KR940007657B1 - Manufacturing method of high-speed bipolar transistor - Google Patents

Manufacturing method of high-speed bipolar transistor Download PDF

Info

Publication number
KR940007657B1
KR940007657B1 KR1019910024509A KR910024509A KR940007657B1 KR 940007657 B1 KR940007657 B1 KR 940007657B1 KR 1019910024509 A KR1019910024509 A KR 1019910024509A KR 910024509 A KR910024509 A KR 910024509A KR 940007657 B1 KR940007657 B1 KR 940007657B1
Authority
KR
South Korea
Prior art keywords
silicon
layer
forming
insulating film
emitter region
Prior art date
Application number
KR1019910024509A
Other languages
Korean (ko)
Other versions
KR930015053A (en
Inventor
염병렬
강상원
이경수
Original Assignee
한국전기통신공사
이해욱
재단법인 한국전자통신연구소
경상현
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전기통신공사, 이해욱, 재단법인 한국전자통신연구소, 경상현 filed Critical 한국전기통신공사
Priority to KR1019910024509A priority Critical patent/KR940007657B1/en
Publication of KR930015053A publication Critical patent/KR930015053A/en
Application granted granted Critical
Publication of KR940007657B1 publication Critical patent/KR940007657B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Bipolar Transistors (AREA)

Abstract

The method is for manufacturing a high speed bipolar transistor by using a selective thin film growth method and a heterojunction method. The method includes the steps of: (A) forming N+ silicon layer (31) and N-silicon layer (32) and defining an active region; (B) forming an ohmic contact (33) by injecting ion on an N-silicon layer (32); (C) forming an emitter region; (D) forming a side insulating layer (40) and forming an oxide layer; (E) polishing a polysilicon layer (42) to expose an insulating layer (38); (F) oxiding a polysilicon (42); (F) forming a silicon-germanium layer (45) on an exposed emitter region by using a gas source molecular beam epitaxy; (G) forming an emitter region by spraying polysilicon; and (H) vaporizing a metal to form an electrode.

Description

고속 쌍극자 트랜지스터 장치의 제조방법Manufacturing method of high speed dipole transistor device

제 1 도는 종래의 선택적 박막성장법으로 제조한 자기정렬 이종접합 쌍극자소자의 단면도.1 is a cross-sectional view of a self-aligned heterojunction dipole device manufactured by a conventional selective thin film growth method.

제 2 도는 본 발명에 의한 완성한 자기정렬된 이종접합 쌍극자소자의 단면도.2 is a cross-sectional view of a completed self-aligned heterojunction dipole device according to the present invention.

제 3 도는 본 발명에 의한 선택적 박막성장법을 이용한 자기정렬 이종접합 쌍극자소자의 제조 공정순서별 단면도.3 is a cross-sectional view of a fabrication process sequence of a self-aligned heterojunction dipole device using the selective thin film growth method according to the present invention.

본 발명은 컴퓨터나 통신기기등 차세대 고속정보처리 시스템에 사용가능한 고속 쌍극자(Bipolar) 트랜지스터(Transistor)의 제조방법에 관한 것으로서, 특히 선택적 박막성장법을 이용하고 에미터-베이스와 베이스-컬렉터가 자기정렬된 이종접합 고속 쌍극자 트랜지스터의 제조방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention [0001] The present invention relates to a method for manufacturing a high speed bipolar transistor (Transistor) that can be used in a next generation high speed information processing system such as a computer or a communication device. A method of manufacturing an ordered heterojunction high speed dipole transistor.

일반적으로, 동종접합(Homojunction) 쌍극자 트랜지스터와는 달리, 에미터(Emitter)와 베이스(Base)를 각각 다른 물질을 사용하여 에너지띠 간격 격차(Energy bandgap difference)를 이용하는 이종접합(Heterojunction) 쌍극자소자가 차세대 고속 쌍극자소자로서 집중 연구되고 있다.In general, unlike a homojunction dipole transistor, a heterojunction dipole device using an energy bandgap difference by using an emitter and a base material different from each other is used. Intensive research as a next-generation high-speed dipole device.

