JPS6048905B2 - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device

Info

Publication number
JPS6048905B2
JPS6048905B2 JP50087916A JP8791675A JPS6048905B2 JP S6048905 B2 JPS6048905 B2 JP S6048905B2 JP 50087916 A JP50087916 A JP 50087916A JP 8791675 A JP8791675 A JP 8791675A JP S6048905 B2 JPS6048905 B2 JP S6048905B2
Authority
JP
Japan
Prior art keywords
circuit
transistor
integrated circuit
transistors
semiconductor integrated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50087916A
Other languages
Japanese (ja)
Other versions
JPS5211883A (en
Inventor
和雄 佐藤
三彦 上野
八十二 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP50087916A priority Critical patent/JPS6048905B2/en
Priority to GB2976176A priority patent/GB1558502A/en
Publication of JPS5211883A publication Critical patent/JPS5211883A/en
Priority to MY8100315A priority patent/MY8100315A/en
Publication of JPS6048905B2 publication Critical patent/JPS6048905B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0921Means for preventing a bipolar, e.g. thyristor, action between the different transistor regions, e.g. Latchup prevention

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Description

【発明の詳細な説明】 この発明は相補型電界効果トランジスタ(以下、CM
OSと略称する)に寄生するバイポーラトランジスタに
よつて生じる難点を除去した半導体集積回路装置に関す
る。
Detailed Description of the Invention The present invention relates to a complementary field effect transistor (hereinafter referred to as CM
The present invention relates to a semiconductor integrated circuit device that eliminates the drawbacks caused by bipolar transistors parasitic to an OS (OS).

従来からCMOSて構成した回路は種々知られている
が、その代表例として第1図に示したCMOSインバー
タ回路を採りあげて説明する。
Various CMOS circuits have been known in the past, and the CMOS inverter circuit shown in FIG. 1 will be described as a typical example.

このイン バータ回路はPチャネル型MOSトランジス
タQ1 とNチャネル型MOSトランジスタQ2とで構
成され、トランジスタQ、のソース電極は正電源VDD
に接続するとともに、このQ1のドレイン電極は トラ
ンジスタQ2のドレイン電極と共通に接続して出力W)
UTに結線し、トランジスタQ2のソース電極は負電源
Vssと結線される。またトランジスタQ、、Q。のゲ
ート電極は共に入力端INに接続 してインバータを構
成している。 この回路を半導体ウェハー上に完成した
ものの断面図が第2図である。
This inverter circuit is composed of a P-channel type MOS transistor Q1 and an N-channel type MOS transistor Q2, and the source electrode of the transistor Q is connected to the positive power supply VDD.
At the same time, the drain electrode of this Q1 is connected in common with the drain electrode of transistor Q2 to output W)
It is connected to UT, and the source electrode of transistor Q2 is connected to negative power supply Vss. Also, transistors Q,,Q. The gate electrodes of both are connected to the input terminal IN to form an inverter. FIG. 2 is a cross-sectional view of this circuit completed on a semiconductor wafer.

この例では、1×10’゜atoms/d位の濃度をも
つN型基板1に2×10″゜atomo/ C77f程
度のP型不純物を有したいわゆるp−well層2を形
成し、この層2外部のN型基板1にPチャネルMOSト
ランジスタとなるP型領域3、4を例えば濃度10’゜
atoms/d程度に拡散形成する。
In this example, a so-called p-well layer 2 having a P-type impurity of about 2 x 10'' atoms/C77f is formed on an N-type substrate 1 having a concentration of about 1 x 10'' atoms/d. 2. P-type regions 3 and 4, which will become P-channel MOS transistors, are formed by diffusion in an external N-type substrate 1 to a concentration of, for example, about 10' atoms/d.

