JPH01282125A - Production of body covered by composite metal oxide having specified composition - Google Patents

Production of body covered by composite metal oxide having specified composition

Info

Publication number
JPH01282125A
JPH01282125A JP11170988A JP11170988A JPH01282125A JP H01282125 A JPH01282125 A JP H01282125A JP 11170988 A JP11170988 A JP 11170988A JP 11170988 A JP11170988 A JP 11170988A JP H01282125 A JPH01282125 A JP H01282125A
Authority
JP
Japan
Prior art keywords
alkoxide
strontium
calcium
bismuth
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11170988A
Other languages
Japanese (ja)
Inventor
Kazuhiro Sakai
一弘 堺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP11170988A priority Critical patent/JPH01282125A/en
Publication of JPH01282125A publication Critical patent/JPH01282125A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1241Metallic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1245Inorganic substrates other than metallic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1279Process of deposition of the inorganic material performed under reactive atmosphere, e.g. oxidising or reducing atmospheres

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Ceramic Engineering (AREA)
  • Chemically Coating (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain the title body directly and inexpensively without synthesizing previously a powdery superconducting compound metal oxide by coating a soln. of each alkoxide of Bi, Sr and Ca in an org. solvent on a Cu oxide surface of a Cu base body, hydrolyzing the soln., and then calcining. CONSTITUTION:Each alkoxide of Bi, Sr and Ca is dissolved in an org. solvent such as isopropanol. In this case, preferred molar ratio of Bi:Sr:Ca in the alkoxide mixture is 1:1:1. The org. soln. is coated on a base body consisting of metallic Cu having Cu oxide on the surface by oxidizing the surface previously, and the alkoxides are hydrolyzed by standing in the atmospheric air, etc. The product is calcined then at, for example, 850 deg.C, in O2 atmosphere. Thus, an aimed body covered by a composite metal oxide having a specified compsn. is obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、複合金属酸化物で被覆された物体の製造方法
に関する。より特定して言えば、超電導材料として有用
な特定組成を有するビスマスとストロンチウムとカルシ
ウムと銅の複合酸化物薄膜で被覆された物体の製造方法
に関する。特に、特定組成のビスマスとストロンチウム
とカルシウムと銅の複合酸化物は、77に以上で超R4
を示す物質として期待されている。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing objects coated with composite metal oxides. More specifically, the present invention relates to a method of manufacturing an object coated with a thin film of a composite oxide of bismuth, strontium, calcium, and copper having a specific composition useful as a superconducting material. In particular, a composite oxide of bismuth, strontium, calcium, and copper with a specific composition has an ultra-R4 of 77 or more.
It is expected to be a substance that exhibits

〔従来の技術および問題点〕[Conventional technology and problems]

超電導複合金属酸化物の薄膜、線材等の製造方法として
は、薄膜と線材のどちらの製造方法においても、各金属
成分をそれぞれの酸化物、炭酸塩等の粉末の状態で物理
的に粉砕混合した後、焼成することにより固相反応を行
なわせる方法か、あるいは、各金属成分を硝酸塩、塩酸
塩、a酸塩等の水溶性塩の形で均一溶液とし、これに炭
酸イオン、水酸イオン、シュウ酸イオン等を添加して、
不溶性の水酸化物、炭酸塩、シュウ酸塩等の形で各成分
を共沈させ、沈殿を分難、焼成する方法か、あるいは、
各金属成分のアルコキシドあるいは。
In both methods of manufacturing thin films and wires of superconducting composite metal oxides, each metal component is physically pulverized and mixed in the form of a powder of each oxide, carbonate, etc. After that, a solid phase reaction is performed by firing, or each metal component is made into a homogeneous solution in the form of a water-soluble salt such as nitrate, hydrochloride, a-chloride, etc., and carbonate ion, hydroxide ion, By adding oxalate ions, etc.
A method is to coprecipitate each component in the form of insoluble hydroxide, carbonate, oxalate, etc., separate the precipitate, and sinter it, or
Alkoxide or each metal component.

β−ジケトン錯体または、β−ジケトエステル錯体また
は、有機酸塩等の混合物を有機溶媒に溶解し均一溶液と
した後、加水分解し、沈殿を分離した後、焼成するなど
の方法でまず、超電導複合金属酸化物粉末を得る。
First, superconductivity is obtained by dissolving a mixture of β-diketone complexes, β-diketoester complexes, or organic acid salts in an organic solvent to make a homogeneous solution, hydrolyzing it, separating the precipitate, and then firing it. Obtain composite metal oxide powder.

