JPS61168259A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS61168259A
JPS61168259A JP860085A JP860085A JPS61168259A JP S61168259 A JPS61168259 A JP S61168259A JP 860085 A JP860085 A JP 860085A JP 860085 A JP860085 A JP 860085A JP S61168259 A JPS61168259 A JP S61168259A
Authority
JP
Japan
Prior art keywords
oxide film
silicon oxide
base region
emitter
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP860085A
Other languages
Japanese (ja)
Inventor
Hiroyasu Azuma
東 寛保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP860085A priority Critical patent/JPS61168259A/en
Publication of JPS61168259A publication Critical patent/JPS61168259A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Bipolar Transistors (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To prevent a boundary between a thick silicon oxide film and a base region from accelerating to etch by forming a hole for adding an emitter impurity by anisotropical dry etching when forming a transistor of walled emitter structure. CONSTITUTION:After impurity ions are implanted into an epitaxial layer 11 to form a base region 15, a silicon oxide film on the base region is removed by anisotropical dry etching. In this case, it can prevent a boundary between a silicon oxide film 14 and the base region 15 observed at the etching with the conventional buffered fluoric acid solution from accelerating to etch. Then, a polycrystalline silicon film is formed similarly to the conventional one, an impurity is added to form an emitter region.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体装置の製造方法に関し、特にウォール
ドエミッタ構造を有するバイポーラ型トランジスタの歩
留を向上させる製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a semiconductor device, and particularly to a method of manufacturing a bipolar transistor having a walled emitter structure to improve the yield.

〔従来の技術〕[Conventional technology]

従来、バイポーラ型半導体装置では、装置の小型化、高
性能化を計る為に、エミッタ領域を素子分離用の比較的
厚い選択酸化膜と接触させる所謂ウォールドエミッタ構
造が考えられている。
Conventionally, in bipolar semiconductor devices, a so-called walled emitter structure has been considered in which the emitter region is brought into contact with a relatively thick selective oxide film for element isolation in order to reduce the size and improve the performance of the device.

第2図(a)〜げ)はウォールドエミッタ構造のバイポ
ーラ型トランジスタの製造方法を説明するために工程順
に示した断面図である。
FIGS. 2(a) to 2(a) are cross-sectional views shown in order of steps to explain a method of manufacturing a bipolar transistor having a walled emitter structure.

才ず、第2図(a)に示すように、N型エピタキシャル
層11上に素子領域のみ−にシリコン酸化膜12、シリ
コン窒化膜】3を選択的に形成する。
As shown in FIG. 2(a), a silicon oxide film 12 and a silicon nitride film 3 are selectively formed on the N-type epitaxial layer 11 only in the element region.

次に第2図(b)に示すように、通常の方法により素子
分離用の厚いシリコン酸化膜14を形成する。
Next, as shown in FIG. 2(b), a thick silicon oxide film 14 for element isolation is formed by a conventional method.

次に第2図(C)に示すように、前記シリコン窒化膜1
3を除去し、残存する前記シリコン酸化膜12を通して
イオン注入法によりホウ素をエピタキシャル層11内に
添加してベース領域15を形成する。
Next, as shown in FIG. 2(C), the silicon nitride film 1
3 is removed, and boron is added into the epitaxial layer 11 by ion implantation through the remaining silicon oxide film 12 to form a base region 15.

次に、第2図(dlに示すように、残存するシリコン酸
化膜J2をバッフアート弗酸液により除去する。
Next, as shown in FIG. 2 (dl), the remaining silicon oxide film J2 is removed using a buffered hydrofluoric acid solution.

次に、第2図(e)に示すように、ベース領域15を含
む半導体基板表面に約1000Xの多結晶シリコン膜1
7を形成し、多結晶シリコン膜17全通して燐あるいは
砒素をベース領域15内に添加してエミッタ領域16を
形成する。
Next, as shown in FIG.
7 is formed, and phosphorus or arsenic is doped into the base region 15 through the entire polycrystalline silicon film 17 to form an emitter region 16.