一方、p−well層2内部にもNチャネルMOSトラ
ンジスタのストッパとなるP型領域を、更にP−wel
l層2にはNチャネルMOSトJランジスタとなるN型
領域5、6をN型不純物を1Patoms/d程度に拡
散して形成する。その後、各MOSトランジスタのゲー
トとなる位置に約1500Aの薄い珪素酸化膜を設け、
必要部分を開孔してN等の導電体Cli回路結線してい
る。必要ならば、基板1上に保護膜も設け、CMOSの
半導体素子が得られる。この工程説明は概略でありかつ
一例を示すにすぎない。前記ストッパは各MOSトラン
ジスタのサブストレート電極のバイアス接続に用いられ
実際には電源VDDあるいはV,,と接続されるが、こ
のストッパはなくともよい。このような構造を有するC
MOS回路は、NおよびPチャネルMOSトランジスタ
のしきい値電圧Vthが互いに逆極性をもつから、入力
電圧に対してそれぞれ全く逆の動作をなし、その動作パ
ワーは非常に小さいものである。
On the other hand, a P-type region that serves as a stopper for the N-channel MOS transistor is also provided inside the p-well layer 2.
In the L layer 2, N-type regions 5 and 6, which will become N-channel MOS transistors, are formed by diffusing N-type impurities to about 1 Patoms/d. After that, a thin silicon oxide film of approximately 1500A is provided at the position that will become the gate of each MOS transistor.
A necessary part is opened and a conductor Cli circuit such as N is connected. If necessary, a protective film is also provided on the substrate 1 to obtain a CMOS semiconductor element. This process description is brief and serves as an example only. The stopper is used for bias connection of the substrate electrode of each MOS transistor and is actually connected to the power supply VDD or V, but this stopper may be omitted. C with such a structure
Since the threshold voltages Vth of the N and P channel MOS transistors of the MOS circuit have opposite polarities, the MOS circuit operates completely oppositely to the input voltage, and its operating power is extremely small.

例えば電源V,,を接地(GND)とした場合、入力I
Nに+5Vの信号が供給されればトランジスタQ2は導
通しトランジスタQ,は非導通となるから、電源V,,
−VDD間には直流電流は全く流れない。逆に入力因に
零ボルトが供給されると、トランジスタQ2は非導通、
トランジスタQ,は導通となり、同様に電源−V。,−
VDD間に直流電流が流れないことになる。その故、C
MOS回路は一般に動作消費電力が殆どなく、入力情報
のパルス過渡領域においてトランジスタQ,,Q。がと
もに導通して瞬時の過渡電流が流れること、あるいはP
N接合におこるリーク;電流および出力端にある負荷容
量を充放電することのため電流が流れるに過ぎない。し
たがつて一般にはCMOS回路のパワーは極小となりう
るものである。しかし、このようなCMOS回路系にあ
つも、出5力或いは入力にインパル状のノイズが加わつ
た時、電源VSS−VDD間に直流の大電流(数+MA
〜数百MA)が流れ、そのノイズが消滅した後にも定常
的に大電流が保持し続けるという現象がみられる。
For example, if the power supply V,, is grounded (GND), the input I
If a +5V signal is supplied to N, transistor Q2 becomes conductive and transistor Q, becomes non-conductive, so power supply V,...
No direct current flows between -VDD. Conversely, when zero volts is applied to the input source, transistor Q2 is non-conducting;
Transistor Q becomes conductive, and similarly the power supply -V. ,−
No direct current will flow between VDD. Therefore, C
MOS circuits generally consume almost no operating power, and the transistors Q, , Q are used in the pulse transient region of input information. are conducting together and an instantaneous transient current flows, or P
Leakage occurring at the N junction; current only flows to charge and discharge the current and the load capacitance at the output end. Therefore, in general, the power of a CMOS circuit can be extremely small. However, even in such a CMOS circuit system, when impulse noise is added to the output or input, a large DC current (several + MA) is generated between the power supplies VSS and VDD.
~ several hundred MA) flows, and even after the noise disappears, a phenomenon is observed in which a large current continues to be maintained steadily.

3 こうした現象は、一般にサイリスタ現象あるいはラッチ
アップ現象といわれ、インパルス状ノイズの極性が正、
負いずれの場合も生起するもので、この現象を解除する
には電源VDDをある一定電圧以下に下げるか、あるい
はCMOS回路系の電4r源を切らなければならなかつ
た。
3 This phenomenon is generally called a thyristor phenomenon or a latch-up phenomenon, and the polarity of the impulse noise is positive.
Both negative cases occur, and in order to eliminate this phenomenon, it is necessary to lower the power supply VDD below a certain voltage or to turn off the power supply 4r of the CMOS circuit system.

