JPS61166978A - Formation of thin sulfide film - Google Patents

Formation of thin sulfide film

Info

Publication number
JPS61166978A
JPS61166978A JP641785A JP641785A JPS61166978A JP S61166978 A JPS61166978 A JP S61166978A JP 641785 A JP641785 A JP 641785A JP 641785 A JP641785 A JP 641785A JP S61166978 A JPS61166978 A JP S61166978A
Authority
JP
Japan
Prior art keywords
metallic
metal
org
sulfide
compd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP641785A
Other languages
Japanese (ja)
Other versions
JPH06102831B2 (en
Inventor
Hiroshi Hasegawa
洋 長谷川
Kazuyuki Okano
和之 岡野
Akira Nakanishi
朗 中西
Hiroshi Hatase
畑瀬 博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60006417A priority Critical patent/JPH06102831B2/en
Priority to PCT/JP1986/000015 priority patent/WO1986004362A1/en
Priority to DE8686900838T priority patent/DE3672285D1/en
Priority to US07/910,215 priority patent/US4885188A/en
Priority to EP86900838A priority patent/EP0211083B1/en
Publication of JPS61166978A publication Critical patent/JPS61166978A/en
Publication of JPH06102831B2 publication Critical patent/JPH06102831B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1245Inorganic substrates other than metallic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1275Process of deposition of the inorganic material performed under inert atmosphere

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Glass (AREA)
  • Chemically Coating (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To form a thin metallic sulfide film having good crystallinity easily and inexpensively by forming an org. metallic compd. layer having internally a metal-sulfur bond on a substrate then decomposing thermally the same in an inert gas contg. hydrogen sulfide. CONSTITUTION:The org. metallic compd. having internally at least one metal- sulfur bond is coated by printing, etc., on the substrate by using a suitable solvent and is then predried by heating to evaporate the solvent, by which the org. metallic compd. layer is formed. Various metallic mercaptides various metallic salt, etc., thiocarboxylic acid or dithiocarboxylic acid are usable for the above-mentioned org. metallic compd. The above-mentioned org. metallic compd. layer is thereafter thermally decomposed in the inert gas mixed with the hydrogen sulfide. The thin metallic sulfide film having good crystallinity is thus easily formed on the inexpensive substrate of glass, etc., in high productivity.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は各種エレクトロニクスデバイスに使用される金
属硫化物薄膜の形成方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for forming metal sulfide thin films used in various electronic devices.

従来の技術 従来よシ、硫化亜鉛、硫化カドミウム、硫化鉛。Conventional technology Traditionally, zinc sulfide, cadmium sulfide, lead sulfide.

硫化銅などの金属硫化物は薄膜あるいは結晶などの形で
エレクトロニクス分野で広く使用されている。これら化
合物の薄膜は従来は主として真空蒸着あるいはスパッタ
などの手法で形成されてきた。
Metal sulfides such as copper sulfide are widely used in the electronics field in the form of thin films or crystals. Thin films of these compounds have heretofore been mainly formed using techniques such as vacuum evaporation or sputtering.

発明が解決しようとする問題点 上記、従来の方法は真空容器中で行われるため、生産性
が悪く、連続操業が困難であるか、あるいは非常に高額
の生産設備を必要とする。また、真空容器の大きさで製
品の大きさが規定され、大面積の製造が困難であるなど
の問題点を有している。
Problems to be Solved by the Invention The above-mentioned conventional method is performed in a vacuum container, resulting in poor productivity, difficulty in continuous operation, or requiring very expensive production equipment. In addition, the size of the product is determined by the size of the vacuum container, making it difficult to manufacture a large area.

問題点を解決するための手段 本発明が上記問題点を解決するための手段は、金属−硫
黄結合を少なくとも一つ内部に有する有機金属化合物層
を基板上に印刷その他の方法で形成してのち、上記有機
金属化合物層を、硫化水素を混合した不活性ガス中で熱
分解することによシ金属硫化物を形成することである。
Means for Solving the Problems The present invention solves the above problems by forming an organometallic compound layer containing at least one metal-sulfur bond on a substrate by printing or other methods. , the metal sulfide is formed by thermally decomposing the organometallic compound layer in an inert gas mixed with hydrogen sulfide.

