JPS61168953A - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device

Info

Publication number
JPS61168953A
JPS61168953A JP60009436A JP943685A JPS61168953A JP S61168953 A JPS61168953 A JP S61168953A JP 60009436 A JP60009436 A JP 60009436A JP 943685 A JP943685 A JP 943685A JP S61168953 A JPS61168953 A JP S61168953A
Authority
JP
Japan
Prior art keywords
transistor
output terminal
integrated circuit
power supply
terminal out
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60009436A
Other languages
Japanese (ja)
Inventor
Yoji Hirano
要二 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP60009436A priority Critical patent/JPS61168953A/en
Publication of JPS61168953A publication Critical patent/JPS61168953A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0921Means for preventing a bipolar, e.g. thyristor, action between the different transistor regions, e.g. Latchup prevention

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To increase latch-up resistance, by inserting a Schottky barrier diode between a power source terminal and an output terminal, in a semiconductor integrated circuit device including a complementary type MOS integrated circuit. CONSTITUTION:A window is formed in a part of an insulating layer 9. An anode electrode 18 is formed and a Schottky barrier diode D1 is formed together with a semiconductor substrate 1. The anode electrode 18 is connected to an output terminal OUT. When a positive surge voltage is applied to the output terminal OUT, the potential difference between the output terminal OUT and a power supply terminal VDD is clamped by the forward voltage of the Schottky barrier diode D1. The forward voltage of the diode D1 is set at a value, which is smaller than the forward voltage between the emitter and the base of a transistor Q6. Thus the transistor Q6 is not conducted and kept in the cut-OFF state. Transistors Q3, Q4 and Q5 are also kept in the cut-OFF state, and a latch-up phenomenon does not occur.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は半導体集積回路装置、特に、相補製MO8半導
体集積回路装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a semiconductor integrated circuit device, and particularly to a complementary MO8 semiconductor integrated circuit device.

(従来の技術) 従来、V相補型MOS半導体集積回路装rat<以下C
MO8−ICと記す)はN型半導体領域内に形成された
PチャンネルMOSトランジスタと、P減半導体領域内
に形成されたNチャンネルMO8トランジスタにより構
成されるので、これらを構成するP散拡散層とNfi拡
赦拡散の間で寄生バイポーラトランジスタが形成される
(Prior art) Conventionally, a V-complementary MOS semiconductor integrated circuit device rat<hereinafter C
MO8-IC) is composed of a P-channel MOS transistor formed in an N-type semiconductor region and an N-channel MO8 transistor formed in a P-reduced semiconductor region. A parasitic bipolar transistor is formed between the Nfi amended diffusions.

(発明が解決しようとする問題点) 上記のような0MO8−ICの出力端子にサージ。(Problem to be solved by the invention) A surge occurs at the output terminal of the 0MO8-IC as shown above.

電圧が印加されると、寄生バイポーラトランジスタが導
通状態になシ、いわゆるラッチアップと呼ばれる現象が
生じ、このため、0MO8−ICに大電流が流れ、素子
が破壊するという欠点があった。
When a voltage is applied, the parasitic bipolar transistor becomes non-conductive, resulting in a phenomenon called latch-up, which causes a large current to flow through the 0MO8-IC, resulting in destruction of the device.

このラッチアップ現象について図面を用いて説明する。This latch-up phenomenon will be explained using the drawings.

第7図は従来の0MO8−ICの一例の回路図である。FIG. 7 is a circuit diagram of an example of a conventional 0MO8-IC.

この0MO8−ICは、ソースが電源端子VDDに接続
され、ドレインが出力端子OUTに接続され、ゲートが
入力端子INに接続されたPチャンネル間08トランジ
スタQ!と、ソースが電源端子■88#こ接続され、ド
レインが出力端子OUTに接続され、ゲートが入力端子
INに接続されたNチャンネルMOB)ランジスタQ2
とから成シ、出力端子OUTから否定論理信号を取シ出
すCMO8論理回路である。
This 0MO8-IC has a P-channel 08 transistor Q! whose source is connected to the power supply terminal VDD, whose drain is connected to the output terminal OUT, and whose gate is connected to the input terminal IN. and an N-channel MOB transistor Q2 whose source is connected to the power supply terminal 88#, whose drain is connected to the output terminal OUT, and whose gate is connected to the input terminal IN.
This is a CMO8 logic circuit which takes out a negative logic signal from an output terminal OUT.

