direction in FIG. The image signal is binarized based on the darkness value.

この2値化は例えば第4図に示すように入力信号が設定
された閾値T、以下の暗い場合には入力信号をゼロとし
、それが閾値T1を超える明るい場合には1とする。
In this binarization, for example, as shown in FIG. 4, if the input signal is dark below a set threshold T, the input signal is set to zero, and if it is bright above the threshold T1, it is set to 1.

2値化された信号は、各走査線別に走査方向順に雑音除
去回路9へ与えられる。雑音除去回路9は明部の幅を算
出し、これを所定の上限値り、1下限値L2と比較し、
例えば下限値L2以下の幅の明部は雑音として暗部に変
換して平均化回路11へ出力する。第5図(イ)はスパ
ッタノイズに相当する明部り及びスリット画像4″の明
部を含む画像信号を示し、いずれも2値化回路8の闇値
よりも高レベルであるので2値化回路8出力は第5図(
ロ)の如く明部りの閾値T、を超えた部分とスリット画
像4″に係る明部の閾値T、を超えた部分とが夫々ハイ
レベル信号D’、4”となる。
The binarized signal is given to the noise removal circuit 9 in the scanning direction for each scanning line. The noise removal circuit 9 calculates the width of the bright part and compares it with a predetermined upper limit value and a lower limit value L2,
For example, a bright portion having a width below the lower limit value L2 is converted into a dark portion as noise and is output to the averaging circuit 11. FIG. 5(a) shows an image signal including a bright area corresponding to sputter noise and a bright area of the slit image 4'', and since both are at a higher level than the dark value of the binarization circuit 8, they are binarized. The circuit 8 output is shown in Figure 5 (
As shown in b), the portion exceeding the threshold T for bright areas and the portion exceeding the threshold T for bright areas related to the slit image 4'' become high level signals D' and 4'', respectively.

雑音除去回路9はこれらの明部の時間幅を算出するが、
明部りに係るハイレベル信号D′の幅が下限値L2より
小さいので、これがゼロに変換され、雑音除去回路9出
力は第5図(ハ)に示す如く上限値LI、下限値L2を
共に満足するスリット画像4″に関するハイレベル信号
4″′のみとなる。雑音除去回路9はまた走査線1ライ
ンに1っの明部もない場合に闇値判定回路10ヘ工ラー
カウンタ信号を1発出力する。なお上限値L1を明部の
幅が超える場合にも上記と同様にその明部は雑音として
判定される。
The noise removal circuit 9 calculates the time width of these bright parts,
Since the width of the high level signal D' related to brightness is smaller than the lower limit value L2, it is converted to zero, and the output of the noise removal circuit 9 has both the upper limit value LI and the lower limit value L2 as shown in FIG. 5(c). There is only a high level signal 4'' related to the satisfied slit image 4''. The noise removal circuit 9 also outputs one error counter signal to the dark value determination circuit 10 when there is no bright area in one scanning line. Note that even if the width of the bright portion exceeds the upper limit L1, the bright portion is determined to be noise in the same manner as described above.

上記上限値L1.下限値L2は、夫々スリット画像4“
の幅りよりも若干大きい値1幅りよりも若干小さい値に
選択する。これにより例えば下限値L2よりも小さい幅
のスパッタノイズ等の雑音を除去できるのである。
Above upper limit L1. The lower limit value L2 is the slit image 4"
Select a value that is slightly larger than the width of 1 and a value that is slightly smaller than the width of 1. Thereby, for example, noise such as sputter noise having a width smaller than the lower limit L2 can be removed.

平均化回路11は入力信号、つまりレベルの立上り、立
下り夫々の画像上の水平方向位置をc、  dとすると
(c−d)/2を算出する。
The averaging circuit 11 calculates (c-d)/2, where c and d are the horizontal positions on the image of the input signal, that is, the rise and fall of the level, respectively.