そして、CMOS回路がラッチアップされた場合には、
極小パワーであるという利点が全く失なわれ、反対に熱
的破壊を引き起こしたりするから回路系の信頼性は著し
く低下することになる。また、CMOS回路構造は上述
したインバータ回路に限らず常にサイリスタ効果が発生
しうる構造であるから、電気的特性の良好性を保持する
ためには、外来ノズルに対して何らかの対策をたてる必
要性があつた。この発明は上記の点の鑑みなされたもの
で、簡単な手法によつてCMOS回路系のサイリスタ現
象の発生を抑えた半導体集積回路装置を提供することを
目的としている。
And if the CMOS circuit latches up,
The advantage of minimal power is completely lost, and on the other hand, thermal breakdown may occur, resulting in a significant decrease in the reliability of the circuit system. Furthermore, since the CMOS circuit structure is one in which thyristor effects can occur at all times, not only in the inverter circuit described above, it is necessary to take some measures against foreign nozzles in order to maintain good electrical characteristics. It was hot. The present invention has been made in view of the above points, and an object of the present invention is to provide a semiconductor integrated circuit device that suppresses the occurrence of the thyristor phenomenon in a CMOS circuit system using a simple method.

以下この発明の実施例を図面を参照して説明する。Embodiments of the present invention will be described below with reference to the drawings.

CMOS回路系におけるサイリスタ現象は、CMOS構
造たとえば第2図のインバータにあつて第3図に示す如
きサイリスタ回路が構成されることがその原因なのであ
つた。第3図のサイリスタ回路としては、N型半導体基
板1に形成されたP−Well領域2に基板1の厚さ方
向に沿つて寄生バイポーラトランジスタTr2,Tr4
が、またP一Well領域外部の基板1には厚さ方向と
直交する方向に寄生バイポーラトランジスタTrl,T
r3が形成され、またP−Well領域2と基板1の保
有する抵T7!LRpwell,RNSUbl,RNS
Ub2が形成される。そして、図中一点鎖線矢印で示す
ように、出力0UTに正のイパルスノイズが加わると、
α3 ×Iinの電流がSwell領域をバイパスして
流れ、その電圧降下がVBE。になつたときTr。のベ
ースに電流が流れる。Ib2ΣA3Iin(Rpwel
l>Rbe2) (1)Ic2β212=β2 α3I
in(2)ただしル2,IC2はトランジスタTr2の
ベース、コレクタ電流、α1,α2,α3,α4はトラ
ンジスタTr,,Tr。
The thyristor phenomenon in a CMOS circuit system is caused by the fact that a thyristor circuit as shown in FIG. 3 is constructed in a CMOS structure, for example, the inverter shown in FIG. The thyristor circuit shown in FIG. 3 includes parasitic bipolar transistors Tr2 and Tr4 in a P-well region 2 formed on an N-type semiconductor substrate 1 along the thickness direction of the substrate 1.
However, parasitic bipolar transistors Trl and T are formed in the substrate 1 outside the P-Well region in a direction perpendicular to the thickness direction.
r3 is formed, and the resistor T7! held by the P-Well region 2 and the substrate 1 is also formed. LRpwell,RNSUbl,RNS
Ub2 is formed. Then, as shown by the dashed-dotted line arrow in the figure, when positive impulse noise is added to the output 0UT,
A current of α3×Iin flows bypassing the Swell region, and the voltage drop is VBE. When I became a Tr. A current flows through the base of. Ib2ΣA3Iin(Rpwel
l>Rbe2) (1) Ic2β212=β2 α3I
in(2) where 2 and IC2 are the base and collector currents of the transistor Tr2, and α1, α2, α3, and α4 are the transistors Tr, Tr.

,Tr。,Tr,の電流増幅率、βn=ー色L(nは1
〜4)、Iinはインパルス状ノイ1−αnズ電流であ
る。
, Tr. , Tr, current amplification factor, βn = -color L (n is 1
~4), Iin is an impulse-like noise 1-αns current.

同様にIc2がドライブ電流となつてRN.U.2の端
子間電圧降下がVBE,になつたときトランジスタTr
lのベース電流Iblが流れて導通状態になる。
Similarly, Ic2 becomes the drive current and RN. U. When the voltage drop between the two terminals becomes VBE, the transistor Tr
The base current Ibl of 1 flows and becomes conductive.

11)1:IC2(RNSUb2≧Rbel)) (3
)Icl=βIlbi=β1β2α3Iin(4)次の
外部からのノイズが取除かれても電源VDD−GND間
即ちTr,,Tr2間で電流が保持されるためには11
),≦Ic,なる条件が満足されていれば良,、。
11) 1:IC2(RNSUb2≧Rbel)) (3
)Icl=βIlbi=β1β2α3Iin (4) In order for the current to be maintained between the power supply VDD and GND, that is, between Tr, Tr2 even if the following external noise is removed, 11
), ≦Ic, as long as the condition is satisfied.