第8図は第7図の回路を半導体基板に実現したときに生
ずるラブチアツブ現象を説明するための模式的断面図で
ある。
FIG. 8 is a schematic cross-sectional view for explaining the love drop phenomenon that occurs when the circuit of FIG. 7 is implemented on a semiconductor substrate.

第8図において、1はN型半導体基板、2はrをアイラ
ンド% 3はPチャンネルMOSトランジスタQ、のソ
ースとなるP+拡散層、4はトランジスタQ、のドレイ
ンとなるP 拡散層、5はNチャンネルMOSトランジ
スタQ、のソースとなるN+拡散層、6はトランジスタ
Q2のドレインとなるN+拡散層、7はVDD  電位
供給用N+拡散層、9は絶縁層、10はトランジスタQ
1のゲート絶縁層、11はトランジスタQzのゲート絶
縁層、12はVDD  電源端子、13はV88  電
源端子、14はトランジスタQsのゲート電極、】5は
トランジスタQ2のゲート電極、16はトランジスタQ
!のドレイン電極、17はトランジスタQ2のドレイン
電極である。
In FIG. 8, 1 is an N-type semiconductor substrate, 2 is an island% r, 3 is a P+ diffusion layer that becomes the source of the P-channel MOS transistor Q, 4 is a P diffusion layer that becomes the drain of the transistor Q, and 5 is an N 6 is an N+ diffusion layer that becomes the source of the channel MOS transistor Q, 6 is an N+ diffusion layer that becomes the drain of transistor Q2, 7 is an N+ diffusion layer for supplying VDD potential, 9 is an insulating layer, 10 is transistor Q
1 is the gate insulating layer, 11 is the gate insulating layer of the transistor Qz, 12 is the VDD power supply terminal, 13 is the V88 power supply terminal, 14 is the gate electrode of the transistor Qs, ]5 is the gate electrode of the transistor Q2, 16 is the transistor Q
! 17 is the drain electrode of the transistor Q2.

この0MO8−ICの半導体滅域1〜8の部分は、破線
で示した等価回路で表わすことができる。すなわち、Q
3は、6ftエミツタ、2をベース、1をコレクタとす
るNPN トランジスタであ!0.Q4は、 5t−エ
ミッタ、2をベース、1會コレクタとするNPNトラン
ジスタである。また、Qsti、3t−エミッタ、1を
ベース、2をコレクタとするPNP)ランジスタであり
、Q6は4′f:エミッタ。
The semiconductor areas 1 to 8 of this 0MO8-IC can be represented by an equivalent circuit shown by a broken line. That is, Q
3 is an NPN transistor with a 6ft emitter, 2 as a base, and 1 as a collector! 0. Q4 is an NPN transistor with 5T emitter, 2 base, and 1 collector. Also, Qsti is a 3t-emitter, a PNP (PNP) transistor with 1 as the base and 2 as the collector, and Q6 is 4'f: emitter.

1′?:ベース、2をコレクタとするPNP )−ラン
ジスタである。R1はN−半導体基板内の電#、y&子
vDDに至るまでの抵抗、R2はP−fiアイランド内
の電源端子Va8に至るまでの抵抗である。
1′? : A PNP transistor with base and collector 2. R1 is a resistance up to the voltage VDD in the N-semiconductor substrate, and R2 is a resistance up to the power supply terminal Va8 in the P-fi island.

第9図は第8図に破線で示した寄生素子が作る寄生回路
の回路図である。
FIG. 9 is a circuit diagram of a parasitic circuit created by the parasitic elements shown in broken lines in FIG.

今、出力端子OUTに正のサージ電圧が印加されると、
トランジスタQ6のベース、エミッタおよび抵抗R1を
通して出力端子OUTと電源端子VDD間に電流が流れ
、これによりトランジスタQ−が導通状態になプ、トラ
ンジスタQ6のコレクタ電流は抵抗R2を通して電源端
子VSSに流れる。
Now, when a positive surge voltage is applied to the output terminal OUT,
A current flows between the output terminal OUT and the power supply terminal VDD through the base and emitter of the transistor Q6 and the resistor R1, thereby turning on the transistor Q-, and the collector current of the transistor Q6 flows through the resistor R2 to the power supply terminal VSS.