本発明に使用できる金属−硫黄結合を少なくとも一つ内
部に有する有機金属化合物としては、各種金属メルカプ
チド、各種チオカルボン酸またはジチオカルボ/酸の各
種金属塩などを挙げることができる。これら化合物の合
成方法は公知である。
Examples of the organometallic compound having at least one internal metal-sulfur bond that can be used in the present invention include various metal mercaptides, various thiocarboxylic acids, and various metal salts of dithiocarbo/acids. Methods for synthesizing these compounds are known.

有機金属化合物を積層する基板としては、熱分解温度に
耐えるものであれば任意に選ぶことができる。通常、熱
分解温度は350〜450で程度であるため、安価なガ
ラス板で十分使用することができる。
The substrate on which the organometallic compound is laminated can be arbitrarily selected as long as it can withstand thermal decomposition temperatures. Usually, the thermal decomposition temperature is about 350 to 450, so an inexpensive glass plate can be used.

作用 上記本発明の手段を用いることによシ、従来の手法のネ
ックとなっている真空容器を使用せずに、金属硫化物薄
膜を形成できるため、薄膜の製造に際して生産性の向上
が計られ、かつ大面積の製造を容易に行うことができる
Effect: By using the means of the present invention described above, a metal sulfide thin film can be formed without using a vacuum container, which is a bottleneck in conventional methods, so productivity can be improved in the production of thin films. , and can be easily manufactured over a large area.

実施例 〈実施例1〉 ラウリルメルカプタンを水−アルコール溶媒中酢酸亜鉛
と反応させて得られる亜鉛ラウリルメルカプチド(J、
ムm、Chew、5ocss 109o(1933)の
手法による)を炭化水素系溶媒に溶かし、ガラス板上に
スピナ一方式によシ塗布する。
Examples Example 1 Zinc lauryl mercaptide (J,
109o (1933)) is dissolved in a hydrocarbon solvent and applied onto a glass plate using a spinner.

塗布されたガラス板は、約150″Cで予備乾燥して溶
媒を揮散させた後、焼成炉中でsso’c。
The coated glass plate was pre-dried at about 150''C to volatilize the solvent and then sso'cd in a firing oven.

1時間焼成する。焼成炉内部は、硫化水素゛濃度2〜1
0%の窒素ガス気流とする。
Bake for 1 hour. The inside of the firing furnace has a hydrogen sulfide concentration of 2 to 1.
0% nitrogen gas flow.

焼成されたガラス板上には、はぼ透明で膜厚10oo〜
5000人の薄膜が形成されておシ、X線回折測定よシ
カ方晶系硫化亜鉛であることが確認された。
On the fired glass plate, the film is transparent and has a thickness of 100 mm.
A thin film of about 5,000 people was formed, and X-ray diffraction measurements confirmed that it was cyanogonal zinc sulfide.

〈実施例2〉 ラウリルメルカプタンを水−アルコール溶媒中酢酸鉛と
反応させて得られる鉛ラウリルメルカプチドを炭化水素
系溶媒に溶かし、ガラス板上にスピナ一方式によシ塗布
する。
<Example 2> Lead lauryl mercaptide obtained by reacting lauryl mercaptan with lead acetate in a water-alcohol solvent is dissolved in a hydrocarbon solvent and coated onto a glass plate using a spinner.

塗布されたガラス板は、約150でで予備乾燥して溶媒
を揮散させた後、焼成炉中で550”C11時間焼成す
る。焼成炉内部は、硫化水素濃度2〜1o%の窒素ガス
気流とする。  。
The coated glass plate is pre-dried at about 150℃ to volatilize the solvent, and then fired in a firing furnace at 550"C for 11 hours. Inside the furnace is a nitrogen gas stream with a hydrogen sulfide concentration of 2 to 10%. do. .

