JPS61168912A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS61168912A
JPS61168912A JP905485A JP905485A JPS61168912A JP S61168912 A JPS61168912 A JP S61168912A JP 905485 A JP905485 A JP 905485A JP 905485 A JP905485 A JP 905485A JP S61168912 A JPS61168912 A JP S61168912A
Authority
JP
Japan
Prior art keywords
plane
semiconductor
epitaxial
layer
orientation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP905485A
Other languages
Japanese (ja)
Inventor
Akira Kanai
明 金井
Makoto Kawamura
誠 川村
Hiroo Tochikubo
栃久保 浩夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Microcomputer System Ltd
Hitachi Ltd
Original Assignee
Hitachi Ltd
Hitachi Microcomputer Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Microcomputer Engineering Ltd filed Critical Hitachi Ltd
Priority to JP905485A priority Critical patent/JPS61168912A/en
Publication of JPS61168912A publication Critical patent/JPS61168912A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02639Preparation of substrate for selective deposition

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To prevent the occurrence of facets from an interface between an insulating film and an epitaxial semiconductor, by making one crystal plane to be a main surface of a semiconductor substrate, and specifying the orientation of a square opening part, with the other crystal plane, which crosses said crystal plane at a right angle, as a reference plane. CONSTITUTION:In a P-type silicon semiconductor wafer 11, whose (100) plane is the main surface, a (0T0) plane or a (010) plane is specified as an orientation flat. The pattern orientation of a chip 12 is specified so that (001) becomes the lateral (X) direction and (010) becomes the longitudinal (Y) direction. The shape of an opening-part pattern 13 for an island region, in which a semiconductor element is formed at one chip 12, is as follows: two sides are in parallel with the (001)-axis direction, and the other two sides are in parallel with the (010)-axis direction. When the epitaxial semiconductor layer is selectively formed on the semiconductor surface, facets and the like do not occur in an interface between the layer and the insulating film.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は半導体装置、特に選択エピタキシャル技術¥1
更りだ素子分離構造をMする半導体装置に関する。
[Detailed Description of the Invention] [Technical Field] The present invention relates to semiconductor devices, particularly selective epitaxial technology.
The present invention relates to a semiconductor device having a further element isolation structure.

〔背景技術〕[Background technology]

@LSIの微細素子分離や三次元デバイス等の構成にお
いて、選択エピタキシャル成長技術が注目されている。
@Selective epitaxial growth technology is attracting attention in the construction of fine element isolation of LSI and three-dimensional devices.

この選テエビタキシャル技術は、たとえば第7図に示す
工5に、シリコン半導体基体1上の厚(・半導体酸化膜
2にあけられた四角形状の開口部3内にお℃・てシリコ
ン上に選択的に気相成長させたエピタキシャル半導体層
4を有し、このエピタキシャル半導体層4を素子活性領
域とするもので、これIcより平面が平坦化された微細
な素子分離構造が可能となる。
This selective epitaxial technique is used, for example, in step 5 shown in FIG. It has an epitaxial semiconductor layer 4 that has been selectively grown in a vapor phase, and uses this epitaxial semiconductor layer 4 as an element active region, making it possible to create a fine element isolation structure whose plane is flatter than Ic.

しかしこのような選択エピタキシャル半導体層4におい
ては、同図に示すように醪化膜2に接する半導体層側壁
の底部から表面にかけて斜め方向の積層欠陥5が発生し
やすく、このため組込まれた素子のリークを流が増え、
特性上不安定を生じろおそれがあった。
However, in such a selective epitaxial semiconductor layer 4, diagonal stacking faults 5 are likely to occur from the bottom to the surface of the sidewall of the semiconductor layer in contact with the diluted film 2, as shown in the figure. The flow of leaks increases,
There was a risk that instability would occur due to the characteristics.

これに対処する技術とし℃、応用物理学会第21回半導
体専門講習会予稿果′83秋李号26P−N−4によれ
ば、素子分離領域(S!Os)の側面に窒化層(S I
s N4 )をつけると選択エピタキシャル成長半導体
層にできる積層欠陥の数は減少するが、その代り、第8
図、第9図に示す工5にエピタキシャル半導体層40表
面にファセット(切子面)6が発生しやす(・と報告さ
れて〜・ろ。
According to the Japan Society of Applied Physics 21st Semiconductor Specialized Seminar Proceedings 1983 Autumn Li No. 26P-N-4, the technology to deal with this is to add a nitride layer (SI) on the side surface of the element isolation region (S!Os).
s N4) reduces the number of stacking faults formed in the selectively epitaxially grown semiconductor layer, but at the cost of
It has been reported that facets 6 are likely to occur on the surface of the epitaxial semiconductor layer 40 during step 5 shown in FIGS.