この電流によpトランジスタQ4のベース・エミッタ間
が順バイアスされ、トランジスタQ4が導通し、電流が
電源端子VDDから抵抗R1とトランジスタQ4を通っ
て電源端子Vl1gへ流れる。これによって、更にトラ
ンジスタQsのエミッタ・ベース間が順バイアスされ、
トランジスタQiが導通し、トランジスタQ4のベース
電流を供給するので、上述の出力端子OUTへのサージ
入力がな(なってもトランジスタQsとQ4によるサイ
リスタ構成のために電源端子VDD  vss間に大き
な電流が流れ続け、素子を破壊に至らしめる。
This current forward biases the base and emitter of the p-transistor Q4, making the transistor Q4 conductive, and the current flows from the power supply terminal VDD to the power supply terminal Vl1g through the resistor R1 and the transistor Q4. This further forward biases the emitter-base of the transistor Qs,
Since the transistor Qi is conductive and supplies the base current of the transistor Q4, there is no surge input to the output terminal OUT as described above. It continues to flow and destroys the element.

また、出力端子OUTに負のサージ電圧が印加された場
合には、電源端子Vssから抵抗R2及びトランジスタ
Qsのベース・エミッタを通して電流が流れ、トランジ
スタQ、が導通状態になシ、トランジスタQ3のコレク
タllIC流は抵抗Rtを通して電源端子VDDから供
給される。この電流によシトランジスタQsのエミッタ
・ベース間が順バイアスされ、トランジスタQsが導通
し、電流が電源端子VDDからトランジスタQs及び抵
抗UZを通って電源端子VBIC流れる。これによって
更にトランジスタQ4のベース・エミッタ間が順バイア
スされ、トランジスタQ4が導通し、トランジスタQs
のベース電流を引出すので、上述の出力サージ入力がな
くなりてもトランジスタQsとQ4によるサイリスタ構
成のために電源端子VDD−V83間に大きな電流が流
れ続け、素子を破壊に至らしめることになる。
Furthermore, when a negative surge voltage is applied to the output terminal OUT, a current flows from the power supply terminal Vss through the resistor R2 and the base/emitter of the transistor Qs, causing the transistor Q to become conductive and the collector of the transistor Q3 to become conductive. The llIC current is supplied from the power supply terminal VDD through the resistor Rt. This current forward biases the emitter and base of the transistor Qs, making the transistor Qs conductive, and current flows from the power supply terminal VDD through the transistor Qs and the resistor UZ to the power supply terminal VBIC. As a result, the base and emitter of transistor Q4 are further forward biased, transistor Q4 becomes conductive, and transistor Qs
Therefore, even if the above-mentioned output surge input disappears, a large current continues to flow between the power supply terminals VDD and V83 due to the thyristor configuration formed by the transistors Qs and Q4, leading to destruction of the device.

このように、従来の0MO8−ICではラッチアップを
起すと素子が破壊されるという致命的欠陥があった。
As described above, the conventional 0MO8-IC has a fatal defect in that the device is destroyed when latch-up occurs.

本発明の目的は、上記欠点を除去し、ラッチアップ耐量
の大きい半導体集積回路装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the above-mentioned drawbacks and provide a semiconductor integrated circuit device with high latch-up resistance.

(問題点を解決するための手段) 本発明の半導体集積回路装置は、N屋半導体領域内に形
成されたPチャンネルMOSトランジスタとPfi半導
体領域内に形成されたNチャンネルMOSトランジスタ
によシ構成された相補1MO8集積回路を含む半導体集
積回路装置において、電源端子と出力端子との間にシl
ットキーバリアダイオードを挿入したことを特徴として
構成される。
(Means for Solving the Problems) A semiconductor integrated circuit device of the present invention includes a P-channel MOS transistor formed in the Nya semiconductor region and an N-channel MOS transistor formed in the Pfi semiconductor region. In a semiconductor integrated circuit device including a complementary 1MO8 integrated circuit, a shield is connected between the power supply terminal and the output terminal.
It is characterized by the insertion of a cut-key barrier diode.