薄膜の場合は、これの粉末をさらに、ホットプレス等の
方法によってターゲットを作製し、一般にスパッタリン
グと言われる方法により基板上に薄膜を作製する方法が
ある。
In the case of a thin film, there is a method in which a target is further prepared from the powder by a method such as hot pressing, and a thin film is formed on a substrate by a method generally called sputtering.

線材の場合は、この粉末をシース材としての銀パイプに
充填し、線引加工し、さらに、空気中、もしくは酸素雰
囲気中で熱処理をすることにより超電導線材を得る方法
がある。
In the case of a wire, there is a method of obtaining a superconducting wire by filling this powder into a silver pipe as a sheath material, drawing it, and then heat-treating it in air or an oxygen atmosphere.

しかしながら、いずれの方法においても、まず複合金属
酸化物粉末を合成しなければならない。
However, in either method, composite metal oxide powder must first be synthesized.

スパッタリングにより薄膜を製造するためには、高価な
スパッタリング装置や、ホットプレス装置等を使用しな
ければならないためコストが高くなる。
In order to manufacture a thin film by sputtering, expensive sputtering equipment, hot press equipment, etc. must be used, resulting in high costs.

線材を製造するためには、酸化物粉末を充填し線引加工
しなければならないため、醜化物粉末−般の性質として
、非常に延性に乏しく、線引加工等により必要な細さの
線径を得るのが難しく、さらに、シース材として、酸素
を透過させる銀を使用しなければならないため、コスト
が高くなる等の問題がある。
In order to manufacture wire rods, oxide powder must be filled and wire-drawn, and as a result of the general property of oxide powder, it has extremely poor ductility, and wire diameters as small as necessary can be obtained through wire-drawing. Furthermore, since silver, which permeates oxygen, must be used as the sheath material, there are problems such as increased cost.

〔問題点の解決に係わる着眼点、知見、手段〕そこで、
本発明者等は鋭意検討した結果、複合金属酸化物の薄膜
もしくは線材を得ろ方法として。
[Points of view, knowledge, and means related to solving problems] Therefore,
As a result of intensive studies, the present inventors have developed a method for obtaining composite metal oxide thin films or wires.

必要な複合金属酸化物組成中の金属成分の内、少なくと
も一種類の金属(実際的にはlA)を基体として使用し
、あらかじめ表面を酸化させ、残りの金属成分供給源と
してアルコキシド(実際的にはビスマス、ストロンチウ
ム及びカルシウムのアルコキシド)を用い、このアルコ
キシド混合物を。
Among the metal components in the required composite metal oxide composition, at least one metal (in practice, lA) is used as a substrate, the surface is oxidized in advance, and an alkoxide (in practice, (alkoxides of bismuth, strontium and calcium) and this alkoxide mixture.

表面を酸化させた該金属基体上に塗布し、空気中の水分
で加水分解反応を行なわせた後、生成した加水分解生成
物の厚さに従って、空気中もしくは酸素中で焼成する時
間を調整することにより、少なくとも表面が、目的とす
る複合金属酸化物組成である物体、特に薄膜もしくは線
材が得られることを見出した。
After applying it to the metal substrate whose surface has been oxidized and causing a hydrolysis reaction with moisture in the air, the firing time in air or oxygen is adjusted according to the thickness of the hydrolyzed product produced. It has been found that by doing this, it is possible to obtain an object, particularly a thin film or wire, whose surface at least has the desired composite metal oxide composition.

〔発明の構成〕[Structure of the invention]

本発明はビスマスのアルコキシドとストロンチウムのア
ルコキシドとカルシウムのアルコキシドを、有機溶媒に
溶解し、この溶液を表面をあ゛らかしめ酸化させ表面が
酸化銅である金属鋼基体に塗布し、加水分解を行なわせ
た後、焼成することからなる、表面が銅、ビスマス、ス
トロンチウムおよびカルシウムよりなる複合金属酸化物
で被覆された物体を得る方法を提供する。
In the present invention, bismuth alkoxide, strontium alkoxide, and calcium alkoxide are dissolved in an organic solvent, and this solution is applied to a metal steel substrate whose surface is oxidized to darken it, and whose surface is copper oxide, and then hydrolyzed. Provided is a method for obtaining an object whose surface is coated with a composite metal oxide consisting of copper, bismuth, strontium and calcium, which comprises heating the object and then firing it.