このファセットは第9図に示すように、酸化膜29A面
にそって、エピタキシャル半導体層4の上層部分に斜め
K(角度θ=21.4°)切りこまれた結晶面(この結
晶面は(111)面又は(113)面)6を指すもので
、この部分6の幅W、深さDはエピタキシャル層4の膜
厚tに依存するとされて−・る。
As shown in FIG. 9, this facet is a crystal plane (this crystal plane is 111) plane or (113) plane) 6, and the width W and depth D of this portion 6 are said to depend on the film thickness t of the epitaxial layer 4.

このような7アセツト6の存在によって当然に表面の平
坦化が阻まれろ。また、ファセットが生じる場合、エピ
タキシャル半導体層側面と酸化膜2との界面において不
純物が拡散して高濃度になりやすく、そのために911
1壁部分7での抵抗が低下し、リーク電流不良となる。
The presence of such 7 assets 6 naturally prevents surface flattening. In addition, when facets occur, impurities tend to diffuse and become highly concentrated at the interface between the side surface of the epitaxial semiconductor layer and the oxide film 2, resulting in 911
The resistance at the first wall portion 7 decreases, resulting in leakage current failure.

又、同予稿果′83春季6a−T−6によれば、選択エ
ピタキシャル成長層の側壁材料とし℃ポリシリコンを用
いることが提案され、その場合にも積層欠陥は減少する
が、グレイン(結晶粒体)が異常に発達するため、実効
的な素子形成面積が減少すると報告されて(・る。
Also, according to the same preliminary report '83 Spring 6a-T-6, it was proposed to use °C polysilicon as the sidewall material of the selective epitaxial growth layer, and although stacking faults would be reduced in that case, grains (crystal grains) ) is reported to develop abnormally, reducing the effective device formation area (・ru).

本発明はこれらの問題にかんがみてなされたものである
The present invention has been made in view of these problems.

し発明の目的〕 本発明の一つの目的は選択エピタキシャル技術を用℃・
た半導体素子分離構造において、絶縁膜とエピタキシャ
ル半導体層との界面よりのファセットの発生を防止する
ことにある0 本発明の他の一つの目的は選択エピタキシャル技術を用
いた素子分離構造を有する半導体装置にお〜・て、エピ
タキシャル半導体層の結晶性を向上させリークを流を低
減し、素子歩留を向上することにある。
OBJECT OF THE INVENTION One object of the present invention is to use selective epitaxial technology to
Another object of the present invention is to prevent the generation of facets from the interface between an insulating film and an epitaxial semiconductor layer in a semiconductor device isolation structure using selective epitaxial technology. Another object of the present invention is to improve the crystallinity of an epitaxial semiconductor layer, reduce leakage current, and improve device yield.

本発明の前記ならびにそのほかの目的と新規な特徴は、
本明細書の記述および添付図面からあぎらかになるであ
ろう。
The above and other objects and novel features of the present invention include:
It will become clear from the description of this specification and the accompanying drawings.

〔発明の概要〕[Summary of the invention]

本願において開示される発明のうち、代表的なものの概
要な藺単に説明すれば下記のとおりである。
Among the inventions disclosed in this application, a brief summary of typical ones is as follows.

すなわち、シリコン半導体基体の一生天上にあけられた
少なくとも側面が絶縁膜かうなる四角形状の開口部内で
、その底部の半導体基体露出面に選択的にエビタキシヤ
シ成長させたシリコン層を有し、このエピタキシャル・
シリコン層表面に素子活性領域が形成される半導体装置
において、上記半導体基体は、一つの結晶面、たとえば
(100)面を主面として、この(100)面に!9す
る他の一つの結晶面、たとえば(010)面、(001
)面を上記四角形状の開口部の側面方位となる様に規定
し、ファセットの(111)面の発生しにく〜・方位に
開ロバターンを設けろ。これKより開口部内のエピタキ
シャル・シリコン層と絶縁膜との界面にファセットが発
生することなく、結晶性にすぐれ、リークを流のな℃・
特性のより・半導体装置を実現できる。
That is, a silicon layer is selectively epitaxially grown on the exposed surface of the semiconductor substrate at the bottom within a rectangular opening that is opened above the silicon semiconductor substrate and has at least one side surface covered with an insulating film.
In a semiconductor device in which an element active region is formed on the surface of a silicon layer, the semiconductor substrate has one crystal plane, for example, a (100) plane as a principal plane. 9, one other crystal plane, for example (010) plane, (001
) plane is defined so as to be in the side direction of the above-mentioned rectangular opening, and an open pattern is provided in the direction in which the (111) plane of the facet is difficult to occur. Because of this K, no facets are generated at the interface between the epitaxial silicon layer and the insulating film inside the opening, and the crystallinity is excellent and leakage is prevented.
Semiconductor devices with better characteristics can be realized.