このような処理を1画面分に相当する走査線512ライ
ンについて行うとこれを線化回路12へ出力する。この
出力に際し、閾値判定回路10は入力されたエラーカウ
ンタ信号の数がこれに予め設定されている所定値を超え
る場合には、閾値の設定が高すぎるとしてより低い適当
な闇値を2値化回路8へ出力し、2値化回路8の闇値を
低下させ、また平均化回路11へりセント信号を出力し
、再度上記処理を行わせる。
When such processing is performed on 512 scanning lines corresponding to one screen, these are output to the line converting circuit 12. Upon this output, if the number of input error counter signals exceeds a predetermined value, the threshold value judgment circuit 10 determines that the threshold value is set too high and binarizes a lower appropriate dark value. The signal is output to the circuit 8 to lower the dark value of the binarization circuit 8, and the average circuit 11 outputs a low cent signal to cause the above processing to be performed again.

このようにして求められた中心位置を表すデータは第6
図に実線にて示すようなスリット画像4“(第2図)の
幅方向中心を通る直線を示す。線化回路12は、鋼板1
の開先を除く上面でのスリット画像4#の部分が1本の
直線上に現われることを利用して、中心を示すデータよ
りその近似直線たる仮想基準直線BL (破線)を、例
えば最少2乗法により算出する。
The data representing the center position obtained in this way is the 6th
The figure shows a straight line passing through the center in the width direction of the slit image 4'' (FIG. 2) as shown by a solid line.
By using the fact that the part of the slit image 4# on the upper surface excluding the groove appears on one straight line, the virtual reference straight line BL (dashed line), which is the approximate straight line, is determined from the data indicating the center using, for example, the least squares method. Calculated by

その算出は、中心位置データを例えば第6図に示す如く
鋼板長さ方向、つまり画面の水平方向をX、鋼板幅方向
、つまり画面の垂直方向をyとするとx−y座標系のデ
ータ列(xi、 Vj)とし、開先部でのデータを除去
すぺ<xiとBLとの距離eが所定範囲X内であるデー
タ列が直線を表わす式、y−ax+bで近値される場合
の定数a、bを決定する方式、つまり危険関数r f=Σ(yi  (axi +b ) l 2を最少に
するa、bを決定する方式により行う。
The calculation is performed using the data string in the x-y coordinate system, where X is the center position data in the length direction of the steel plate, that is, the horizontal direction of the screen, and y is the width direction of the steel plate, that is, the vertical direction of the screen, as shown in FIG. xi, Vj), and data at the groove part is removed < distance e between xi and BL is within a predetermined range This is done by a method of determining a, b, that is, a method of determining a, b that minimizes the risk function r f = Σ(yi (axi + b ) l 2).

従ってこれは下記+11. [2)式の連立方程式を解
くことによりなされる。
Therefore, this is +11 below. This is done by solving the simultaneous equations in equation [2].

(Σxi)a+nb−Σyi        −(11
(Σxi2)a十(Σxi) b =Σ(xi−yi)
 −<21そして、求まったa、b値を使用して改めて
「の値を求める。
(Σxi)a+nb−Σyi −(11
(Σxi2) a ten (Σxi) b =Σ(xi-yi)
−<21 Then, use the obtained a and b values to find the value of “.

このrは近似の度合を示し、例えば(xi、 yi)が
y=ax+b上の点であればf=oとなる。なお近似の
度合は下記(3)式にて判定してもよい。
This r indicates the degree of approximation; for example, if (xi, yi) is a point on y=ax+b, then f=o. Note that the degree of approximation may be determined using the following equation (3).

σ−y’ f / n           ・・・(
3)但し、σ:  (xi、 yi)から仮想基準直線
までの距離の標準偏差 このようにして線化回路には仮想基準直線を求めると、
仮想基準直線を示すデータを肩部検出回路13へ出力す
・る。
σ−y' f/n...(
3) However, σ: Standard deviation of the distance from (xi, yi) to the virtual reference straight line If the virtual reference straight line is found for the linearization circuit in this way,
Data indicating the virtual reference straight line is output to the shoulder detection circuit 13.