本発明の方法において、ビスマスのアルコキシドとスト
ロンチウムのアルコキシドとカルシウムのアルコキシド
の金属換算量比が、目的とする超電導性複合酸化物中の
ビスマスとストロンチウムとカルシウムの量比と同じと
することによって超電導性複合酸化物の被覆を有する銅
物体を得ることができる。好ましい態様において、1:
1:1のモル比でBiとSrとCaを含むアルコキシド
混合溶液が使用される。
In the method of the present invention, the ratio of bismuth alkoxide, strontium alkoxide, and calcium alkoxide in terms of metal is the same as the ratio of bismuth, strontium, and calcium in the target superconducting composite oxide, thereby achieving superconductivity. Copper objects with a complex oxide coating can be obtained. In a preferred embodiment, 1:
An alkoxide mixed solution containing Bi, Sr, and Ca in a molar ratio of 1:1 is used.

本発明において、ビスマスのアルコキシドとは、一般式
Bi (OR’ ) (OR2) (OR’ )で表わ
され、R″、R2゜R1が同一または人別のC工〜C1
のアルキル基である化合物である。
In the present invention, bismuth alkoxide is represented by the general formula Bi (OR') (OR2) (OR'), where R'' and R2°R1 are the same or different from C to C1.
This is a compound that is an alkyl group.

本発明において、ストロンチウムおよびカルシウムのア
ルコキシドとは、一般式、A(OR’)(OR”)で表
わされ、 AがSrまたはCaであり、R1、R2が同
一または人別のC工〜CGのアルキル基である化合物で
ある。
In the present invention, strontium and calcium alkoxides are represented by the general formula A(OR')(OR''), where A is Sr or Ca, and R1 and R2 are the same or different from each other. This is a compound that is an alkyl group.

本発明において、表面をあらかじめ酸化させ、表面が酸
化鋼である金属銅基体を使用する理由は、銅が超電導複
合酸化物における必須元素でありその供給源とするため
であり、表面を酸化させる理由は、目的とする物質が酸
化物であるため、最後の熱処理をできるだけ容易に行な
うためである。
In the present invention, the reason why a metallic copper substrate whose surface is oxidized and whose surface is oxidized steel is used is that copper is an essential element in the superconducting composite oxide and serves as its supply source, and the reason why the surface is oxidized is that This is to make the final heat treatment as easy as possible since the target substance is an oxide.

本発明方法において金属銅基体とは、板状、あるいは線
状等、どの様な形状であっても良く、さらに、必要な形
状の基体の表面が金属銅であれば良く、他の金属あるい
は、酸化マグネシウム、酸化ジルコニウム、エメラルド
、酸化アルミニウム、チタン酸バリウム等により作られ
た基体上に鋼をメツキあるいは蒸着等の手法によって表
面を金属銅とさせたものであってもよい。
In the method of the present invention, the metallic copper substrate may be of any shape, such as a plate or a line, as long as the surface of the substrate of the required shape is made of metallic copper, or other metals or It may also be a substrate made of magnesium oxide, zirconium oxide, emerald, aluminum oxide, barium titanate, etc., on which the surface is made of metallic copper by plating or vapor deposition of steel.

本発明において、表面をあらかじめ酸化し表面が酸化銅
である金属銅上に生成するビスマス、ストロンチウムお
よびカルシウムの加水分解生成物の厚さは特に規制され
るものではなく、アルコキシド溶液の濃度および塗布の
回数に依り任意の厚さに調整することが出来る。
In the present invention, the thickness of the hydrolysis products of bismuth, strontium, and calcium that are formed on metallic copper whose surface is previously oxidized and whose surface is copper oxide is not particularly limited, and the thickness of the hydrolysis products of bismuth, strontium, and calcium is not particularly limited, and the The thickness can be adjusted to any desired thickness depending on the number of times.