次に第2図(f)に示すよう番こ、多結晶シリコン膜1
7表面に金属膜を形成し、パターニングして電極を形成
し、装置の製造を完了する。
Next, as shown in FIG. 2(f), a polycrystalline silicon film 1 is formed.
7. A metal film is formed on the surface and patterned to form electrodes, completing the manufacturing of the device.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上記従来の製造方法では、第2図(d)
においてシリコン酸化膜12をバッフアート弗酸液で除
去する際、素子分離領域のシリコン酸化膜14も同時に
除去され、更に、該シリコン酸化膜14とベース領域1
5との境界でシリコン酸化膜14のエツチング速度が速
く高性能化の為に、ベース接合を浅く形成したトランジ
スタでは後工程でエミッタ不純物を添加した際にエミッ
タとコレクタ間の耐圧が劣下するという問題があった。
However, in the conventional manufacturing method described above, as shown in FIG.
When the silicon oxide film 12 is removed using a buffered hydrofluoric acid solution, the silicon oxide film 14 in the element isolation region is also removed at the same time, and the silicon oxide film 14 and the base region 1 are also removed at the same time.
The etching speed of the silicon oxide film 14 at the boundary with 5 is fast, and in order to improve performance, transistors with shallow base junctions are said to have a lower withstand voltage between the emitter and collector when emitter impurities are added in a later process. There was a problem.

第3図は第2図(d)の破線で囲んだ部分の拡大図であ
る。
FIG. 3 is an enlarged view of the part surrounded by the broken line in FIG. 2(d).

即ち第3図において、シリコン酸化膜】4とベース領域
15の境界でバッフアート弗酸液に対するエツチングレ
ートの速い領域が存在し、上記シリコン酸化膜12を除
去した際に、コレクタ・ベース接合表面点aとエミッタ
不純物を添加する開孔部端点すとの距離が短かくなりこ
の状態でエミッタ不純物を添加すると、コレクタ・エミ
ッタ間の耐圧が劣下し、それを防ぐためにベース領域を
深(形成しなければならず、ベース幅を狭くし高性能ト
ランジスタを形成する上で問題となっていた。
That is, in FIG. 3, there is a region where the etching rate for the buffered hydrofluoric acid solution is high at the boundary between the silicon oxide film 4 and the base region 15, and when the silicon oxide film 12 is removed, the collector-base junction surface point The distance between a and the end point of the opening where the emitter impurity is added becomes shorter, and if the emitter impurity is added in this state, the withstand voltage between the collector and emitter will deteriorate. This has caused problems in narrowing the base width and forming high-performance transistors.

前記問題点に対して、従来次に示す改善策がとられてい
た。即ち、ベース領域15を形成する前に前記シリコン
酸化膜12を除去しその後lこイオン注入法によシベー
ス領域15を形成する。これにより、前記点aと点すの
距離を長くすることが可能である。
Conventionally, the following improvement measures have been taken to address the above-mentioned problems. That is, before forming the base region 15, the silicon oxide film 12 is removed, and then the base region 15 is formed by ion implantation. Thereby, it is possible to increase the distance between the point a and the point.

しかしながら、上記製法では、基板に直接イオン注入す
る為該イオン注入による損傷によりトランジスタ歩留シ
を低下させるという問題点があった。
However, in the above manufacturing method, since ions are directly implanted into the substrate, there is a problem in that the transistor yield is reduced due to damage caused by the ion implantation.

本発明は、上記欠点を解消し、ウォールドエミッタ構造
のトランジスタを形成する際、エミッタ不純物添加用の
開孔部を異方性ドライエッチによ多形成することによシ
高歩留りで高性能な半導体装置を製造する方法を提供す
ることを目的とする。
The present invention eliminates the above-mentioned drawbacks and creates a high-performance semiconductor with high yield by forming multiple openings for adding emitter impurities by anisotropic dry etching when forming a transistor with a walled emitter structure. The purpose is to provide a method for manufacturing a device.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の半導体装置の製造方法は、少なくとも一辺が比
較的厚い選択酸化膜に接触する開孔部を形成するに際し
、該開孔部を異方性ドライエツチングを用いて形成する
工程を含んで構成される。
The method for manufacturing a semiconductor device of the present invention includes the step of forming an opening that contacts a comparatively thick selective oxide film on at least one side by using anisotropic dry etching. be done.