し実施例〕 本発明の説明に先立って、半導体装置に使われるシリコ
ン半導体ウェハの結晶方位について説明すると、第6図
に示すよ5に、これまでは、半導体基板用とし1(10
0)結晶面から3°〜4°外t’t、た面を主面とし、
これとA5eする他の結晶面(001)(010)面に
対し′″C45°をなす面((110)面)をオリエン
テーク1ノ・フラット(0,F、と祢す)をとりだシリ
コン半導体ウニノ・を便用して〜・る。このような半導
体ウニノーにお(・て、半導体チップのパターンの方位
は(,1,F、を基準として設けられ、各チップ上にお
ける絶縁膜の開口部のパターンは同図に示すようにO,
F、の方向に平行に及び直角方向く七つ℃設けられるこ
とになる。
Prior to explaining the present invention, the crystal orientation of silicon semiconductor wafers used in semiconductor devices will be explained.As shown in FIG.
0) The main surface is the plane 3° to 4° outside the crystal plane,
Orientate a plane ((110) plane) that forms an angle of C45° with respect to the other crystal planes (001) and (010) planes that are A5e. In such a semiconductor unit, the orientation of the pattern of the semiconductor chip is set with reference to (,1,F), and the opening of the insulating film on each chip is The pattern of the part is O, as shown in the figure.
F, parallel to the direction and perpendicular to the direction, seven degrees Celsius will be provided.

これ九対し壬、本発明にお−・1は、第1図におい工示
すように、半導体ウエノ・(基板)は(100)±1°
を主面とし、オリエンテーク1ン・フラン)0.F、は
(100)面とI5!、する(010)又は(OTO)
面とするものをf用する。
On the other hand, according to the present invention, the semiconductor wafer (substrate) is (100) ±1° as shown in FIG.
as the main surface, with an orientation of 1 franc) 0. F, is (100) plane and I5! , do (010) or (OTO)
Use f as the surface.

以下、半導体ウェハから半導体装置を製造するプロセス
の実施例にそって本発明の詳細な説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to embodiments of a process for manufacturing semiconductor devices from semiconductor wafers.

第1図に示すよ5に(100)面を主面とするp−型シ
リコン半導体ウェハ11であり℃、第1図に示すように
(OTO)面又は(010)面)をオリシテーシ1ンフ
ラットと規定したものを便用し、(001)を横(X)
方向、(010)を縦(Y)方向となるようにチップ1
2のパターン方位を規定する。
As shown in FIG. 1, 5 is a p-type silicon semiconductor wafer 11 having a (100) plane as its main surface. For convenience, (001) is changed to horizontal (X)
Chip 1 so that the (010) direction is the vertical (Y) direction.
2 pattern direction is defined.

第2図は一つのチップ12におけろパターン方位を示し
、13は半導体素子が形成される島領域のための開口部
パターンの形状と配列を示すものである。
FIG. 2 shows the pattern orientation in one chip 12, and 13 shows the shape and arrangement of the opening pattern for the island region where the semiconductor element is formed.

ここで注目すべきは、1つのパターンを取った場合、2
辺が(001>軸方向に平行で、他の2辺が<010>
軸方向に平行なことである。こうすることにより7γセ
ツトの生じにくい方位を限定して〜・るのである。
What should be noted here is that if one pattern is taken, two
The side is parallel to the (001> axis direction, and the other two sides are <010>
It is parallel to the axial direction. By doing this, the directions in which 7γ set is unlikely to occur are limited.