本発明における焼成時間は表面をあらかじめ酸化し表面
が酸化鋼である金属銅上の加水分解生成物の厚さに依り
異なるため規制されるものではないが、おおよそ30分
から5時間程度で良い。
The firing time in the present invention is not limited because it depends on the thickness of the hydrolyzed product on the metallic copper whose surface is oxidized in advance and whose surface is oxidized steel, but it may be approximately 30 minutes to 5 hours.

本発明方法によって超電導性被膜を有する物体が得られ
るのは、目的とする組成の超電導性B1−5r−Ca−
Cu複合酸化物と同じ量比のBiとSrとCaを含むア
ルコキシド溶液を酸化銅被覆を有する銅に塗布して加水
分解、焼成を行なう時は、銅の表面は。
The object having a superconducting coating can be obtained by the method of the present invention because it has a superconducting B1-5r-Ca-
When an alkoxide solution containing Bi, Sr, and Ca in the same quantitative ratio as the Cu composite oxide is applied to copper coated with copper oxide and then hydrolyzed and fired, the surface of the copper is

BiとSrとCaのみは所定割合で含むがCuだけは、
表ばから内層に到るまで含有量が遷移する複合酸化物の
膜が形成され、従って加水分解焼成の条件を適当に選択
することによって、必ずある暦に目的とする超電導性複
合酸化物を形成させることができるからである。
Only Bi, Sr, and Ca are included in a predetermined proportion, but only Cu is included.
A film of composite oxide whose content changes from the surface layer to the inner layer is formed. Therefore, by appropriately selecting the conditions for hydrolysis and firing, the desired superconducting composite oxide is definitely formed. This is because it can be done.

この加水分解焼成の条件は主として経験および試行錯誤
によって決定されるが、−度特定形状の物体についてこ
の条件が決定されれば、機械的に量産を行なうことが可
能である。
The conditions for this hydrolysis firing are determined mainly by experience and trial and error, but once these conditions are determined for an object of a specific shape, mass production can be carried out mechanically.

特定条件の選定によって表面に超電導性を形成させるこ
とができる。
Superconductivity can be formed on the surface by selecting specific conditions.

〔発明の効果〕〔Effect of the invention〕

すでに知られているようにBi、 SrおよびCaのア
ルコキシドは、蒸留あるいは再結晶等によって高純度化
が可能である本発明方法によれば、この高純度化可能の
アルコキシドと高純度の銅を用い、超電導複合金属酸化
物で被覆された物体をあらかじめ超電導複合金属酸化物
粉末を合成せず、直接且つ廉価に得ることができる。
As is already known, alkoxides of Bi, Sr, and Ca can be highly purified by distillation, recrystallization, etc. According to the method of the present invention, this highly purified alkoxide and high-purity copper are used. , an object coated with a superconducting composite metal oxide can be obtained directly and inexpensively without synthesizing the superconducting composite metal oxide powder in advance.

〔発明の具体的開示〕[Specific disclosure of the invention]

実施例1 ビスマストリイソプロポキシドBi (OCR(CHj
)21319.3g とストロンチウムジイソプロポキ
シド5r(OCFI(C)1.)2)210.2gおよ
びカルシウムジイソプロポキシドCa (OCH(CH
,)Z )27.9gをイソプロパツール500mQに
溶解し、溶液を得た。この溶液を、直径0.01mn+
の銅線を酸素雰囲気下1000”Cで1時間熱処理し表
面を酸化鋼とした物に塗布し、大気中に30分放置する
ことにより空気中の水分で加水分解させる操作を10回
繰り返した。この銅線の一部を切り光学H微鏡で!!!
察したところ、生成した加水分解生成物は白色で厚さは
、1.8ミクロンであった。
Example 1 Bismuth triisopropoxide Bi (OCR(CHj
) 21319.3 g, strontium diisopropoxide 5r (OCFI(C)1.)2) 210.2 g and calcium diisopropoxide Ca (OCH(CH
, ) Z ) 27.9 g was dissolved in 500 mQ of isopropanol to obtain a solution. This solution was mixed with a diameter of 0.01 mm+
Copper wire was heat-treated at 1000''C in an oxygen atmosphere for 1 hour to give an oxidized steel surface, and the process was repeated 10 times to allow it to be hydrolyzed by moisture in the air by leaving it in the air for 30 minutes. Cut a part of this copper wire using an optical H microscope!!!
The resulting hydrolysis product was found to be white and 1.8 microns thick.