〔実施例〕〔Example〕

以下、本発明の実施例について、図面を参照して説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例を説明するための一工程の要
部拡大断面図である。
FIG. 1 is an enlarged sectional view of a main part of one process for explaining an embodiment of the present invention.

本実施例においては従来例の第2図(a)〜(f)にお
いて、第2図(a)より第2図(C)までの工程は本実
施例と同様に実施する。
In this embodiment, the steps from FIG. 2(a) to FIG. 2(C) in FIGS. 2(a) to 2(f) of the conventional example are performed in the same manner as in this embodiment.

第2図(d)工程における残存するベース領域上のシリ
コン酸化膜12を除去するに際しては、本実施例では例
えば、CF、とH2の混合ガスを用いた異方性ドライエ
ツチングにより除去する。この時は、従来のバッフアー
ト弗酸液によるエツチングで見られたシリコン酸化膜1
4とベース領域15の境界での増速エツチングが防止さ
れ、第1図に示されているようにコレクタ・ベース接合
表面点al とエミッタ不純物を添加する開孔部端点b
1との距離が第3図に示した従来例よりも長(なる。
In this embodiment, the remaining silicon oxide film 12 on the base region in the step of FIG. 2(d) is removed by anisotropic dry etching using a mixed gas of CF and H2, for example. At this time, the silicon oxide film 1 that was seen in the conventional etching using buffered hydrofluoric acid solution was removed.
4 and the base region 15 is prevented, and as shown in FIG.
1 is longer than the conventional example shown in FIG.

次に、第2図(e)と同様に、多結晶シリコン膜を形成
、線膜を通して燐あるいは砒素を添加しエミッタ領域を
形成する。
Next, as in FIG. 2(e), a polycrystalline silicon film is formed, and phosphorus or arsenic is added through the line film to form an emitter region.

次に、第2図(f)と同様に、金属膜を被着、パターニ
ングして電極を形成すれば本実施例は完成する。
Next, as in FIG. 2(f), a metal film is deposited and patterned to form electrodes, thereby completing the present embodiment.

以上説明したように、本実施例では、異方性ドライエツ
チングによシ、エミッタ不純物添加用の開孔部を形成す
るため、シリコン酸化膜14とベース領域15での増速
エツチングが防止され、その結果点a1と点b1の距離
が従来の点aと点すの距離よシ長くなる。従って浅いベ
ース接合を形成した場合でも、コレクタとエミッタの耐
圧の低下が防止できる。また、従来の改良法のように、
ベース領域の形成前に酸化膜を除去しイオン注入法によ
シベース領域を形成する方法と異なり、基板に直接イオ
ン注入する工程がないのでイオン注入による横脇は生じ
ない。従って高歩留りで、高性能なトランジスタを形成
することができる。
As explained above, in this embodiment, since the opening for adding emitter impurities is formed by anisotropic dry etching, accelerated etching in the silicon oxide film 14 and the base region 15 is prevented. As a result, the distance between points a1 and b1 becomes longer than the conventional distance between points a and b1. Therefore, even when a shallow base junction is formed, a decrease in breakdown voltage between the collector and emitter can be prevented. Also, like the conventional improvement method,
Unlike the method in which the oxide film is removed before the base region is formed and the base region is formed by ion implantation, there is no step of directly implanting ions into the substrate, so no sidewalls occur due to ion implantation. Therefore, a high-performance transistor can be formed with high yield.