第3図は第2図におけるA −A’視≦大斜面断面図で
あって、14はp−型シリコン半導体基板、15はシリ
コン酸化物(siot)よりなる被膜、16は開口部で
あっ工、この開口部16の底部に半導体14が露出する
FIG. 3 is a cross-sectional view of A-A'≦large slope in FIG. , the semiconductor 14 is exposed at the bottom of this opening 16.

第4図は上記開口部16内にお(・℃底部の半導体14
面に選択的に形成させたn−型エピタキシャル半導体(
シリコン)層17を形成した状態を示す断面図である。
Figure 4 shows the semiconductor 14 at the bottom of the opening 16 (.
n-type epitaxial semiconductor (
3 is a cross-sectional view showing a state in which a silicon layer 17 is formed. FIG.

このエピタキシャル半導体層17を選択的に形成するに
あたっては、たとえば下式: %式%( の反応を利用した気相成長を行うものであって、反応時
に気相中に添加するHCIの流量を変えろことでエピタ
キシャル成長速度を制御し、シリコン基体14表面のみ
く選択的にシリコンを成長させる一方、酸化膜15表面
からのシリコン成長を抑制し、開口部内を埋めつくすよ
うにエピタキシャル半導体層17を形成するものである
In order to selectively form this epitaxial semiconductor layer 17, for example, vapor phase growth is performed using the reaction of the following formula: This controls the epitaxial growth rate and selectively grows silicon only on the surface of the silicon substrate 14, while suppressing silicon growth from the surface of the oxide film 15, and forms the epitaxial semiconductor layer 17 so as to completely fill the inside of the opening. It is.

上記エピタキシャル成長工程におい℃、S iH,Ci
、中にあらかじめP(リン)成分又はB(ボロン)成分
を混入しておくことにより、低濃度のn−型、又はp−
型のシリコン結晶を成長させることができる@ このあと、公知の選択5敗技術を用いて、上記開口部内
に成長させたエピタキシャル半導体層17の表面に、第
5図に示すように、p型ベース18、n+型コレクタ1
9、n”Wエミッタ20等の孤散層からなる素子活性傾
城を形成し、さらに表面酸化fi21の虫取、コンタク
ト・ホトエッチンク、アルミニウム蒸着電極22形成等
の諸工程を経て相互に絶縁分離された島領域内Knpn
トランジスタ等を完成させる。
In the above epitaxial growth process, °C, SiH, Ci
By pre-mixing a P (phosphorus) component or a B (boron) component into the , low concentration n-type or p-
A p-type silicon crystal can be grown as shown in FIG. 18, n+ type collector 1
9. A device active tilted wall consisting of a discrete layer such as the n''W emitter 20 is formed, and the islands are isolated from each other through various processes such as removal of surface oxidation fi 21, contact photoetching, and formation of aluminum evaporated electrode 22. Knpn within the area
Complete transistors, etc.

し発明の効果〕 上記実施例で述べた本発明によれば以下のように効果が
得られる。
Effects of the Invention] According to the present invention described in the above embodiments, the following effects can be obtained.

半導体ウェハの基準面の方位を一つの繕晶夏(001)
面又は(010)面に一致するように限定し、絶lj&
膜の開口部の側面が上記結晶面に平行に規定することに
より、半導体面に選択的にエピタキシャル半導体層を形
成する際に絶縁膜との界面にファセット等の発生がみら
れなくなる。すなわち、7丁セットの面方位は通常、結
晶面(111)、(112)、(113)、(114)
等である。
The orientation of the reference plane of the semiconductor wafer is set to one crystal orientation (001).
or (010) plane, and absolute lj &
By defining the side surface of the opening in the film to be parallel to the crystal plane, facets and the like are not generated at the interface with the insulating film when an epitaxial semiconductor layer is selectively formed on the semiconductor surface. In other words, the plane orientations of the 7-piece set are usually crystal planes (111), (112), (113), and (114).
etc.

すなわち、(100)面上で(001)面、(010)
面にそってパターンを形成することにより7アセツトの
発生を阻止することができる。
That is, on the (100) plane, (001) plane, (010)
By forming a pattern along the surface, the occurrence of 7 assets can be prevented.

このようにファセットの発生をなくすことによって、絶
縁膜の開口部に形成されたエピタキシャル半導体層の結
晶性が著しく向上し、リーク電流等が低減し、その結果
、素子の歩留が向上する。
By eliminating the occurrence of facets in this way, the crystallinity of the epitaxial semiconductor layer formed in the opening of the insulating film is significantly improved, leakage current, etc. are reduced, and as a result, the yield of the device is improved.