このものを酸素雰囲気中850℃で1時間焼成した後、
炉冷した。この線の超電導臨界温度(Tc)を測定した
ところ75にであった。また、この線の表面の定量分析
を、xIJAマイクロアナライザー(XMA)で行なっ
たところ、 Bi : Sr : Ca : Cu :
 Oの比は1:1 : 1 : 2 : 5.5であっ
た。
After firing this product at 850°C for 1 hour in an oxygen atmosphere,
Furnace cooled. The superconducting critical temperature (Tc) of this wire was measured and found to be 75. In addition, quantitative analysis of the surface of this line was performed using an xIJA microanalyzer (XMA), and the results were as follows: Bi: Sr: Ca: Cu:
The O ratio was 1:1:1:2:5.5.

実施例2 ビスマストリn−プロポキシドBi(OCaHt〕x 
19.3gとストロンチウムジェトキシド5r(0(1
:2H,328,88gおよびカルシウムジロープロポ
キシドCa (QCs Ht )z7.9gをn−プロ
パツール500aQに溶解し、溶液とした。さらにこの
溶液に、厚さ0.5mm縦1cm横1cmの酸素雰囲気
下1000℃で30分熱処理し表面を酸化銅とした銅板
2枚を浸し、引上げた後、空気中の水分で加水分解させ
る操作を5回繰り返し、−枚を切断し断面を光学g微鏡
で観察したところ白色の加水分解生成物の厚さは1.2
ミクロンあった。
Example 2 Bismutri n-propoxide Bi(OCaHt) x
19.3g and strontium jetoxide 5r (0(1
: 328.88 g of 2H and 7.9 g of calcium gyropropoxide Ca (QCs Ht ) were dissolved in n-propatool 500aQ to form a solution. Furthermore, two copper plates 0.5 mm thick, 1 cm long and 1 cm wide, heat-treated at 1000 degrees Celsius for 30 minutes in an oxygen atmosphere to make the surface copper oxide are immersed in this solution, pulled up, and then hydrolyzed with moisture in the air. After repeating this process 5 times, I cut the sheet and observed the cross section with an optical g-microscope, and found that the thickness of the white hydrolyzed product was 1.2
It was a micron.

残りの銅板を酸素雰囲気中870℃で1時間焼成した後
、炉冷した。この板の超電導臨界温度(Tc)を測定し
たところ70にであった。また、この板の表面の定量分
析を、  )l’lAで行なったところ、Bi:Sr:
Ca : Cu : Oの比は1 : 1 : 1 :
1.9:5.4であった。
The remaining copper plate was fired at 870° C. for 1 hour in an oxygen atmosphere, and then cooled in a furnace. The superconducting critical temperature (Tc) of this plate was measured to be 70. In addition, quantitative analysis of the surface of this plate was performed using )l'lA, and it was found that Bi:Sr:
The ratio of Ca:Cu:O is 1:1:1:
The ratio was 1.9:5.4.

実施例3 ビスマストリエトキシドsi (QC2Hs )□17
.2gとストロンチウムジロープロポキシド5r(OC
3H,)、10.28gおよびカルシウムジェトキシド
Ca (QC,H,)よQ、5gをエタノール500d
に溶解し溶液を得た。この溶液に、直径0.025+n
mの鎖線に銅を5ミクロンの厚さにメツキし、さらに、
酸素雰囲気下1000’Cで30分熱処理し表面を酸化
銅とした線を浸し1、引き上げた後、空気中の水分で加
水分解させる操作を5回繰り返した。この線の一部を切
り、その断面を光学顕微鏡で観察したところ、白色の加
水分解生成物の厚さは1.7ミクロンであった。更にこ
の線を空気中800℃で1時間焼成した後、炉冷した。
Example 3 Bismuth triethoxide si (QC2Hs)□17
.. 2g and strontium gyropropoxide 5r (OC
3H,), 10.28g and calcium jetoxide Ca (QC,H,), 5g of Q, and 500d of ethanol.
A solution was obtained. In this solution, add a diameter of 0.025+n
Plate copper to a thickness of 5 microns on the chain line of m, and further,
The wire was heat-treated at 1000'C for 30 minutes in an oxygen atmosphere to make the surface copper oxide, and then the wire was immersed, pulled out, and then hydrolyzed with moisture in the air, which was repeated five times. When a part of this line was cut and the cross section was observed with an optical microscope, the thickness of the white hydrolysis product was 1.7 microns. Further, this wire was fired in air at 800° C. for 1 hour, and then cooled in a furnace.