以上1本発明をNPN型バイポーラトランジスタに実施
した場合につき説明したが、導電型を変えることによシ
、PNP型トランジスタに適用できるし、これらを含む
集積回路装置に適用することができる。
Although the present invention has been described above in the case where it is applied to an NPN type bipolar transistor, it can be applied to a PNP type transistor by changing the conductivity type, and it can also be applied to an integrated circuit device including these.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、厚いシリコン酸
化膜とベース領域境界での増速エッチを防止することが
可能となシ、従ってベース接合が浅くても、コレクタと
エミッタの耐圧が劣下することなく高歩留のウォールド
エミッタ構造のトランジスタが実現できる。
As explained above, according to the present invention, it is possible to prevent accelerated etching at the boundary between a thick silicon oxide film and the base region, and therefore, even if the base junction is shallow, the withstand voltage of the collector and emitter is degraded. A high-yield walled emitter structure transistor can be realized without any degradation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を説明するための一工程の要
部拡大断面図、第2図(a)〜(f)は従来のウォール
ドエミッタ構造のバイポーラ型トランジスタの製造方法
を説明するために工程順に示した断面図、第3図は第2
図(d)の点線部内の拡大断面図である。 11・・・・・・N型エピタキシャル層、12.14・
・・・・・シリコン酸化膜、13・・・・・・シリコン
窒化膜、】5・・・・・・ベース領域、16・・・・・
・エミッタ領域、J7・・・・・・多結晶シリコン膜、
18・・・・・・金属膜。
FIG. 1 is an enlarged sectional view of a main part of one process for explaining an embodiment of the present invention, and FIGS. 2(a) to (f) illustrate a conventional method for manufacturing a bipolar transistor with a walled emitter structure. Figure 3 is a cross-sectional view shown in order of process.
It is an enlarged cross-sectional view within the dotted line part of figure (d). 11...N-type epitaxial layer, 12.14.
...Silicon oxide film, 13...Silicon nitride film, ]5...Base region, 16...
・Emitter region, J7...polycrystalline silicon film,
18...Metal film.

Claims (1)

【特許請求の範囲】[Claims] 少なくとも一辺が比較的厚い選択酸化膜に接触する開孔
部を形成するに際し、該開孔部を異方性ドライエッチン
グを用いて形成することを特徴とする半導体装置の製造
方法。
1. A method of manufacturing a semiconductor device, characterized in that when forming an opening that contacts a selective oxide film that is relatively thick on at least one side, the opening is formed using anisotropic dry etching.
JP860085A 1985-01-21 1985-01-21 Manufacture of semiconductor device Pending JPS61168259A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP860085A JPS61168259A (en) 1985-01-21 1985-01-21 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP860085A JPS61168259A (en) 1985-01-21 1985-01-21 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS61168259A true JPS61168259A (en) 1986-07-29

Family

ID=11697459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP860085A Pending JPS61168259A (en) 1985-01-21 1985-01-21 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS61168259A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6010642A (en) * 1983-06-29 1985-01-19 Mitsubishi Electric Corp Manufacture of semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6010642A (en) * 1983-06-29 1985-01-19 Mitsubishi Electric Corp Manufacture of semiconductor device

Similar Documents

Publication Publication Date Title
JP2728671B2 (en) Manufacturing method of bipolar transistor
US4381953A (en) Polysilicon-base self-aligned bipolar transistor process
KR100205017B1 (en) Method for manufacturing heterojunction bipolar transistor
JP3213549B2 (en) Manufacturing method of super self-aligned bipolar transistor
US6642553B1 (en) Bipolar transistor and method for producing same
KR100474867B1 (en) Semiconductor device and method of manufacturing the same
US20050020023A1 (en) Bipolar transistor and method for producing the same
US7811894B2 (en) Bipolar junction transistor and manufacturing method thereof
JPS61168259A (en) Manufacture of semiconductor device
KR940007657B1 (en) Manufacturing method of high-speed bipolar transistor
KR960013942B1 (en) High speed bipolar transistor & manufacturing method thereof
JP2697631B2 (en) Method for manufacturing semiconductor device
KR940010517B1 (en) Highspeed bipolar transistor manufacturing method using unit poly-silicon
KR940004257B1 (en) Manufacturing method of bipolar transistor
KR100388212B1 (en) Method for manufacturing bipolar junction transistor
KR970004430B1 (en) Fabrication method of hbt
JP3317289B2 (en) Method for manufacturing semiconductor device
KR960006749B1 (en) High speed bipolar transistor fabrication process
JP3156592B2 (en) Semiconductor device and manufacturing method thereof
KR900000827B1 (en) Semiconductor device manufacturing method
JPH04241422A (en) Semiconductor integrated circuit device
JPH04328833A (en) Manufacture of semiconductor integrated circuit device
JPH0231425A (en) Manufacture of semiconductor device
JPH02152240A (en) Manufacture of semiconductor device
JPH0355847A (en) Semiconductor device and its manufacture