肩部検出回路13は入力された式を記憶し、鋼板lの前
記肩部を第7図(肩部検出回路13による肩部の検出内
容を示すフローチャート)に示す順序で求める。 yi
−0、yi−511の両生走査線側から開先へ向けて各
走査線上の点(xi、 yi)から仮想基準直線までの
離隔距離eを求め、その離隔距離eの値と前記所定範囲
Xとを比較し、離隔距離eの値が前記所定範囲Xを最初
に超えた点を求め、この点を肩部と判定して該当するy
i走査線を記憶する。この判定については例えば最初に
超えた点の次のm走査線分について距RMeを求め、そ
の内eがXを外れた頻度がj!(<m)走査線分ある場
合に上記最初に超えた点を肩部とする。これにより肩部
の検出精度が向上する。なおeがXを外れたデータ(χ
I、 yi)についてはこれに替えてそのyi走査線の
仮想基準直線上の点(xi ’ + Vl)に置換する
(第6図参照)。
The shoulder detecting circuit 13 stores the input formula and determines the shoulder of the steel plate l in the order shown in FIG. 7 (a flowchart showing the details of shoulder detection by the shoulder detecting circuit 13). yi
-0, yi-511 from the bidirectional scanning line side toward the groove, calculate the separation distance e from the point (xi, yi) on each scanning line to the virtual reference straight line, and calculate the value of the separation distance e and the predetermined range X. , find the point where the value of the separation distance e first exceeds the predetermined range
Store i scanlines. For this determination, for example, the distance RMe is calculated for the next m scanning line segments after the point that first exceeded, and the frequency at which e deviates from X is j! (<m) If there is a scanning line, the first point crossed is defined as the shoulder. This improves the detection accuracy of the shoulder. Note that data where e deviates from X (χ
I, yi) is replaced with a point (xi' + Vl) on the virtual reference straight line of the yi scanning line (see FIG. 6).

このようにして求まった両肩の位置は溶接位置検出回路
14へ与えられる。
The positions of both shoulders determined in this manner are provided to the welding position detection circuit 14.

溶接位置検出回路14は入力信号である両肩位置に関す
る信号の差を求め、予めこれに設定されている画像上の
開先2に相当するその幅寸法を範囲内とする基準範囲W
と求めた値とを比較し、求めた値がW内にあれば正しく
肩部を判定し、例えば両肩位置をr、  s  (第6
図に示す)とすると開先形状がX形開先の場合には(S
−r)/2を開先中心として決定する。このため例えば
開先を仮付溶接した後に溶接する場合に、従来の特開昭
56−118604号に係る装置にて開先を検出すると
きには第8図に示すように板付溶接部分gと肩りとの間
の点が最明点となって本来の開先(破線にて示す)を誤
検出することがあるが、本発明による場合にはこのよう
な誤検出がない。
The welding position detection circuit 14 calculates the difference between the signals related to both shoulder positions, which are input signals, and sets a reference range W within which the width dimension corresponding to the groove 2 on the image, which is set in advance, is within the range.
and the obtained value, and if the obtained value is within W, the shoulder is correctly determined.
(shown in the figure), if the groove shape is an X-shaped groove, (S
-r)/2 is determined as the center of the groove. For this reason, for example, when welding a groove after tack welding, when detecting the groove using the conventional device according to JP-A-56-118604, the plate welded part g and the shoulder are detected as shown in FIG. The point between the two ends becomes the brightest point, and the original groove (indicated by the broken line) may be erroneously detected, but in the case of the present invention, such erroneous detection does not occur.

また求めた開先の幅、つまりs−rがWを外れる場合に
は1つ前の画面について求めた( s’ −r )/2
を開先中心として処理する。
In addition, if the calculated groove width, that is, s-r, deviates from W, it is calculated for the previous screen (s' - r)/2
Processing is done centering on the groove.

このようにして求まった(s−r)/2は溶接トーチ駆
動制御演算回路15へ与えられる。溶接トーチ駆動制御
演算回路15は入力信号に基づき溶接トーチ17の必要
移動量を算出し、その必要移動量にしたがって溶接トー
チ駆動装置16を駆動制御して溶接トーチ17を移動さ
せる。これにより溶接トーチ17は開先を外れることが
なく鋼板1.1の全長を溶接できる。
(s-r)/2 thus determined is provided to the welding torch drive control calculation circuit 15. The welding torch drive control calculation circuit 15 calculates the required amount of movement of the welding torch 17 based on the input signal, and drives and controls the welding torch drive device 16 to move the welding torch 17 according to the required amount of movement. Thereby, the welding torch 17 can weld the entire length of the steel plate 1.1 without coming off the groove.

なお上記実施例では仮想基準直線を最少2乗法により求
めているが、本発明はこの方式に躍らす仮想基準直線を
他の方式により求めても実施できることは勿S余である
In the above embodiment, the virtual reference straight line is determined by the method of least squares, but it is of course possible to implement the present invention even if the virtual reference straight line is determined by other methods.

また、本発明↓よ鋼板に設けた開先に限らず大径鋼管に
設けた開先等、撮像した画像のうちスリット画像の開先
を除く部分が直線となる開先をも検出でき、更には開先
幅方向が曲面であるものであっても仮想基準曲線を求め
ることによりその開先をも検出できることは勿論である
In addition, according to the present invention↓, it is possible to detect not only grooves formed in steel plates but also grooves such as grooves formed in large diameter steel pipes, where the portion of the captured image excluding the groove in the slit image is a straight line. Of course, even if the groove width direction is a curved surface, the groove can also be detected by obtaining a virtual reference curve.

〔効果〕〔effect〕

以上詳述した如く本発明による場合は各走査線上におけ
る明部の広狭に基づきスリン1−画像を検出するのでス
パッタノイズ等の雑音を除去でき、また仮想基準線と明
部との離隔距離を算出して肩の位置を求めるのでその算
出値は正確であり、これにより溶接装置の倣い制御を確
実に行い得るのでその自動化が可能であり、特に仮付溶
接等を行う場合にあっても仮付溶接等の施された開先を
正確に検出できる等、本発明は優れた効果を奏する。
As detailed above, in the case of the present invention, the Surin 1-image is detected based on the width of the bright area on each scanning line, so noise such as sputter noise can be removed, and the separation distance between the virtual reference line and the bright area can be calculated. The calculated value is accurate because the position of the shoulder is determined by using The present invention has excellent effects such as being able to accurately detect a groove that has been subjected to welding or the like.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す模式図、第2図は撮像し
たスリット画像、第3図は明部の中間点を求めるまでの
処理内容を示すフローチャート、第4図は2値化回路の
処理内容説明図、第5図は雑音除去回路の処理内容説明
図、第6図は肩部検出回路の処理内容説明図、第7図は
肩部検出回路の検出内容を示すフローチャート、第8図
は仮付溶接された開先を本発明により検出する場合の効
果説明図、第9図は従来装置例を示す模式図。 I・・・鋼板 2・・・開先 3・・・光源 4・・・
スリット光 5・・・I最像装置 8・・・2値化回路
 9・・・雑音除去回路 11・・・平均化回路 I2
・・・線化回路 13・・・肩部検出回路
Fig. 1 is a schematic diagram showing an embodiment of the present invention, Fig. 2 is a captured slit image, Fig. 3 is a flowchart showing the processing content up to finding the midpoint of the bright area, and Fig. 4 is a binarization circuit. FIG. 5 is an explanatory diagram of the processing contents of the noise removal circuit, FIG. 6 is an explanatory diagram of the processing contents of the shoulder detection circuit, FIG. 7 is a flowchart showing the detection contents of the shoulder detection circuit, and FIG. The figure is an explanatory diagram of the effect when a tack-welded groove is detected by the present invention, and FIG. 9 is a schematic diagram showing an example of a conventional device. I... Steel plate 2... Bevel 3... Light source 4...
Slit light 5...I imager 8...Binarization circuit 9...Noise removal circuit 11...Averaging circuit I2
... Linearization circuit 13 ... Shoulder detection circuit

Claims (1)