さらに、分離領域を少なくでき、微細化分1lll!さ
れたバイポーラICの作成が可能となる。
Furthermore, the separation area can be reduced, and the amount of miniaturization is 1llll! It becomes possible to create bipolar ICs with

さらに、注目すべきは、7γセツトをなくすことによっ
て、エピタキシャル層面積を有効に利用することができ
、半導体装置の*積度を向上させることができる。
Furthermore, it should be noted that by eliminating the 7γ set, the area of the epitaxial layer can be used effectively, and the stacking density of the semiconductor device can be improved.

以上発明者によってなされた発明を実施例にもとづき具
体的に説明したが、本発明は上記実施例に限定されるも
のではなく、その要旨を逸脱しな〜・範囲で植々変更可
能であることはいうまでもない。
Although the invention made by the inventor has been specifically explained above based on examples, the present invention is not limited to the above examples, and can be modified in various ways without departing from the gist thereof. Needless to say.

たとえば、半導体基体表面の絶縁膜に開口部!あけて、
この中に選択的にエピタキシャル半導体層を成長させる
以外に、第10図に示すように、結晶方位を限定した半
導体基体表面にあらかじめ開口部をあけ、この開口部の
内面を酸化することKより備面に絶jii1Rを形成し
た後、開口部底面の絶縁膜な取り除℃・てそこVc選択
的にエピタキシャル半導体層を成長させろようにしても
よい。
For example, an opening in an insulating film on the surface of a semiconductor substrate! Open,
In addition to selectively growing an epitaxial semiconductor layer within this layer, as shown in FIG. After forming an insulating layer on the surface, the insulating film at the bottom of the opening may be removed and an epitaxial semiconductor layer may be selectively grown there.

このほかに、たとえば(111)面を主面とする半導体
基板に本発明を通用する半導体装置も可能である。
In addition, a semiconductor device in which the present invention is applicable to a semiconductor substrate having, for example, a (111) plane as a main surface is also possible.

〔利用分野〕[Application field]

本発明は絶縁弁l!!すれたエピタキシャル半導体層を
有する半導体装置に全て適用することができる。
The present invention is an insulation valve l! ! It can be applied to all semiconductor devices having a rough epitaxial semiconductor layer.

本発明は特に、高速メモリなどの高果y微細化された半
導体装置に応用した場合にM効である。
The present invention has an M effect particularly when applied to highly efficient and miniaturized semiconductor devices such as high-speed memories.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の半導体ウェハの平面図、第2図は半導
体チップ(基板)の状態の平面図、第3図は口火された
半導体チップであり工、第2図におけろA−A視断面廚
面因、 第4図は選択エピタキシャル成長後の半導体チップの一
部断面図、 第5図は素子活性領域の形成された半導体チップの一部
断面図、 第6図はこれまでの例を示す半導体ウェハの平面図、 第7図はこれまでの例を示し、拡大された半導体チップ
の一部断面斜面図、 第8図はこれまでの例を示す選択エピタキシャル半導体
層の平面図、 第9図は第8図におけるB −B’断面図、第10図は
本発明の他の実施例を示す拡大された半導体チップの一
部断面斜面図である。 11・・・半導体クエハ、12・・・半導体チップ、1
3・・・開口部、14・・・半導体シリコン基板、15
・・・半導体酸化膜、16・・・開口部、17・・・)
8択工ピタキシヤル半4体層、18・・・ベース、19
・・・コレクタ取り出し部、2o・・・エミッタ。 代理人 弁理士  小 川 勝 男   ゛)第  1
  図 第  2  図 (σlの 第  3  図 第  6  図 第10図
FIG. 1 is a plan view of a semiconductor wafer of the present invention, FIG. 2 is a plan view of a semiconductor chip (substrate), and FIG. 3 is a semiconductor chip that has been fired. Figure 4 is a partial cross-sectional view of a semiconductor chip after selective epitaxial growth; Figure 5 is a partial cross-sectional view of a semiconductor chip with an element active region formed thereon; Figure 6 shows a conventional example. FIG. 7 is an enlarged partial cross-sectional oblique view of a semiconductor chip showing a conventional example; FIG. 8 is a plan view of a selective epitaxial semiconductor layer showing a conventional example; FIG. 9 The figure is a sectional view taken along the line B-B' in FIG. 8, and FIG. 10 is an enlarged partially sectional oblique view of a semiconductor chip showing another embodiment of the present invention. 11... Semiconductor wafer, 12... Semiconductor chip, 1
3... Opening, 14... Semiconductor silicon substrate, 15
... semiconductor oxide film, 16... opening, 17...)
8 selection pitaxial half 4 layers, 18...base, 19
...Collector extraction part, 2o...Emitter. Agent: Patent Attorney Katsuo Ogawa ゛) No. 1
Figure 2 (σl Figure 3 Figure 6 Figure 10)