焼成されたガラス板上には、はぼ透明で膜厚1000〜
5ooo人薄膜が形成されておシ、X線回折測定よシ硫
化鉛であることが確認された。
On the fired glass plate, the film is transparent and has a thickness of 1000~
A thin film of 500 mm was formed, and X-ray diffraction measurements confirmed that it was lead sulfide.

〈実施例3〉 ラウリルメルカプタンを水−エタノール溶媒中酢酸カド
ミウムと反応させて得られるカドミウムメルカプチドを
炭化水素溶媒に溶かし、ガラス板上にスピナ一方式によ
シ塗布する。
<Example 3> Cadmium mercaptide obtained by reacting lauryl mercaptan with cadmium acetate in a water-ethanol solvent is dissolved in a hydrocarbon solvent and coated onto a glass plate using a spinner.

塗布されたガラス板は、約150″Cで予備乾燥して溶
媒を揮散させた後、焼成炉中で550℃。
The coated glass plate was pre-dried at about 150"C to volatilize the solvent, and then heated in a firing oven at 550"C.

1時間焼成する。焼成炉内部は、硫化水素濃度2〜10
%の窒素ガス気流とする。
Bake for 1 hour. The inside of the firing furnace has a hydrogen sulfide concentration of 2 to 10
% nitrogen gas flow.

焼成されたガラス板上には、はぼ透明で膜厚1ooO〜
500oへの薄膜が形成されておシ、X線回折測定によ
シ硫化カドミウムであることが確認された。
On the fired glass plate, the film is transparent and has a thickness of 100~
A thin film was formed at a temperature of 500° and was confirmed to be cadmium sulfide by X-ray diffraction measurement.

〈実施例4〉 水酸化カリウム−エタノール溶液に硫化水素を飽和させ
、塩化ベンゾイルと反応して得られるチオ安息香酸カリ
ウA (Org、5ynth、 、rv 924(19
63))を酢酸亜鉛と作用させてチオ安息香酸亜鉛を合
成する。これを炭化水素系溶媒に溶かしてガラス板上に
、スピナ一方式で塗布する。
<Example 4> Potassium thiobenzoate A (Org, 5ynth, , rv 924 (19
63)) is reacted with zinc acetate to synthesize zinc thiobenzoate. This is dissolved in a hydrocarbon solvent and applied onto a glass plate using a spinner.

塗布されたガラス板は、約150℃で予備乾燥して溶媒
を揮散させた後、焼成炉中で560″C51時間焼成す
る。焼成炉内部は、硫化水素濃度2〜10%の窒素ガス
気流とする。
The coated glass plate is pre-dried at approximately 150°C to volatilize the solvent, and then fired in a firing furnace at 560"C for 51 hours. Inside the firing furnace, a nitrogen gas stream with a hydrogen sulfide concentration of 2 to 10% is used. do.

焼成されたガラス板上には、はぼ透明で膜厚10oo〜
5000人の薄膜が形成されておシ、X線回折測定によ
シカ方晶系硫化亜鉛であることが確認された。
On the fired glass plate, the film is transparent and has a thickness of 100 mm.
A thin film of 5,000 people was formed, and it was confirmed by X-ray diffraction measurements that it was cyclized zinc sulfide.

〈実施例5〉 2−7’oモーp−シメンをグリニヤール試薬化したも
のに二硫化炭素を反応させて得られるシミルカルビチオ
酸のナトリウム塩に塩化亜鉛を作用して合成されたシミ
ルカルビテオ酸亜鉛(J、ムm。
<Example 5> Zinc simylcarbitioate (J , Mm.

Chem、Soc 513106(192B))を炭化
水素系溶媒に溶かし、ガラス板上に各種コーティング方
式(スクリーン印刷他)によシ塗布する。
Chem, Soc 513106 (192B)) is dissolved in a hydrocarbon solvent and coated on a glass plate by various coating methods (screen printing, etc.).