(実施例) 次に1本発明の実施例について図面を用いて説明する。(Example) Next, an embodiment of the present invention will be described with reference to the drawings.

第1図は本発明の第1の実施例の回路図である。FIG. 1 is a circuit diagram of a first embodiment of the present invention.

この実施例は、PチャンネルMOSトランジスタQ、と
NチャンネルMOSトランジスタQ2とを有する相補1
1MO8集積回路において、電源端子VDDと出力端子
OUTとの間にシッットキーパリアダイオードD1を挿
入することにより構成されている。この実施例の論理動
作は第7図に示した従来の0MO8−ICと全く同じで
ある。
This embodiment is a complementary transistor having a P-channel MOS transistor Q and an N-channel MOS transistor Q2.
In a 1MO8 integrated circuit, a Schittky parier diode D1 is inserted between a power supply terminal VDD and an output terminal OUT. The logic operation of this embodiment is exactly the same as the conventional 0MO8-IC shown in FIG.

第2図は第1図に示した回路を半導体基板に実現した0
MO8−ICの模式的断面図である。
Figure 2 shows the circuit shown in Figure 1 realized on a semiconductor substrate.
FIG. 2 is a schematic cross-sectional view of MO8-IC.

絶縁層9の一部を窓あけし、アノード電極18を形成し
て半導体基板1とでシ■ットキーバリアダイオードDI
 を形成する。このアノード電極18を出力端子OUT
に接続する。それ以外は第8図に示した従来例と同じで
ある。
A window is formed in a part of the insulating layer 9, an anode electrode 18 is formed, and a Schottky barrier diode DI is formed with the semiconductor substrate 1.
form. This anode electrode 18 is connected to the output terminal OUT.
Connect to. The rest is the same as the conventional example shown in FIG.

第3図は第2図に示す0MO8−ICにおける寄生素子
による寄生回路の回路図である。
FIG. 3 is a circuit diagram of a parasitic circuit formed by parasitic elements in the 0MO8-IC shown in FIG. 2.

第3図を用いて第1の実施例の効果について説明する。The effects of the first embodiment will be explained using FIG. 3.

出力端子OUTに正のサージ電圧が印加された場合、出
力端子OUTと電源端子VDDとの間の電位差は、シl
ットキーバリアダイオードD1の順方向電圧にクランプ
される。このダイオードD1の順方向電圧をトランジス
タQ6のエミッタ・ベース間順方向電圧よシ小さい値に
設定しておくことによりトランジスタQ−が導通せず、
遮断状態のまま保たれ、これによりトランジスタQs=
Q4及びQs も遮断状態のまま保たれ、従来の0MO
8−ICで見られたトランジスタQ4とQsによるサイ
リスタ動作が起らないため、ラッチアップ現象も発生し
ない。
When a positive surge voltage is applied to the output terminal OUT, the potential difference between the output terminal OUT and the power supply terminal VDD is
It is clamped to the forward voltage of the cut-key barrier diode D1. By setting the forward voltage of this diode D1 to a value smaller than the forward voltage between the emitter and base of the transistor Q6, the transistor Q- is not turned on.
remains in the cut-off state, which causes the transistor Qs=
Q4 and Qs are also kept in the cut-off state, and the conventional 0MO
Since the thyristor operation caused by the transistors Q4 and Qs seen in the 8-IC does not occur, the latch-up phenomenon does not occur either.

このように、出力端子OUTと電源端子VDDとの関に
シlットキーバリアダイオードD1を挿入することlこ
よシ、出力端子OUTに印加される正のサージ電圧に対
し、ラッチアップ耐量の大きい0MO8−ICが実現で
きることがわかる。
In this way, by inserting the Schittky barrier diode D1 between the output terminal OUT and the power supply terminal VDD, it is possible to use a 0MO8 diode with high latch-up resistance against the positive surge voltage applied to the output terminal OUT. - It can be seen that IC can be realized.

第4図は本発明の第2の実施例の回路図である。FIG. 4 is a circuit diagram of a second embodiment of the present invention.

出力端子OUTに正、負いずれのサージ電圧が印加され
た場合においても、ラッチアップ耐量の大きな0MO8
−ICを実現したものである・第7図に示す従来例との
違いは、電源端子VDDと出力端子OUTとの間にシl
ットキーバリアダイオードD1が挿入されていることと
、出力端子OUTと電源端子vanとの間にシ目ットー
バリアダイオードD2が挿入されていることであ)、論
理動作は第7図の回路と全く同じである。
0MO8 with high latch-up resistance even when either positive or negative surge voltage is applied to the output terminal OUT.
-The difference from the conventional example shown in Figure 7 is that there is a shield between the power supply terminal VDD and the output terminal OUT.
The logic operation is the same as the circuit shown in Figure 7. It's exactly the same.

N5図は′s4図に示す回路を半導体基板に実現した0
MO8−ICの模式的断面図である。
Diagram N5 shows the circuit shown in diagram 's4 realized on a semiconductor substrate.
FIG. 2 is a schematic cross-sectional view of MO8-IC.

この0MO8−ICは、電源端子VDDと出力端子OU
Tとの間に、18をアノード電極とし、Na!1半導体
基板1をカソードとするシlットキーバリアダイオード
D1が挿入されていること、及び出力端子OUTと電1
2@端子VSSとの間に、19tアノード!極とし、N
−拡散層20tカソードとするシ曹ットキーバリアダイ
オードD2が挿入されていることを除いて第8図に示し
た従来例と全く同じである。
This 0MO8-IC has a power supply terminal VDD and an output terminal OU.
18 as an anode electrode between Na! 1. A Schittky barrier diode D1 with the semiconductor substrate 1 as a cathode is inserted, and the output terminal OUT and the voltage 1 are connected.
2 @ 19t anode between terminal VSS! As a pole, N
- The diffusion layer 20t is exactly the same as the conventional example shown in FIG. 8, except that a silicon barrier diode D2 serving as a cathode is inserted.

wi6図は第5図に示す0MO8−ICにおける寄生素
子による寄生回路図である。
Figure wi6 is a parasitic circuit diagram of parasitic elements in the 0MO8-IC shown in Figure 5.

N6図を用いて第2の実施例の効果について説明する。The effects of the second embodiment will be explained using the N6 diagram.

出力端子OUTに正のサージ電圧が印加された場合のシ
讐ットーバリアダイオードD1の効果については、前述
した第1の実施例の場合と全く同 。
The effect of the Shimetto barrier diode D1 when a positive surge voltage is applied to the output terminal OUT is exactly the same as in the first embodiment described above.

じてあり、ここでは、出力端子OUTに負のサージ電圧
が印加された場合についてのみ説明する。
Here, only the case where a negative surge voltage is applied to the output terminal OUT will be explained.

出力端子OUTに負のサージ電圧が印加された場合、電
源端子Vssと出力端子OUTとの間の電位差は、シ璽
ットキーバリアダイオードD2の頭方向電圧にクランプ
される。このダイオードD2の順方向電圧をトランジス
タQ3のベース・エミッタ間順方向電圧より小さい値に
設定しておくことによりトランジスタQ3が導通せず、
遮断状態のまま保たれ、これによりトランジスタQ4.
Q11及びQsも遮断状態のまま保たれ、従来の0MO
8−ICで見られたトランジスタQ4とQsによるサイ
リスタ動作が起らないため、ラッチアップ現象も発生し
ない。
When a negative surge voltage is applied to the output terminal OUT, the potential difference between the power supply terminal Vss and the output terminal OUT is clamped to the voltage in the head direction of the shutter key barrier diode D2. By setting the forward voltage of this diode D2 to a value smaller than the forward voltage between the base and emitter of the transistor Q3, the transistor Q3 is prevented from conducting.
remains cut off, thereby causing transistor Q4.
Q11 and Qs are also kept in the cut-off state, and the conventional 0MO
Since the thyristor operation caused by the transistors Q4 and Qs seen in the 8-IC does not occur, the latch-up phenomenon does not occur either.