これはしたがつて次式で表現される。α,Iinくβ,
β。α。Hin(5)β1β2≧1 (6) またβ1β2>1が成立しているときは、トランジスタ
Tr,,Tr。
This is therefore expressed by the following equation. α, Iinkuβ,
β. α. Hin(5) β1β2≧1 (6) When β1β2>1 holds true, the transistors Tr,,Tr.

のループ回路においてあるサイクルのベース電流ル′よ
り次の1サイクルのベース電流Ib″の方が大きくなる
から、サイクルをL繰返すことによつてCMOS回路系
を流れる電流は増加する。そしてβ,,β2によつて決
まる定常状態にこの電流が達すると、サイリスタ回路が
ラッチアップされたことになる。第4図aはこの発明に
よるCMOS回路の一例でlある。
In the loop circuit, the base current Ib'' in the next cycle is larger than the base current L' in one cycle, so by repeating L cycles, the current flowing through the CMOS circuit system increases.And β, . When this current reaches a steady state determined by β2, the thyristor circuit is latched up.Figure 4a shows an example of a CMOS circuit according to the invention.

これは、N型半導体基板11に第2図と同様のインバー
タ回路を形成する工程で、P−Well領域12と同時
にこれとは別のP−Well領域13を形成し、この領
域13内にN゛型半導体領域14を、そして領域13外
にP゛型半導体領域15をそれぞれ形成している。つま
り、出力端子0UTと電源端子VDD,V,.間にバー
チカルトランジスタTrvとラテラルトランジスタT,
Lとを積極的に挿入してノイズ吸収回路を構成し、前述
した寄生的に形成されるトランジスタTrl〜Tr4に
よつて発生するサイリスタ回路におけるサイリスタ現象
を防止しようとするものである。このようにノイズ吸収
回路を設ける場合、P−Well領域13はCMOS(
7)Nチャネル型MOSトランジスタQ2を形成する領
域12とは別異に形成し、しかもここでのシート抵抗を
極力小さくするためストッパ領域となるP゛型半導体領
域16を周囲に形成するとともに、同様にN型基板11
のシート抵抗を極力小さくするたへN゛型半導体領域1
7をストッパ領域として設ける。第4図bは同図aの等
価回路図であり、第4図cはサイリスタ回路に対して上
記トランジスタT,v,T,Lで構成したノイズ吸収回
路がどう配置されるかを示した図である。このように出
力端子0UTに対してノイズ吸収回路を設け、このノイ
ズ吸収回路を中継して出力信号を外部に取出すようにし
たこの発明の実施例では、外部ノズルあるいは内部動作
により生じるノイズが次の様にして処理、吸収される。
すなわち、正のインパルスノイズに対しては、トランジ
スタTrVのベース電極がVDDに等しく、そのオン
’(条件はVB≧VDD+VBEであるから、VDD=
+3v,VBE=0.7vならば+3.7ボルト以上の
ノイズによつて上記ラテラルトランジスタT,Lはオン
リる。したがつて+3.7ボルト以上のノイズは、コM
OS回路系の内部に伝達されずトランジスタTLを介し
て電源Vss(接地)に吸収され、寄生トランジスタT
raはオフ状態を保つことになるからサイリスタ回路は
ラッチアップされない。また負のインパルスノイズに対
しては、トランジスタT,vのベース電極がVs,に等
しく、そのオン条件はVB≧VBEであつて、VDD=
+3V,VBE=0.7vとすれば−0.7ボルト以上
にノイズで上記パーチカルトランジスタT,vはオンす
る。
This is a step of forming an inverter circuit similar to that shown in FIG. A P type semiconductor region 14 and a P type semiconductor region 15 are formed outside the region 13, respectively. That is, output terminal 0UT and power supply terminals VDD, V, . Between the vertical transistor Trv and the lateral transistor T,
The noise absorbing circuit is constructed by positively inserting the transistors L to prevent the thyristor phenomenon in the thyristor circuit caused by the above-mentioned parasitically formed transistors Trl to Tr4. When providing a noise absorption circuit in this way, the P-well region 13 is a CMOS (
7) A P゛ type semiconductor region 16 which is formed separately from the region 12 forming the N-channel type MOS transistor Q2 and serves as a stopper region is formed around it in order to minimize the sheet resistance here. N type substrate 11
In order to minimize the sheet resistance of the N-type semiconductor region 1
7 is provided as a stopper area. FIG. 4b is an equivalent circuit diagram of FIG. It is. In this embodiment of the present invention in which a noise absorption circuit is provided for the output terminal 0UT and the output signal is taken out to the outside by relaying this noise absorption circuit, the noise generated by the external nozzle or internal operation is It is processed and absorbed in various ways.
That is, for positive impulse noise, the base electrode of transistor TrV is equal to VDD, and its on
'(The condition is VB≧VDD+VBE, so VDD=
+3v and VBE=0.7v, the lateral transistors T and L are turned on by noise of +3.7 volts or more. Therefore, noise above +3.7 volts is
It is not transmitted to the inside of the OS circuit system, but is absorbed by the power supply Vss (ground) via the transistor TL, and the parasitic transistor T
Since ra remains off, the thyristor circuit will not latch up. In addition, for negative impulse noise, the base electrode of the transistor T,v is equal to Vs, and its ON condition is VB≧VBE, and VDD=
If +3V and VBE=0.7v, noise above -0.7 volts turns on the above-mentioned partical transistors T and v.

したがつて0.7ボルト以上の大きさの負のノイズは、
CMOS回路系の内部に伝達されずトランジスタTrv
を介して電源VDDに吸収され、寄生トランジスタTr
。はオフ状態を保つことになるからサイリスタ回路はラ
ッチアップされない。このように上記実施例ではサイリ
スタ回路を構成するのに同様のバイポーラトランジスタ
を利用してCMOS回路系のラッチアップを防止してい
る。
Therefore, negative noise with a magnitude of 0.7 volts or more is
The transistor Trv is not transmitted to the inside of the CMOS circuit system.
is absorbed into the power supply VDD via the parasitic transistor Tr.
. will remain off, so the thyristor circuit will not latch up. In this way, in the above embodiment, similar bipolar transistors are used to configure the thyristor circuit to prevent latch-up in the CMOS circuit system.

このことは、一面ではCMOS回路系のラッチアップを
防ぐために寄生トランジスタの作用に抑制することが行
なわれ、ある程度の効果を得てはいるが、ここでは、よ
ソー層確実にラッチアップ現象を防ぐため上記バイポー
ラトランジスタを積極的に利用していることを示してい
る。また、トランジスタによるノイズ吸収回路の構成は
極めて簡単なものであり、グイオードあるいは抵抗など
と併用してノイズ吸収効果を高めることも可能である。
なおこの発明は上記実施例に限定されるものではなく、
第1図に示すインバータ回路以外でもサフイリスタ回路
が形成される各種CMOS回路に適用でき、またそのC
MOS構造もP型半導体基板にN−Well領域を設け
る場合でもよく、またさらにシリコンゲートCMOSで
あつてもよい。
On the one hand, in order to prevent latch-up in the CMOS circuit system, the effect of parasitic transistors is suppressed, and this has been effective to some extent. This indicates that the above bipolar transistor is actively utilized. Further, the structure of the noise absorption circuit using transistors is extremely simple, and it is also possible to enhance the noise absorption effect by using it in combination with a diode or a resistor.
Note that this invention is not limited to the above embodiments,
It can be applied to various CMOS circuits in which a suffix resistor circuit is formed other than the inverter circuit shown in FIG.
The MOS structure may also be a P-type semiconductor substrate with an N-well region, or may be a silicon gate CMOS.

以上述べた様にこの発明によれば、CMOS回路5系の
サイリスタ現象を惹起するノイズに対してトランジスタ
によるノイズ吸収回路を設けたので、消費電力を低減し
回路特性の向上がはかれる半導体集積回路装置を提供で
きる。
As described above, according to the present invention, a noise absorbing circuit using a transistor is provided for the noise that causes the thyristor phenomenon in the CMOS circuit 5 system, so that the semiconductor integrated circuit device can reduce power consumption and improve circuit characteristics. can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

o 第1図はCMOS回路系の一例を示すインバータ回
路図、第2図はCMOS半導体素子の構造を示す側断面
図、第3図は寄生的に形成されるサイリスタ回路を示す
回路構成図、第4図a−cはこの発明の一実施例を示す
説明図である。 1 ・・・・・・N型半導体基板、12・・・・・・P
−Well領Trv....・.パーチカルトランジ
スタ、TrL......ラテラルトランジスタ。
o Fig. 1 is an inverter circuit diagram showing an example of a CMOS circuit system, Fig. 2 is a side sectional view showing the structure of a CMOS semiconductor element, Fig. 3 is a circuit configuration diagram showing a thyristor circuit formed parasitically, and Fig. Figures 4a to 4c are explanatory diagrams showing one embodiment of the present invention. 1...N-type semiconductor substrate, 12...P
-Well territory Trv. .. .. ..・.. Particle transistor, TrL. .. .. .. .. .. Lateral transistor.