この線の超電導臨界温度(Tc)を測定したところ、7
6にであった。さらに、この線の表面の定量分析をXM
A テ行なったところ、Bi : Sr : Ca :
 Cu : Oの比は1 : 0.9 : 0.9 :
 1.8 : 5.3であった。
When we measured the superconducting critical temperature (Tc) of this wire, it was found to be 7
It was on 6th. Furthermore, quantitative analysis of the surface of this line was performed using XM
When I did A Te, Bi: Sr: Ca:
The ratio of Cu:O is 1:0.9:0.9:
1.8: 5.3.

実施例4 ビスマストリイソプロポキシドBi (OCH(CHx
 )2 )319.3g とストロンチウムジイソプロ
ポキシド5r(OCR(CH,)り、 10.28gお
よびカルシウムジイソプロポキシドCa(OCR(CH
x)z)z7.9gをイソプロパツール500mMに溶
解し、溶液を得た。この溶液に厚さIIIIII+縦1
cm横1cmの酸化マグネシウムの基板2枚に銅を10
ミクロンの厚さにメツキし、酸素雰囲気下1000’c
で1時間熱処理し表面を酸化鋼としたFiを浸し、引き
上げ、空気中の水分で加水分解させる操作を10回繰り
返し、1枚の断面を光学顕微鏡で観察したところ、白色
の加水分解生成物の厚さは3ミクロンであった。さらに
、残りの1枚を酸素雰囲気中で850′Cで2時間焼成
した後、炉冷した。
Example 4 Bismuth triisopropoxide Bi (OCH(CHx
)2) 319.3g and strontium diisopropoxide 5r (OCR(CH,), 10.28g and calcium diisopropoxide Ca(OCR(CH,)
x) z) 7.9 g of z was dissolved in 500 mM of isopropanol to obtain a solution. Add this solution to the thickness III + 1
10cm copper on two magnesium oxide substrates 1cm wide
Plated to micron thickness, 1000'C under oxygen atmosphere
The process of immersing Fi, which was heat-treated for 1 hour to make the surface oxidized steel, then pulling it up and hydrolyzing it with moisture in the air, was repeated 10 times. When the cross section of one sheet was observed with an optical microscope, a white hydrolysis product was observed. The thickness was 3 microns. Furthermore, the remaining one sheet was fired at 850'C for 2 hours in an oxygen atmosphere and then cooled in a furnace.

この線の超電導臨界温度(Tc)を測定したところ72
にであった。また、この薄膜の表面の定量分析をXMA
で行なったところ、Bi : Sr : Ca : C
u : 0の比は、1:1:1:2:5.5であった。
The superconducting critical temperature (Tc) of this wire was measured and was 72
It was. In addition, quantitative analysis of the surface of this thin film was performed using XMA.
When I did this, Bi: Sr: Ca: C
The u:0 ratio was 1:1:1:2:5.5.

Claims (1)