このように、電源端子VSSと出力端子OUTとの間に
シ嘗ットキーバリアダイオードD2を挿入することにょ
)、出力端子OUTに印加される負のサージ電圧に対し
て、ラッチアップ耐量の大きい0MO8−ICが実現で
き、前述のシ1ットキーバリアダイオードDlの効果と
併せると、正、負いずれのサージ電圧に対してもラッチ
アップ耐量の大きな0MO8−ICが実現できることが
わかる。
In this way, by inserting the shut-key barrier diode D2 between the power supply terminal VSS and the output terminal OUT), the 0MO8 which has a large latch-up resistance against the negative surge voltage applied to the output terminal OUT is inserted. -IC can be realized, and when combined with the effect of the above-mentioned shut-key barrier diode Dl, it can be seen that an 0MO8-IC with large latch-up resistance against both positive and negative surge voltages can be realized.

(発明の効果) 本発明は、以上説明したようlこ0MO8−ICにおい
て、電源端子VDD−出力端子OUT間、あるいは出力
端子0UT−電源端子Vnn間に挿入したシ■ットキー
パリアダイオードの順方向電圧を小さく設定することに
ょシ、ラッチアップ現象の原因となる寄生バイポーラト
ランジスタの導通を防ぎ、ラッチアップ耐量の向上t−
実現することができるという効果を有する。
(Effects of the Invention) As explained above, the present invention provides a forward direction of the shut-key pariah diode inserted between the power supply terminal VDD and the output terminal OUT or between the output terminal 0UT and the power supply terminal Vnn in the 1 MO8-IC. Setting the voltage to a small value prevents conduction of the parasitic bipolar transistor, which causes latch-up, and improves latch-up resistance.
This has the effect that it can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例の回路図、第2図は第1
図に示した回路を半導体基板に実現した0MO8−IC
の模式的断面図、第3図は第2図に示す0MO8−IC
における寄生素子による寄生回路の回路図、第4図は本
発明の第2の実施例の回路図、第5図は第4図に示した
回路を半導体基板に実現した0MO8−ICの模式断面
図、第6廓は第5図に示す0MO8−ICにおける寄生
素子による寄生回路の回路図、第7図は従来の0MO8
−ICの一例の回路図、第8図は第7図に示す回路を半
導体基板に実現したときに生ずるラッチアップ現象を説
明するための模式的断面図、@9図は第8図に示したC
MO5−ICにおける寄生素子が作る寄生回路の回路図
である。 1・・・・・・Nfi半導体基板、2・・・・−P−型
アイランド、3,4・・・・・・P+拡散層、5,6.
7・・・・・・N+拡散層、8 ・−−−−−P+拡散
層、9,10.ll・−−−−絶縁層、12〜19・・
・・・・電極、2o・・・・・・N−拡散層、DlpD
x・・・・・・シ1ットキーバリアダイオード。 IN・・・・・・入力端子、OUT・・・・・・出方端
子、Ql・・・・・・PチャンネルMO8トランジスタ
、Ql・・・・−・NチャンネルMOSトランジスタ、
Ql−Q4・・・・・・NPN )ランジスタ、Qs 
、Qs = ・” P N P )ランジスタ、R1#
 R2”” ””抵抗、Vnn e Vs s = =
 ’MEfil端子。 VDJ)  IN  Our           V
ss第2図 VDD    OUT 慢6図 VDD  IN  OUT
FIG. 1 is a circuit diagram of a first embodiment of the present invention, and FIG. 2 is a circuit diagram of a first embodiment of the present invention.
0MO8-IC that realizes the circuit shown in the figure on a semiconductor substrate
3 is a schematic cross-sectional view of the 0MO8-IC shown in FIG.
4 is a circuit diagram of a second embodiment of the present invention, and FIG. 5 is a schematic cross-sectional view of an 0MO8-IC in which the circuit shown in FIG. 4 is realized on a semiconductor substrate. , the sixth section is a circuit diagram of a parasitic circuit using parasitic elements in the 0MO8-IC shown in FIG. 5, and FIG. 7 is a circuit diagram of the conventional 0MO8-IC.
-A circuit diagram of an example of an IC, Figure 8 is a schematic cross-sectional view to explain the latch-up phenomenon that occurs when the circuit shown in Figure 7 is implemented on a semiconductor substrate, @ Figure 9 is shown in Figure 8. C
FIG. 2 is a circuit diagram of a parasitic circuit created by parasitic elements in MO5-IC. 1...Nfi semiconductor substrate, 2...-P- type island, 3, 4...P+ diffusion layer, 5, 6.
7...N+ diffusion layer, 8 ----P+ diffusion layer, 9, 10. ll・----insulating layer, 12-19...
...electrode, 2o...N-diffusion layer, DlpD
x...Shi1 key barrier diode. IN: input terminal, OUT: output terminal, Ql: P channel MO8 transistor, Ql: N channel MOS transistor,
Ql-Q4...NPN) transistor, Qs
, Qs = ・”PNP) transistor, R1#
R2”” ””Resistance, Vnn e Vs s = =
'MEfil terminal. VDJ) IN Our V
ss 2nd figure VDD OUT arrogant 6th figure VDD IN OUT