Claims (1)

【特許請求の範囲】[Claims] 1 半導体基板にこれと逆導電型の半導体領域を形成し
、この半導体領域内およびその領域外にそれぞれ互いに
異なるチャンネル型のMOSトランジスタを形成し、こ
れをMOSトランジスタを形成したことにより寄生的に
形成されるトランジスタによつてサイリスタ回路が構成
される半導体集積回路装置において、上記半導体集積回
路装置における電源の一方と出力端子間に設けられ、ベ
ースが上記電源の他方に接続れるバーチカルトランジス
タと、上記出力端子と上記電源の他方間に設けられ、ベ
ースが上記電源の一方に接続されるラテラルトランジス
タとから成るノイズ吸収回路を設けたことを特徴とする
半導体集積回路装置。
1 A semiconductor region of the opposite conductivity type is formed on a semiconductor substrate, MOS transistors of different channel types are formed inside and outside this semiconductor region, and these are formed parasitically by forming the MOS transistors. A semiconductor integrated circuit device in which a thyristor circuit is constituted by transistors, comprising: a vertical transistor provided between one of the power supplies and an output terminal of the semiconductor integrated circuit device, the base of which is connected to the other of the power supplies; A semiconductor integrated circuit device comprising a noise absorbing circuit comprising a lateral transistor provided between a terminal and the other of the power supplies, the base of which is connected to one of the power supplies.
JP50087916A 1975-07-18 1975-07-18 Semiconductor integrated circuit device Expired JPS6048905B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP50087916A JPS6048905B2 (en) 1975-07-18 1975-07-18 Semiconductor integrated circuit device
GB2976176A GB1558502A (en) 1975-07-18 1976-07-16 Semiconductor integrated circuit device
MY8100315A MY8100315A (en) 1975-07-18 1981-12-30 Semiconductor r circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50087916A JPS6048905B2 (en) 1975-07-18 1975-07-18 Semiconductor integrated circuit device

Publications (2)

Publication Number Publication Date
JPS5211883A JPS5211883A (en) 1977-01-29
JPS6048905B2 true JPS6048905B2 (en) 1985-10-30

Family

ID=13928233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50087916A Expired JPS6048905B2 (en) 1975-07-18 1975-07-18 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPS6048905B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58192359A (en) * 1982-05-07 1983-11-09 Hitachi Ltd Semiconductor device
JPS6089960A (en) * 1984-08-06 1985-05-20 Nec Corp Semiconductor integrated circuit device
JPS62165969A (en) * 1986-01-17 1987-07-22 Sanyo Electric Co Ltd Cmos semiconductor device

Also Published As

Publication number Publication date
JPS5211883A (en) 1977-01-29

Similar Documents

Publication Publication Date Title
KR0139873B1 (en) Semiconductor integrated circuit device
EP0009782A1 (en) CMOS Semiconductor device
JP2710113B2 (en) Integrated circuits using complementary circuit technology
KR970018596A (en) Semiconductor integrated circuit device
TW451538B (en) Latch up protection circuit suitable for use in multi power supply integrated circuit and its method
JPS63279491A (en) Semiconductor dynamic ram
JPS6048905B2 (en) Semiconductor integrated circuit device
JP2002134752A (en) Semiconductor device
JP3386661B2 (en) Output buffer
JPH09199607A (en) Cmos semiconductor device
JPH044755B2 (en)
JP3424434B2 (en) Leak current compensation circuit
JPH0313754B2 (en)
JPH0226816B2 (en)
JPS5819137B2 (en) Complementary MOS transistor
JPH0219979B2 (en)
JPS626347B2 (en)
JPH0444262A (en) Input circuit for mos integrated circuit
JPS63301558A (en) Semiconductor integrated circuit device
JP2979716B2 (en) CMOS integrated circuit
JPS5823949B2 (en) Semiconductor integrated circuit device
KR100244287B1 (en) Cmosfet
JP2821294B2 (en) Latch-up prevention circuit
JPS6395667A (en) Input protective device
JPS6193655A (en) Semiconductor device