【特許請求の範囲】 1、ビスマスのアルコキシドとストロンチウムのアルコ
キシドとカルシウムのアルコキシドを有機溶媒に溶解し
、この溶液を、表面をあらかじめ酸化させ表面が酸化銅
である金属銅基体に塗布し、加水分解を行なわせた後、
焼成することからなる、表面が銅、ビスマス、ストロン
チウムおよびカルシウムよりなる複合金属酸化物で被覆
された物体を得る方法。 2、請求項1に記載の方法であって、ビスマスのアルコ
キシドとストロンチウムのアルコキシドとカルシウムの
アルコキシドの金属換算量比が、目的とする銅とビスマ
スとストロンチウムとカルシウムからなる超電導性複合
金属酸化物中のビスマスとストロンチウムとカルシウム
の量比と同じであることを特徴とする方法。 3、請求項2に記載の方法であって、ビスマスとストロ
ンチウムとカルシウムのアルコキシド溶液がモル比で1
:1:1のビスマスとストロンチウムとカルシウムを含
む方法。
[Claims] 1. Bismuth alkoxide, strontium alkoxide, and calcium alkoxide are dissolved in an organic solvent, and this solution is applied to a metallic copper substrate whose surface has been previously oxidized and whose surface is copper oxide, and then hydrolyzed. After doing this,
A method for obtaining an object whose surface is coated with a composite metal oxide consisting of copper, bismuth, strontium and calcium, which comprises firing. 2. The method according to claim 1, wherein the metal equivalent ratio of bismuth alkoxide, strontium alkoxide, and calcium alkoxide in the target superconducting composite metal oxide consisting of copper, bismuth, strontium, and calcium. A method characterized in that the amount ratio of bismuth, strontium and calcium is the same. 3. The method according to claim 2, wherein the alkoxide solution of bismuth, strontium, and calcium has a molar ratio of 1.
: A method containing 1:1 bismuth, strontium and calcium.
JP11170988A 1988-05-10 1988-05-10 Production of body covered by composite metal oxide having specified composition Pending JPH01282125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11170988A JPH01282125A (en) 1988-05-10 1988-05-10 Production of body covered by composite metal oxide having specified composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11170988A JPH01282125A (en) 1988-05-10 1988-05-10 Production of body covered by composite metal oxide having specified composition

Publications (1)

Publication Number Publication Date
JPH01282125A true JPH01282125A (en) 1989-11-14

Family

ID=14568171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11170988A Pending JPH01282125A (en) 1988-05-10 1988-05-10 Production of body covered by composite metal oxide having specified composition

Country Status (1)

Country Link
JP (1) JPH01282125A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02296728A (en) * 1989-05-12 1990-12-07 Shoei Chem Ind Co Manufacture of oxide superconductor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02296728A (en) * 1989-05-12 1990-12-07 Shoei Chem Ind Co Manufacture of oxide superconductor

Similar Documents

Publication Publication Date Title
DE3853594T2 (en) Process for the production of a superconducting material.
DE3854208T2 (en) Process for producing a layer of superconducting oxide material.
JP2002284525A (en) Solution composition containing metal complex coordinated with specific ligands onto specific metal species, solution composition for producing superconductive film of rare earths, amorphous solid of specific metal complex, method for producing solution containing metal complex coordinated with specific ligands onto specific metal species, method for producing solution for producing superconductive film of rare earths, and method for forming superconductive thin film
CN1044004A (en) Make the method for superconducting ceramic wire
GB2206109A (en) Preparing thin film superconducting oxides
US5135907A (en) Manufacture of high purity superconducting ceramic
JPH01282125A (en) Production of body covered by composite metal oxide having specified composition
JP4203606B2 (en) Oxide superconducting thick film composition and thick film tape-shaped oxide superconductor
Celik et al. Ceramic insulation for Nb3Sn wires and magnets
DE3734069A1 (en) METHOD FOR DEPOSITING LAYERS FROM AN OXIDE-CERAMIC SUPRALIRECTIONAL MATERIAL ON A SUBSTRATE
JPH01282121A (en) Production of body coated with composite metal oxide having specified composition
DE69302572T2 (en) Process for the production of thin coatings from inorganic oxides of controlled stoichiometry
JPH01198485A (en) Production of body coated with compound metal oxide having specified composition
JPH01198486A (en) Production of body coated with multiple metal oxide having specified composition
JP3548802B2 (en) A solution composition containing a metal complex having a specific ligand coordinated to a specific metal species, a solution composition for producing a rare-earth superconducting film, an amorphous solid of a specific metal complex, a specific coordination to a specific metal species A method for producing a solution containing a metal complex to which a ligand is coordinated, a method for producing a solution for producing a rare earth superconducting film, and a method for producing a superconducting thin film.
RU2616305C1 (en) Method for bismuth ferrite transparent nanoscale films production
JPH05279026A (en) Production of superconducting film on metallic substrate
JPH0476324B2 (en)
Benavidez et al. Chemical method to prepare YBa2Cu3O7− x (YBCO) films by dipping onto SrTi (Nb) O3 ceramics
JPH03177304A (en) Production of oxide superconductor thin film
JPS61166983A (en) Formation of thin sulfide film
JP2822328B2 (en) Superconductor manufacturing method
JPH0238359A (en) Production of superconductor
JPH01138129A (en) Production of oxide superconductor thin film
JP2589087B2 (en) Manufacturing method of superconducting thin film