【特許請求の範囲】 1、被溶接材表面に開先を横断するスリット光を照射し
、スリット光像をラスタスキャン型の撮像装置にて撮像
し、そのスリット画像を含む画像信号に基づいて開先位
置を検出する装置において、 前記撮像装置が出力する画像信号の2値化回路と、該2
値化回路の出力のうち時間幅が所定値以下である明部を
暗部に変換する雑音除去回路と、 該雑音除去回路出力に基づきスリット画像の開先以外の
部分を近似する線を特定する線決定手段と、 前記雑音除去回路出力に基づきスリット画像が前記線か
ら偏位する線の延在方向位置を特定する開先端縁検知手
段と を具備することを特徴とする開先位置検出装置。
[Claims] 1. Irradiate the surface of the welded material with slit light that crosses the groove, capture the slit light image with a raster scan type imaging device, and open it based on the image signal including the slit image. A device for detecting a destination position, comprising: a binarization circuit for an image signal output from the imaging device;
A noise removal circuit that converts a bright part of the output of the value conversion circuit whose time width is less than a predetermined value into a dark part, and a line that identifies a line that approximates a portion other than the groove of the slit image based on the output of the noise removal circuit. A groove position detecting device comprising: a determining means; and a groove edge detecting means for identifying a position in an extending direction of a line where a slit image deviates from the line based on the output of the noise removal circuit.
JP3339785A 1985-02-20 1985-02-20 Beveling position detecting device Pending JPS61191905A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3339785A JPS61191905A (en) 1985-02-20 1985-02-20 Beveling position detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3339785A JPS61191905A (en) 1985-02-20 1985-02-20 Beveling position detecting device

Publications (1)

Publication Number Publication Date
JPS61191905A true JPS61191905A (en) 1986-08-26

Family

ID=12385460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3339785A Pending JPS61191905A (en) 1985-02-20 1985-02-20 Beveling position detecting device

Country Status (1)

Country Link
JP (1) JPS61191905A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998003294A1 (en) * 1996-07-19 1998-01-29 Fanuc Ltd Welding robot control system
US7486816B2 (en) 2003-10-16 2009-02-03 Fanuc Ltd Three-dimensional measurement apparatus
JP2009202180A (en) * 2008-02-26 2009-09-10 Toyota Motor Corp Weld bead inspection method and weld bead inspection device
JP2010025818A (en) * 2008-07-22 2010-02-04 Toyota Motor Corp Method and apparatus for inspecting welding bead
KR101220878B1 (en) 2011-05-30 2013-01-11 대우조선해양 주식회사 Method for image processing of laser vision system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998003294A1 (en) * 1996-07-19 1998-01-29 Fanuc Ltd Welding robot control system
US6040554A (en) * 1996-07-19 2000-03-21 Fanuc Ltd Welding robot control system
US7486816B2 (en) 2003-10-16 2009-02-03 Fanuc Ltd Three-dimensional measurement apparatus
JP2009202180A (en) * 2008-02-26 2009-09-10 Toyota Motor Corp Weld bead inspection method and weld bead inspection device
JP2010025818A (en) * 2008-07-22 2010-02-04 Toyota Motor Corp Method and apparatus for inspecting welding bead
KR101220878B1 (en) 2011-05-30 2013-01-11 대우조선해양 주식회사 Method for image processing of laser vision system

Similar Documents

Publication Publication Date Title
US5533146A (en) Weld bead quality determining apparatus
JPH03233310A (en) Method and device for measuring pattern dimension
JPS61191905A (en) Beveling position detecting device
JP2004219154A (en) Surface shape measuring method of object and automatic welding device
JPS6117366A (en) Method and device for automatic welding
JPS6149774A (en) Outside surface welding method of weld pipe
JP3151790B2 (en) Method and apparatus for detecting center position of weld groove / bead
JPH05164569A (en) Run road detector of traveling vehicle
JP2515142B2 (en) Groove detection method by image processing
JP2667841B2 (en) Welding equipment
JPH06294748A (en) Surface flaw inspection method at welded part of uo steel pipe
JP6842171B2 (en) Automatic welding machine and automatic welding method
JPH08304026A (en) Welding method using area sensor
JPH03118975A (en) Welding equipment
JPH085350A (en) Welding groove position and shape measurement method
JP2959017B2 (en) Circular image discrimination method
JPH0475118B2 (en)
JPH08220001A (en) Surface-flam inspecting method
JP3102983B2 (en) Groove position detection method
JPH09220666A (en) Welding position inspecting apparatus
JPH05126545A (en) Shape measuring instrument
JPH02171640A (en) Inspection of container
JPH10296442A (en) Welding position inspection device
JPH0447256A (en) Inspecting apparatus for surface defect of sheet
JPH0627037A (en) Flaw inspecting apparatus