Claims (1)

【特許請求の範囲】 1、半導体基体の一主面にあけられた少なくとも側面が
絶縁膜からなる四角形状の開口部内に、その底部の半導
体基体露出面に選択的に成長させたエピタキシャル半導
体層を有し、このエピタキシャル半導体層表面に素子活
性領域が形成された半導体装置であって、上記半導体基
体は一つの結晶面を主面とし、この結晶面に直交する他
の一つの結晶面を基準面として上記四角形状の開口部の
方位が規定されていることを特徴とする半導体装置。 2、上記半導体基体は(100)面を主面として、この
(100)面に直交する(010)面又は(001)面
を基準面とする特許請求の範囲第1項に記載の半導体装
置。
[Scope of Claims] 1. An epitaxial semiconductor layer is selectively grown on the exposed surface of the semiconductor substrate at the bottom of a rectangular opening formed in one principal surface of a semiconductor substrate, at least one side of which is made of an insulating film. A semiconductor device in which an element active region is formed on the surface of the epitaxial semiconductor layer, wherein the semiconductor substrate has one crystal plane as a principal plane and another crystal plane orthogonal to this crystal plane as a reference plane. A semiconductor device characterized in that the orientation of the rectangular opening is defined as . 2. The semiconductor device according to claim 1, wherein the semiconductor substrate has a (100) plane as a principal plane, and a (010) plane or a (001) plane perpendicular to the (100) plane as a reference plane.
JP905485A 1985-01-23 1985-01-23 Semiconductor device Pending JPS61168912A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP905485A JPS61168912A (en) 1985-01-23 1985-01-23 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP905485A JPS61168912A (en) 1985-01-23 1985-01-23 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS61168912A true JPS61168912A (en) 1986-07-30

Family

ID=11709916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP905485A Pending JPS61168912A (en) 1985-01-23 1985-01-23 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS61168912A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013102213A (en) * 2003-01-16 2013-05-23 Fuji Electric Co Ltd Semiconductor element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013102213A (en) * 2003-01-16 2013-05-23 Fuji Electric Co Ltd Semiconductor element

Similar Documents

Publication Publication Date Title
US5057899A (en) Semiconductor device with improved wiring contact portion
CN109326561B (en) Method for manufacturing fin field effect transistor
US5963822A (en) Method of forming selective epitaxial film
JPS5893221A (en) Semiconductor thin film structure and preparation thereof
JPH05198543A (en) Manufacture of semiconductor device and semiconductor substrate
TWI781765B (en) Device integration schemes leveraging a bulk semiconductor substrate having a &lt;111&gt; crystal orientation
US20240087961A1 (en) Fin Loss Prevention
US3997378A (en) Method of manufacturing a semiconductor device utilizing monocrystalline-polycrystalline growth
TWI682448B (en) Semiconductor substrate and method of manufacturing thereof
JPS62226891A (en) Substrate for semiconductor device
JPS61168912A (en) Semiconductor device
US11855143B2 (en) Semiconductor structures and methods thereof
JPH0669064B2 (en) Element isolation method for semiconductor device
JPS63239932A (en) Crystal forming method
US11749526B2 (en) Semiconductor substrate and method of manufacturing thereof
US11842960B2 (en) Semiconductor device with horizontally arranged capacitor
JPH0470771B2 (en)
JPH0113210B2 (en)
JPS5968949A (en) Manufacture of semiconductor device
JPS61168911A (en) Semiconductor device and manufacture thereof
JP2585642B2 (en) Method for manufacturing semiconductor device
JPS60244036A (en) Semiconductor device and manufacture thereof
CN112750900A (en) Bipolar Junction Transistor (BJT) and method of forming the same
JPS6158228A (en) Semiconductive substrate
JPS6088468A (en) Method of producing semiconductor integrated circuit