塗布されたガラス板は、約150でで予備乾燥して溶媒
を揮散させた後、焼成炉中で55Qで、1時間焼成する
。焼成炉内部は、硫化水素濃度2〜10%の窒素ガス気
流とする。
The coated glass plate is pre-dried at about 150 °C to volatilize the solvent and then fired in a firing oven at 55Q for 1 hour. Inside the firing furnace, there is a nitrogen gas flow with a hydrogen sulfide concentration of 2 to 10%.

焼成されたガラス板上には、はぼ透明で膜厚1000〜
6000人の薄膜が形成されておシ、X線回折測定によ
シカ方晶系硫化亜鉛であることが確認された。
On the fired glass plate, the film is transparent and has a thickness of 1000~
A thin film of 6,000 people was formed, and X-ray diffraction measurements confirmed that it was cyclized zinc sulfide.

発明の効果 以上、実施例から判るように本発明にかかる手法を採用
することによシ、真空蒸着あるいはスパッタなどによる
製造方法と比較して、生産性に優れ、非常な高額の生産
設備を必要とせず、また大面積の製造が容易であるとい
う産業上極めて有益な特徴をもっている。
In addition to the effects of the invention, as can be seen from the examples, by adopting the method according to the present invention, productivity is superior compared to manufacturing methods such as vacuum evaporation or sputtering, and extremely expensive production equipment is not required. It also has the characteristic of being extremely useful industrially in that it is easy to manufacture over a large area.

さらに、本発明にかかる手法は低温での結晶性、成膜性
も良好で、硫化亜鉛の場合、従来の手法では1000°
C以上で生成するα型大方品系硫化亜鉛が、s o o
 ’c程度の焼成@度で得られるという点でも効果的な
手法であるといえる。
Furthermore, the method according to the present invention has good crystallinity and film formation properties at low temperatures; in the case of zinc sulfide, the conventional method
α-type large-scale zinc sulfide produced at C or higher is s o o
It can also be said that it is an effective method in that it can be obtained with a firing temperature of about 'c.

Claims (4)

【特許請求の範囲】[Claims] (1)金属−硫黄結合を少なくとも一つ内部に有する有
機金属化合物層を基板上に形成してのち、硫化水素を混
合してなる不活性ガス中で上記有機金属化合物層を熱分
解して形成することを特徴とする硫化物薄膜の形成方法
(1) After forming an organometallic compound layer containing at least one metal-sulfur bond on the substrate, the organometallic compound layer is thermally decomposed in an inert gas containing hydrogen sulfide. A method for forming a sulfide thin film, characterized by:
(2)金属−硫黄結合を有する有機金属化合物が金属メ
ルカプチドであることを特徴とする特許請求の範囲第1
項の記載の硫化物薄膜の形成方法。
(2) Claim 1, characterized in that the organometallic compound having a metal-sulfur bond is a metal mercaptide.
A method for forming a sulfide thin film as described in Section.
(3)金属−硫黄結合を有する有機金属化合物が金属の
チオカルボン酸塩であることを特徴とする特許請求の範
囲第1項の記載の硫化物薄膜の形成方法。
(3) The method for forming a sulfide thin film according to claim 1, wherein the organometallic compound having a metal-sulfur bond is a metal thiocarboxylate.
(4)金属−硫黄結合を有する有機金属化合物が金属の
ジチオカルボン酸塩であることを特徴とする特許請求の
範囲第1項の記載の硫化物薄膜の形成方法。
(4) The method for forming a sulfide thin film according to claim 1, wherein the organometallic compound having a metal-sulfur bond is a metal dithiocarboxylate.
JP60006417A 1985-01-17 1985-01-17 Method for forming metal sulfide thin film Expired - Fee Related JPH06102831B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP60006417A JPH06102831B2 (en) 1985-01-17 1985-01-17 Method for forming metal sulfide thin film
PCT/JP1986/000015 WO1986004362A1 (en) 1985-01-17 1986-01-16 Process for forming thin metal sulfide film
DE8686900838T DE3672285D1 (en) 1985-01-17 1986-01-16 METHOD FOR FORMING THIN METAL SULFIDE FILMS.
US07/910,215 US4885188A (en) 1985-01-17 1986-01-16 Process for forming thin film of metal sulfides
EP86900838A EP0211083B1 (en) 1985-01-17 1986-01-16 Process for forming thin metal sulfide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60006417A JPH06102831B2 (en) 1985-01-17 1985-01-17 Method for forming metal sulfide thin film