Claims (1)

【特許請求の範囲】[Claims] N型半導体領域内に形成されたPチャンネルMOSトラ
ンジスタと、P型半導体領域内に形成されたNチャンネ
ルMOSトランジスタにより構成された相補型MOS集
積回路を含む半導体集積回路装置において、電源端子と
出力端子との間にショットキーバリアダイオードを挿入
したことを特徴とする半導体集積回路装置。
In a semiconductor integrated circuit device including a complementary MOS integrated circuit configured with a P-channel MOS transistor formed in an N-type semiconductor region and an N-channel MOS transistor formed in the P-type semiconductor region, a power supply terminal and an output terminal A semiconductor integrated circuit device characterized in that a Schottky barrier diode is inserted between.
JP60009436A 1985-01-22 1985-01-22 Semiconductor integrated circuit device Pending JPS61168953A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60009436A JPS61168953A (en) 1985-01-22 1985-01-22 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60009436A JPS61168953A (en) 1985-01-22 1985-01-22 Semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JPS61168953A true JPS61168953A (en) 1986-07-30

Family

ID=11720264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60009436A Pending JPS61168953A (en) 1985-01-22 1985-01-22 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPS61168953A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5639062A (en) * 1979-09-08 1981-04-14 Nippon Shinyaku Co Ltd Slufenamide derivative
JPS5998552A (en) * 1982-11-03 1984-06-06 ウエスチングハウス エレクトリック コ−ポレ−ション Field effect transistor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5639062A (en) * 1979-09-08 1981-04-14 Nippon Shinyaku Co Ltd Slufenamide derivative
JPS5998552A (en) * 1982-11-03 1984-06-06 ウエスチングハウス エレクトリック コ−ポレ−ション Field effect transistor

Similar Documents

Publication Publication Date Title
JP3386943B2 (en) Semiconductor device
JPH10340996A (en) Protection circuit
JP3184298B2 (en) CMOS output circuit
JPH02188028A (en) Analog signal input circuit
JPH08227991A (en) Circuit that prevent conduction of parasitic element in integrated circuit
JPS61168953A (en) Semiconductor integrated circuit device
JPH09102551A (en) Semiconductor device
JPH1079472A (en) Semiconductor integrated circuit
JP2805198B2 (en) Power supply circuit and semiconductor integrated circuit device for the power supply circuit
JP2914408B2 (en) High voltage integrated circuit
JPH0358620A (en) Bimos semiconductor integrated circuit
JPS5819137B2 (en) Complementary MOS transistor
JP2557534B2 (en) Semiconductor integrated circuit device
JPS61187265A (en) Semiconductor integrated circuit device
JP2821294B2 (en) Latch-up prevention circuit
JPS6048905B2 (en) Semiconductor integrated circuit device
JPS63316475A (en) Input protective circuit
US5543642A (en) P-channel transistor
JP2971666B2 (en) Semiconductor circuit
JP2979716B2 (en) CMOS integrated circuit
JP2755686B2 (en) Semiconductor device protection circuit
JP3437831B2 (en) CMOS output circuit
JPH09306999A (en) Semiconductor device
JPH04147666A (en) Semiconductor integrated circuit
JPH04330773A (en) Semiconductor device