이러한 이종접합 쌍극자 소자설계상에 있어서, 고려되어야 할 가장 중요한 것은 마스크 오정렬(Mask misalignment)에 의한 기생저항(Parasitic resistance) 및 기생용량(Parasitic capacitance)을 감소시키는 것이다.In this heterojunction dipole device design, the most important thing to consider is to reduce the parasitic resistance and parasitic capacitance due to mask misalignment.

최근에 발표된 이종접합 쌍극자소자들은 일반적인 규소 쌍극자소자와 같이 다결정규소(Polysilicon)를 에미터와 베이스전극 및 확산원(Diffusion source)으로 동시에 사용함으로써 수평 및 수직방향의 소자크기를 축소시키고, 아울러 베이스는 규소대신 규소저매늄으로 이루어져서, 에미터와 베이스간의 에너지띠 간격 격차를 생기게 생기게 하여 에미터 주입효율(Inection efficiency)을 증가시키며, 또한 베이스를 고불순물농도 초미세박막으로 성장시켜 소자의 전류 증폭이득(Current gain) 및 동작속도를 크게 향상시켜 왔다.Recently, heterojunction dipole devices reduce the size of the horizontal and vertical devices by simultaneously using polysilicon as emitter, base electrode and diffusion source. Is composed of silicon germanium instead of silicon, resulting in energy band gap between emitter and base, increasing emitter injection efficiency, and growing base to high impurity concentration ultra-thin film to amplify device current Current gain and operating speed have been greatly improved.

이러한 대표적인 자기정렬 이종접합소자의 예를 제 1 도에 나타내었다.An example of such a representative self-aligned heterojunction device is shown in FIG.

제 1 도는 초자기정렬 선택적 베이스성장법(Super Self-aligned Selectively grown Base)으로 제조한 종래의 n-p-n이종접합 쌍극자소자의 단면도이다.1 is a cross-sectional view of a conventional n-p-n heterojunction dipole device manufactured by Super Self-aligned Selectively Grown Base.

제 1 도에서 기체원(Gas source) 분자선 결정박막 성장법(Molecular Beam Epitaxy : MBE)을 사용하여 규소(Si)와 다결정규소(Polysilicon)가 노출된 부분에만 선택적으로 규소저매늄(SiGe) 베이스(12)를 성장한 후에, 다결정규소나 다결정성 규소저매늄 부분에만 선택적으로 다결정규소(16)를 성장시켜 잔여 빈 공간을 채움으로써 베이스전극용 다결정규소(14)와 규소저매늄 베이스(12)와의 접속을 완전하게 하였다.In FIG. 1, a silicon source maenyum (SiGe) base (selectively only exposed to silicon (Si) and polysilicon) using a gas source Molecular Beam Epitaxy (MBE) method 12), the polycrystalline silicon 14 and the silicon low maenyum base 12 for the base electrode are connected by selectively growing the polycrystalline silicon 16 only in the polycrystalline silicon or the polycrystalline silicon low maenyum portion to fill the remaining empty space. Was completed.

다음 단계로 초미세박막인 규소저매늄을 보호하면서 산화규소막(Oxide)을 비등방적(Anisotropic)으로 건식식각(Dry etch)하여 측면절연막(17)을 형성함으로써 베이스전극용 다결정규소(14)와 다결정규소로 된 에미터부분(11)을 자기정렬하였다.The next step is to dry-etch silicon oxide anisotropically while protecting the silicon low maenyum, an ultra-thin film, to form a side insulating film 17 to form the polysilicon 14 for the base electrode. The emitter portion 11 made of polycrystalline silicon was self-aligned.

또한 다결정규소 에미터와 금속간의 접촉저항을 줄이기 위해 텅스텐층(18)을 CVD(Chemical Vapor Deposition)로 도포하여 에미터와 금속사이에 삽입하였다.In addition, in order to reduce the contact resistance between the polysilicon emitter and the metal, a tungsten layer 18 was applied by chemical vapor deposition (CVD) and inserted between the emitter and the metal.

그러나 규소저매늄(12)과 다결정규소(16)를 선택적으로 성장시켜 채우고자 하는 측면 홈같은 부분을 형성하기 위한 습식식각(Wet etch)공정이 완벽해야 하며 그렇지 않은 경우 소자의 성능에 치명적이고, 비교적 힘든 선택적 박막성장공정을 규소저매늄과 다결정규소 박막성장에 2번이나 응용함으로써 소자나 IC(Integranted Circuit)의 수율(Yield)을 감소시키며, 측면 홈부분을 채울때 선택적으로 성장시킬 다결정규소의 두께조절을 정확하게 해야하는 어려움을 내포하고 있다.However, the wet etch process for forming the side grooves to be selectively grown by growing the silicon low maenyum (12) and the polycrystalline silicon (16) must be perfect, otherwise the performance of the device is fatal, By applying the relatively difficult selective thin film growth process twice to the growth of silicon low maenyum and polysilicon thin film, the yield of the device or IC (Integranted Circuit) is reduced and the polycrystalline silicon to be selectively grown when the side grooves are filled It involves the difficulty of precisely adjusting the thickness.

따라서, 본 발명은, 상기에서 언급한 제반문제점을 해결하기 위하여, 선택적 박막성장법을 이용하고 에미터-베이스와 베이스-컬렉터가 자기정렬되어서 기체원 분자선 결정박막성장법을 이용하여 제조된 소자의 구조적 문제를 개선한 이종접합 고속 쌍극자 트랜지스터의 제조방법을 제공하는데 목적이 있다.Therefore, in order to solve the above-mentioned problems, the present invention uses a selective thin film growth method and emitter-base and base-collector are self-aligned so that the device manufactured by using gas source molecular beam crystal thin film growth method. It is an object of the present invention to provide a method for manufacturing a heterojunction high speed dipole transistor having improved structural problems.

이하, 첨부도면에 의거하여 본 발명의 실시예를 상세히 설명한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

제 2 도는 제 1 도에서와 같이 기체원 분자선 결정박막성장법을 이용하여 베이스전극용 다결정규소와 다결정규소로 된 에미터부분을 자기정렬된 이종접합 쌍극자소자의 단면으로 도시한 것이다.FIG. 2 shows, as in FIG. 1, an emitter portion of polycrystalline silicon and polycrystalline silicon for the base electrode as a cross-section of a self-aligned heterojunction dipole element using a gas source molecular beam crystal thin film growth method.

제 2 도에 도시된 소자는 제 1 도에 비해우 매우 간단하고 신뢰성(Reliability)있는 공정을 사용하였으므로 제조공정의 재현성(Reproducibility)을 크게 증가시키는 이점이 있다. 즉, 제 1 도에서는 측면 홈부분을 정의할때, 습식식각을 사용하기 때문에 홈깊이를 정확히 조절하기가 힘들다.Since the device shown in FIG. 2 uses a very simple and reliable process, the device shown in FIG. 2 has an advantage of greatly increasing the reproducibility of the manufacturing process. That is, in FIG. 1, it is difficult to precisely adjust the groove depth because the wet etching is used when defining the side groove portion.

이로 인해 종래의 소자는 베이스 컬렉터(Collector)간의 기생용량이 발생하며 이를 감소시키거나 조절하기가 힘들다. 반면에 본 발명에 의해 제조된 제 2 도의 구조에서는 컬렉터(23)를 성장시킨후 절연막층을 증착 및 식각하여 에미터영역을 정의하며, 측면절연막을 형성하여 차후에 베이스전극용 다결정규소(24)가 규소저매늄(22) 베이스와 접촉할 수 있는 영역을 확보하기 때문에 측면절연막의 두께만큼 베이스-컬렉터간의 기생용량 성분이 된다.This causes the parasitic capacitance between the base collector (Collector) and the conventional device is difficult to reduce or adjust it. On the other hand, in the structure of FIG. 2 manufactured by the present invention, after the collector 23 is grown, the emitter layer is deposited and etched to define the emitter region, and the side insulating film is formed to form the polycrystalline silicon 24 for the base electrode. Since the area in contact with the silicon low maenyum 22 base is secured, it becomes a parasitic capacitance component between the base and the collector by the thickness of the side insulating film.

이때 컬렉터 규소층(23)의 열산화공정시 형성되는 새부리(Bird's bick)모양의 열산화규소막의 영향을 최소화하는 한계내에서 측면절연막의 두께를 감소시킬 수 있어서, 베이스-컬렉터간의 기생용량을 감소시킬 수 있는 소자 설계상의 장점이 있다.At this time, the thickness of the side insulating film can be reduced within the limit of minimizing the influence of the Bird's Bick thermal silicon oxide film formed during the thermal oxidation process of the collector silicon layer 23, thereby reducing the parasitic capacitance between the base and the collector. There are advantages in device design that can be achieved.

그리고, 제 2 도의 구조는 후에 증착된 다결정규소 에미터(21)를 베이스전극용 다결정규소(24)로부터 격리하기 이해 베이스전극용 다결정규소(24) 일부를 열산화(25)시키고, 에미터영역의 절연막을 식각후 규소저매늄 베이스(22)를 성장하기 때문에, 제 1 도의 구조에 비해 소자활성영역외의 비활성영역(Ectrinsic) 베이스부분이 작으므로 주어진 베이스 불순물농도에서 베이스의 기생저항이 작다. 따라서 기생용량과 기생저항에 크게 좌우되는 차단주파수(Cutoff frequency) 및 최대 진동주파수(Maximum oscillation frequency)의 증가가 예상된다.In addition, the structure of FIG. 2 thermally oxidizes 25 a portion of the polycrystalline silicon 24 for the base electrode to isolate the polycrystalline silicon emitter 21 deposited later from the polycrystalline silicon 24 for the base electrode. Since the silicon low maenyum base 22 is grown after the insulating film is etched, the parasitic resistance of the base is small at a given base impurity concentration because the portion of the intrinsic base other than the device active region is smaller than the structure of FIG. Therefore, an increase in cutoff frequency and maximum oscillation frequency, which are highly dependent on parasitic capacitance and parasitic resistance, are expected.

그후의 공정은, 제 1 도에서와 같이, 베이스부분에 측면 절연막을 형성하여 다음 단계에 증착된 다결정규소 에미터(21)와 격리시킨 다음 절연막을 도포하고 금속배선을 위해 다결정규소 에미터부분에 접점을 형성한다. 그런뒤 금속배선을 하여 소자를 완성한다.Subsequently, as shown in FIG. 1, a side insulating film is formed on the base portion, isolated from the polycrystalline silicon emitter 21 deposited in the next step, and then the insulating film is applied to the polysilicon emitter portion for metal wiring. Form a contact. Then, metal wiring is completed to complete the device.

따라서 제 2 도의 구조는 선택적 박막성장기술을 규소저매늄 베이스층을 형성시에만 사용하고, 제 1 도에서와 같이 비교적 힘든 선택적 다결정규소 박막성장공정을 사용하지 않음으로써 공정이 간단해지고 수율이 증가하게 된다.Therefore, the structure of FIG. 2 uses the selective thin film growth technology only in forming the silicon low maenyum base layer, and the process is simplified and the yield is increased by not using the relatively difficult selective polysilicon thin film growth process as shown in FIG. do.

이와 같이 본 발명(제 2 도)은 에미터와 베이스를 자기정렬 하였고 제 1 도의 소자에 비해서 베이스 기생저항 및 컬렉터 기생용량이 크게줄어 동작속도가 더욱 향상되어 동작주파수도 더욱 증가하게 된다.As such, the present invention (FIG. 2) self-aligns the emitter and the base, and the base parasitic resistance and the collector parasitic capacitance are greatly reduced compared to the device of FIG.

그리고 제 2 도에 비해서 매우 간단하고 신뢰성있는 공정을 사용하였으므로 제조공정이 안정하게 되었다.In addition, since a very simple and reliable process was used as compared with FIG. 2, the manufacturing process became stable.

제 3 도a-i는 본 발명의 일실시예의 제조공정 순서도이며 이를 상세히 설명하면 다음과 같다.Figure 3a-i is a manufacturing process flow chart of an embodiment of the present invention will be described in detail as follows.

제 3 도a에서는 P+형 규소기판(30)에 불순물(Dopant)이온을 주입하여 컬렉터와 금속간의 연결부분인 N+형 규소층(31)을 형성한 후에, 분자선 결정박막 성장법을 이용하여 N-규소층인 컬렉터박막(32)을 성장하고, 이어서 도랑(Trench)(35) 격리공정으로 소자를 격리시킨 다음, 절연막을 도포하고 마스크작업과 절연막의 건식식각 그리고 국부산화 격리공정(Local oxidation of silicon : LOCOS)으로 소자의 활성영역(Active region)을 정의하며, 이어 컬렉터를 후에 증착될 금속과의 접속을 위해서 불순물을 이온주입(36)하여 컬렉터층(31)을 표면까지 수직적으로 연결한 공정을 나타내고 있다.In FIG. 3A, after implanting impurity ions into the P + -type silicon substrate 30 to form an N + -type silicon layer 31, which is a connecting portion between the collector and the metal, the molecular beam crystal thin film growth method is used. The collector thin film 32, an N-silicon layer, is grown, and the device is isolated by trench 35 isolation process, then an insulating film is applied, masking, dry etching and local oxidation isolation process (Local oxidation) are performed. of silicon (LOCOS), and then the collector is connected to the surface of the collector layer 31 vertically to the surface by ion implantation (36) The process is shown.

제 3 도b는 에미터영역을 정의하는 공정을 보여주고 있다. 먼저, 다층절연막(37,38,39)을 차례로 도포하고 마스크작업과 식각공정으로 에미터영역을 정의한다.3b shows a process for defining an emitter region. First, the multilayer insulating films 37, 38, and 39 are sequentially applied, and the emitter region is defined by a mask operation and an etching process.

이어서 일부 노출된 활성영역 위의 절연막을 식각하여 제거한다.Subsequently, the insulating film on the partially exposed active region is etched and removed.

제 3 도c는 절연막을 도포하고 비등방성(Anisotropic) 건식식각으로 측면절연막(40)을 남긴후 나머지 노출된 규소부분(41)을 열산화하는 공정을 도시한다.3C shows a process of applying an insulating film, leaving the side insulating film 40 by anisotropic dry etching, and thermally oxidizing the remaining exposed silicon portion 41.

제 3 도d는 상기 측면절연막(40)을 식각으로 제거하고, 다결정규소막(42)을 증착한뒤 감광막(Photoresistor : 43)을 이용하여 평탄화(Planarization)공정을 하는 과정을 나타낸다.FIG. 3 shows a process of removing the side insulating film 40 by etching, depositing a polysilicon film 42, and performing a planarization process using a photoresistor 43.

제 3 도e는 평탄화 공정으로 절연막(38)이 노출될 때까지 감광막(43)과 다결정규소막(12)을 제거하고 나서 다결정규소를 식각하는 공정을 보여주고 있다.3E shows a process of removing the photoresist film 43 and the polysilicon film 12 until the insulating film 38 is exposed by the planarization process, and then etching the polysilicon.

제 3 도f는 감광막(43)과 절연막(38)을 제거한 후, 다결정규소(42)를 열산화(44)하는 공정을 도시한 것이다.FIG. 3 shows a process of thermally oxidizing the polycrystalline silicon 42 after removing the photosensitive film 43 and the insulating film 38.

제 3 도g는 에미터영역의 상기 절연막(37)과 (33)을 식각하여 컬렉터(32)와 베이스전극용 다결정규소(42)를 일부 노출시킨 다음, 기체원 분자선 결정박막 성장법을 이용하여 노출된 에미터영역에만 선택적으로 성장된 초미세박막 규소저매늄층(45)을 보호하면서 절연막을 식각하여 측면절연막(46)을 형성한다.FIG. 3G shows that the insulating films 37 and 33 of the emitter region are etched to partially expose the collector 32 and the polysilicon 42 for the base electrode, and then using a gas source molecular beam crystal thin film growth method. The side insulating film 46 is formed by etching the insulating film while protecting the ultra-thin silicon silicon maenyum layer 45 selectively grown only in the exposed emitter region.

이로써 다음 단계에 도포될 에미터를 베이스와 베이스전극용 다결정규소로부터 격리하여 자기정렬을 이룬다.This achieves self alignment by isolating the emitter to be applied in the next step from the polycrystalline silicon for the base and base electrode.

제 3 도h는 에미터로 사용될 다결정규소를 도포한 후에 마스크작업과 식각공정으로 에미터를 정의하여 형성하는 공정을 도시한 것이다.FIG. 3 shows a process of defining and forming an emitter by applying a polycrystalline silicon to be used as an emitter and then masking and etching.

제 3 도i는 완성된 소자공정단면도이다.3 is a completed cross-sectional view of the device process.

상기 에미터 정의공정후에 기판상에 절연막을 증착하고 마스크작업과 식각공정을 하여 에미터, 베이스, 컬렉터 영역에 접점을 만들고 금속(48)을 증착하여 마스크로 배선을 정의하여 금속을 식각한다.After the emitter definition process, an insulating film is deposited on the substrate, and a mask operation and an etching process are performed to make contacts in the emitter, base, and collector regions, and the metal 48 is deposited to define wiring using a mask to etch the metal.

상기에서는 일실시예의 제조공정을 설명하였으나 본 발명의 사상에 벗어남이 없이 다르게 실시할 수도 있음은 이 분야에 통상적인 지식을 가진 자는 쉽게 알 수 있을 것이다.In the above description of the manufacturing process of one embodiment, it will be apparent to those skilled in the art that the present invention may be implemented differently without departing from the spirit of the present invention.

Claims (1)

P+형 규소기판(30)상에 N+형 규소층(31)과 N-형 규소층(32)을 순차 적층하고, 도랑(35)의 격리공정에 의해 소자를 격리하며, 이어 소자의 활성영역을 정의하는 공정과, 상기 N-형 규소층(32)에 이온주입하여 금속접촉을 위한 저항접촉부(33)를 형성하는 공정과, 다층절연막(37,38,39)을 차례로 도포한 다음 마스크 및 식각공정으로 에미터영역을 정의하는 공정과, 이어 절연막을 도포한 다음 비등방성 건식식각으로 측면절연막(40)을 형성하고 아울러 노출된 규소부분을 열산화하는 공정과, 상기 측면절연막(40)을 제거한 다음 다결정규소막(42)을 증착하고, 도포된 감광막(43)을 이용하여 상기 절연막(38)이 노출되게 평탄화하는 공정과, 상기 감광막(43)과 절연막(38)을 제거한 다음 다결정규소(42)를 열산화하는 공정과, 상기 에미터영역의 상기 절연막(37)(33)을 식각하고, 아울러 기체원 분자선 결정박막 성장법을 이용하여 상기 노출의 에미터영역에만 초미세박막 규소저매늄층(45)을 성장 및 측면절연막(46)을 형성하는 공정 및 상기 에미터영역에 다결정규소 도포하여 에미터를 형성하는 공정과, 금속을 증착하여 전극을 형성하는 공정을 포함하는 고속 쌍극자 트랜지스터 장치의 제조방법.The N + type silicon layer 31 and the N type silicon layer 32 are sequentially stacked on the P + type silicon substrate 30, and the device is isolated by the isolation process of the trench 35, and then the device is activated. A process of defining a region, an ion implantation into the N - type silicon layer 32 to form an ohmic contact 33 for metal contact, and then applying a multilayer insulating film 37, 38, 39 to a mask And defining an emitter region by an etching process, subsequently applying an insulating film, and then forming an insulating layer 40 by anisotropic dry etching and thermally oxidizing the exposed silicon portions. And then depositing a polysilicon film 42 and planarizing the exposed insulating film 38 using the coated photosensitive film 43, and removing the photosensitive film 43 and the insulating film 38 and then polycrystalline silicon. Thermally oxidizing (42) and etching the insulating films (37) (33) in the emitter region In addition, by using a gas source molecular beam crystal thin film growth method, the ultra-thin silicon silicon maenyum layer 45 is grown and the side insulating film 46 is formed only in the exposed emitter region, and polycrystalline silicon is applied to the emitter region. Forming a emitter, and depositing a metal to form an electrode.
KR1019910024509A 1991-12-26 1991-12-26 Manufacturing method of high-speed bipolar transistor KR940007657B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019910024509A KR940007657B1 (en) 1991-12-26 1991-12-26 Manufacturing method of high-speed bipolar transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019910024509A KR940007657B1 (en) 1991-12-26 1991-12-26 Manufacturing method of high-speed bipolar transistor

Publications (2)

Publication Number Publication Date
KR930015053A KR930015053A (en) 1993-07-23
KR940007657B1 true KR940007657B1 (en) 1994-08-22

Family

ID=19326131

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019910024509A KR940007657B1 (en) 1991-12-26 1991-12-26 Manufacturing method of high-speed bipolar transistor

Country Status (1)

Country Link
KR (1) KR940007657B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100413751B1 (en) * 2000-10-20 2004-01-03 인터내셔널 비지네스 머신즈 코포레이션 FULLY-DEPLETED-COLLECTOR SILICON-ON-INSULATOR(SOI) BIPOLAR TRANSISTOR USEFUL ALONE OR IN SOI BiCMOS

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100413751B1 (en) * 2000-10-20 2004-01-03 인터내셔널 비지네스 머신즈 코포레이션 FULLY-DEPLETED-COLLECTOR SILICON-ON-INSULATOR(SOI) BIPOLAR TRANSISTOR USEFUL ALONE OR IN SOI BiCMOS

Also Published As

Publication number Publication date
KR930015053A (en) 1993-07-23

Similar Documents

Publication Publication Date Title
JP4414895B2 (en) Method for the fabrication of bipolar transistors with improved base-emitter junctions
EP0039411B1 (en) Process for fabricating an integrated pnp and npn transistor structure
KR100244812B1 (en) Semiconductor device and the manufacturing method thereof
KR100275540B1 (en) Super self-aligned bipolar transistor and its fabrication method
US4378630A (en) Process for fabricating a high performance PNP and NPN structure
KR100205017B1 (en) Method for manufacturing heterojunction bipolar transistor
US5962879A (en) Super self-aligned bipolar transistor
JPH04283937A (en) Self-matching epitaxial base transistor and manufacture thereof
KR100205024B1 (en) Manufacturing method of super self-aligned bipolar transistors
GB2296129A (en) Bipolar transistor fabrication
JPH05182980A (en) Heterojunction bipolar transistor
US6190984B1 (en) Method for fabricating of super self-aligned bipolar transistor
US5436181A (en) Method of self aligning an emitter contact in a heterojunction bipolar transistor
EP0036499B1 (en) A polysilicon-base self-aligned bipolar transistor process
JPS6119171A (en) Vertical npn transistor structure
KR940007657B1 (en) Manufacturing method of high-speed bipolar transistor
EP0042380B1 (en) Method for achieving ideal impurity base profile in a transistor
KR100275539B1 (en) Self-aligned bipolar transistor and its fabrication method
KR940010915B1 (en) Manufacturing method of homo-,hetero-bipolar transistor
KR940007658B1 (en) Manufacturing method of self-aligned homo, hetero-junction bipplar transistor using thin film crystal growth method
KR0163739B1 (en) Method for fabricating self-aligned bipolar transistor
KR100400078B1 (en) Method for manufacturing of hetero junction bipolar transistor
KR960006749B1 (en) High speed bipolar transistor fabrication process
KR970004430B1 (en) Fabrication method of hbt
JP2613029B2 (en) Manufacturing method of super self-aligned vertical structure bipolar transistor

Legal Events

Date Code Title Description
A201 Request for examination
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20110729

Year of fee payment: 18

EXPY Expiration of term