Publications (2)

Publication Number Publication Date
JPS61166978A true JPS61166978A (en) 1986-07-28
JPH06102831B2 JPH06102831B2 (en) 1994-12-14

Family

ID=11637791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60006417A Expired - Fee Related JPH06102831B2 (en) 1985-01-17 1985-01-17 Method for forming metal sulfide thin film

Country Status (1)

Country Link
JP (1) JPH06102831B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989010326A1 (en) * 1988-04-21 1989-11-02 Matsushita Electric Industrial Co., Ltd. Process for producing thin film of metal sulfide
JPH01298008A (en) * 1988-05-26 1989-12-01 Mitsubishi Metal Corp Production of metal sulfide
US6211043B1 (en) 1997-09-05 2001-04-03 Matsushita Battery Industrial Co., Ltd. Method of manufacturing a compound semiconductor thin film on a substrate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989010326A1 (en) * 1988-04-21 1989-11-02 Matsushita Electric Industrial Co., Ltd. Process for producing thin film of metal sulfide
JPH01298008A (en) * 1988-05-26 1989-12-01 Mitsubishi Metal Corp Production of metal sulfide
US6211043B1 (en) 1997-09-05 2001-04-03 Matsushita Battery Industrial Co., Ltd. Method of manufacturing a compound semiconductor thin film on a substrate

Also Published As

Publication number Publication date
JPH06102831B2 (en) 1994-12-14

Similar Documents

Publication Publication Date Title
Valet et al. Synthesis of homoleptic gallium alkoxide complexes and the chemical vapor deposition of gallium oxide films
JP2615469B2 (en) Method for producing metal sulfide thin film
Puddephatt et al. Volatile organogold compounds [AuR (CNR1)]: Their potential for chemical vapour deposition of gold
US5425966A (en) Process for coating with single source precursors
JPS61166978A (en) Formation of thin sulfide film
US4885188A (en) Process for forming thin film of metal sulfides
JPS61166979A (en) Formation of thin sulfide film
Horley et al. Deposition of tetragonal β-In 2 S 3 thin films from tris (N, N-diisopropylmonothiocarbamato) indium (III), In (SOCN i Pr 2) 3, by low pressure metal-organic chemical vapour deposition
JPS61166983A (en) Formation of thin sulfide film
JPH0699809B2 (en) Method for forming sulfide thin film
JPH05262524A (en) Production of zinc oxide thin film
JPS5923403B2 (en) Method for manufacturing transparent conductive film
JPS62146270A (en) Formation of thin metallic selenide film
JPS62146274A (en) Thin calcium sulfide film and its formation
JPS62146275A (en) Thin zinc sulfide film and its formation
US3396184A (en) Trialkyl-dihalotantalum and niobium compounds
JPS62146272A (en) Thin strontium sulfide film and its formation
JPH04254487A (en) Formation of gold film
JP2631681B2 (en) Barium thin film manufacturing method
SU519213A1 (en) Method of producing ferromagnetic sulfospinel layers
SU687464A1 (en) Method of manufacturing thermo magnetic record carrier
JPH01282125A (en) Production of body covered by composite metal oxide having specified composition
JPH01149967A (en) Formation of thin film
JPH01282121A (en) Production of body coated with composite metal oxide having specified composition
JPS61291977A (en) Production of thin film of lower vanadium oxide

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees