JPH01138129A - Production of oxide superconductor thin film - Google Patents

Production of oxide superconductor thin film

Info

Publication number
JPH01138129A
JPH01138129A JP29577887A JP29577887A JPH01138129A JP H01138129 A JPH01138129 A JP H01138129A JP 29577887 A JP29577887 A JP 29577887A JP 29577887 A JP29577887 A JP 29577887A JP H01138129 A JPH01138129 A JP H01138129A
Authority
JP
Japan
Prior art keywords
thin film
superconductor thin
oxide superconductor
producing
alkoxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29577887A
Other languages
Japanese (ja)
Inventor
Takashi Kadode
門出 孝志
Hiromitsu Yukitsuka
広光 幸塚
Sumio Sakka
作花 済夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Neos Co Ltd
Original Assignee
Neos Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neos Co Ltd filed Critical Neos Co Ltd
Priority to JP29577887A priority Critical patent/JPH01138129A/en
Publication of JPH01138129A publication Critical patent/JPH01138129A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1254Sol or sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1279Process of deposition of the inorganic material performed under reactive atmosphere, e.g. oxidising or reducing atmospheres

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Metallurgy (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Chemically Coating (AREA)

Abstract

PURPOSE:To produce a Y-Ba-Cu-O superconductor thin films by the sol-gel method, by coating a base with a solution of alkoxides of Y, Ba and Cu in an organic solvent containing an alkanolamine, precalcinating and annealing the coated film. CONSTITUTION:A solution of yttrium alkoxide, barium alkoxide, and copper alkoxide in an organic solvent containing an alkanolamine is coated on a base. The coated film is converted into gel, the gel film is precalcinated, annealed in an oxidative atmosphere, then cooled down in the oven to give the subject superconductor thin film. The amount of the alkanolamine in the organic solvent is usually 1-20%. The calcination treatment is conducted usually in air, preferably in the gas flow of oxygen at 450-950 deg.C for 1-20min. The annealing treatment is carried out usually at 450-950 deg.C for 10-80hr.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、超伝導性複合酸化物(Y−Ba−Cu−0系
複合酸化物)薄膜の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing a superconducting composite oxide (Y-Ba-Cu-0 based composite oxide) thin film.

従来の技術 Y −[3a −Cu −0系の超伝導性複合酸化物薄
膜の製造方法としては従来から(1)プラズマスプレー
デポジット法、(2)スクリーン印刷法、(3)スパッ
タ法、(4)イオンビーム蒸着法および(5)金属塩分
解法等が知られているが、(1)と(2)の方法による
と膜厚は100μ肩以上となって薄膜化は困難であり、
(3)と(4)の方法によると膜組成の変動が大きいば
かりでなく、面積の大きい薄膜を得ることは実際上不可
能であり、また(5)の方法は簡易な方法であるが、出
発原料の精製が難しいために膜に不純物が混入しやすい
だけでなく、薄膜の微細構造を制御することが困難であ
る、等の問題がある。
Conventional techniques Conventional methods for producing Y-[3a-Cu-0-based superconducting composite oxide thin films include (1) plasma spray deposition, (2) screen printing, (3) sputtering, and (4) ) Ion beam evaporation method and (5) metal salt decomposition method are known, but methods (1) and (2) result in a film thickness of more than 100 μm, making it difficult to thin the film.
Methods (3) and (4) not only cause large fluctuations in film composition, but also make it practically impossible to obtain a thin film with a large area, and method (5) is a simple method, but There are problems such as difficulty in purifying the starting material, which not only makes it easy for impurities to be mixed into the film, but also makes it difficult to control the fine structure of the thin film.

一方、Y−Ba−Cu−0系以外の超伝導性複合酸化物
薄膜の製造方法としては、金属アルコキシドを出発原料
とするゾル−ゲル法が知られており、該製法によれば、
被コーテイング基体の形状を問わずに面積の大きい薄膜
の製造が可能である。均一組成の薄膜が簡易な装置で製
造可能である。原料の精製が容易で、薄膜の微細構造の
制御が可能である、等の利点が得られる。
On the other hand, a sol-gel method using a metal alkoxide as a starting material is known as a method for producing superconducting composite oxide thin films other than Y-Ba-Cu-0, and according to this method,
It is possible to produce a thin film with a large area regardless of the shape of the substrate to be coated. Thin films with uniform composition can be produced using simple equipment. Advantages such as ease of refining the raw material and control of the fine structure of the thin film can be obtained.

しかしながら、銅アルコキシドはアルコール類やアセト
ン等のゾル−ゲル法で常用されている溶媒を含む一般的
な有機溶媒に溶解しないために、該方法をY−Ba−C
u−0系の超伝導性複合酸化物薄膜の製造に適用する技
術は朱だ1こ開発されていない。
However, since copper alkoxide does not dissolve in general organic solvents, including alcohols and acetone, which are commonly used in sol-gel methods, this method
No technology has been developed that can be applied to the production of u-0-based superconducting composite oxide thin films.

発明が解決しようとする問題点 本発明は、銅アルコキシドの有機溶媒への可溶化を図る
ことによって、上記の製造上の利点を有するゾル−ゲル
法のY−Ba−Cu−0系超伝導性複合酸化物薄膜の製
造への適用を可能にするためになされたものである。
Problems to be Solved by the Invention The present invention aims to solubilize copper alkoxide in an organic solvent to produce a Y-Ba-Cu-0 based superconductor produced by the sol-gel method, which has the above-mentioned manufacturing advantages. This was done to enable application to the production of composite oxide thin films.

問題点を解決するための手段 即ち本発明は、イツトリウムアルコキシド、バリウムア
ルコキシドおよび銅アルコキシドをアルカノールアミン
含有有機溶媒に溶解させた溶液を基体上に塗布し、該塗
布膜をゲル化させ、該ゲル化膜を前焼成処理に付した後
、酸素雰囲気下での焼鈍処理後、炉中冷却することを特
徴とする酸化物超伝導体薄膜の製造方法に関する。
A means for solving the problem, that is, the present invention, is to apply a solution in which yttrium alkoxide, barium alkoxide, and copper alkoxide are dissolved in an alkanolamine-containing organic solvent onto a substrate, to gel the coating film, and to form a gel. The present invention relates to a method for producing an oxide superconductor thin film, which comprises subjecting the film to a pre-calcination treatment, followed by annealing in an oxygen atmosphere, and then cooling in a furnace.

本発明に使用するイツトリウム、バリウムまたは銅のア
ルコキシドとしてはメトキシド、エトキシド、ノルマル
プロポキシド、イソプロポキシド、ノルマルブトキシド
、イソブトキシド、セカンダリ−ブトキシドおよびター
シャリ−ブトキシドが例示され、これらは所望により2
F1以上併用してもよい。
Examples of yttrium, barium or copper alkoxides used in the present invention include methoxide, ethoxide, normal propoxide, isopropoxide, normal butoxide, isobutoxide, secondary butoxide and tertiary butoxide, which may optionally be
F1 or higher may be used in combination.

このような金属アルコキシドは公知の方法、例えばこれ
らの金属の塩化物とりチウムアルコキシドとの交換反応
等によって調製することができる。
Such metal alkoxides can be prepared by known methods such as exchange reaction of chlorides of these metals with tium alkoxides.

本発明に使用するアルカノールアミンとしては、モノエ
タノールアミン、ジェタノールアミン、トリエタノール
アミン、メチルモノエタノールアミン、エヂルモノエタ
ノールアミン、イソプロピルモノエタノールアミン、ノ
ルマルブヂルモノエタノールアミン、ジメチルエタノー
ルアミン、ジメチルエタノールアミン、メチルイソプロ
ピルエタノールアミン、ノルマルブチルジェタノールア
ミン、ジブチルエタノールアミン、トリイソプロパノー
ルアミンおよびイソプロパノールアミン等が例示され、
これらは所望により2種以上併用してもよい。
The alkanolamines used in the present invention include monoethanolamine, jetanolamine, triethanolamine, methylmonoethanolamine, edylmonoethanolamine, isopropylmonoethanolamine, n-butylmonoethanolamine, dimethylethanolamine, and dimethylethanol. Examples include amine, methylisopropylethanolamine, n-butyljetanolamine, dibutylethanolamine, triisopropanolamine and isopropanolamine,
Two or more of these may be used in combination if desired.

この種のアルカノールアミンの有機溶媒への配合量は特
に限定的ではないが、通常は1〜20%である。
The amount of this type of alkanolamine added to the organic solvent is not particularly limited, but is usually 1 to 20%.

アルカノールアミンを配合する有機溶媒としてはメタノ
ール、エタノール、ノルマルプロパツール、ノルマルブ
タノール、イソブタノール、セカンダリ−ブタノールお
よびターシャリ−ブタノール等の低級アルコールが好適
であるが、その他の溶媒、例えばベンゼン、トルエン、
キシレン、およびエヂレングリコール等のグリコール類
等を適宜使用してもよい。
Lower alcohols such as methanol, ethanol, normal propatool, normal butanol, isobutanol, secondary butanol, and tertiary butanol are suitable as the organic solvent in which the alkanolamine is blended, but other solvents such as benzene, toluene,
Glycols such as xylene and ethylene glycol may be used as appropriate.

上S己のイツトリウムアルコキシド、バリウムアルコキ
シドおよび銅アルコキシドを所定の割合、例えば、イツ
トリウム1モルあたりバリウム1.5〜2.5モル、銅
2.5〜3.5モルの割合でアルカノールアミン含有有
機溶媒に溶解させた溶液を基体上に塗布する。
The alkanolamine-containing organic yttrium alkoxide, barium alkoxide, and copper alkoxide of the above are mixed in a predetermined ratio, for example, 1.5 to 2.5 moles of barium and 2.5 to 3.5 moles of copper per mole of yttrium. A solution dissolved in a solvent is applied onto a substrate.

彼コーティング基体の材質は特に限定的ではないが、基
体上に形成される超伝導性複合酸化物との反応性が極め
て低く、熱膨張係数や格子定数が複合酸化物の値と類似
する材質、例えばジルコニア、マグネシア、ヂタン酸ス
トロンチウム、または高純度アルミナ等が好ましい。
The material of the coating substrate is not particularly limited, but materials that have extremely low reactivity with the superconducting composite oxide formed on the substrate and whose coefficient of thermal expansion and lattice constant are similar to those of the composite oxide; For example, zirconia, magnesia, strontium ditanate, high purity alumina, etc. are preferred.

上記のイツトリウムアルコキシド等の金属アルコキシド
溶液を基体上に塗布する方法も特に限定的ではなく、該
溶液を基体上に滴下する簡易な方法を使用してもよいが
、通常は基体を該溶液中に浸漬した後、ゆっくりと引き
上げるデイツプコーティング法、またはスピンコーティ
ング法等を使用する。
The method of applying a metal alkoxide solution such as the above-mentioned yttrium alkoxide onto a substrate is not particularly limited, and a simple method of dropping the solution onto the substrate may be used, but usually the substrate is placed in the solution. A dip coating method or a spin coating method, in which the material is dipped in water and then slowly pulled up, is used.

基体上の塗布膜は次いでゲル化処理に付される。The coating film on the substrate is then subjected to a gelling treatment.

ゲル化は通常、ホットプレート等の加熱手段を用いて約
80〜300℃で約1〜10分間加熱することによって
行なうが、これに限定されない。
Gelation is usually carried out by heating at about 80 to 300° C. for about 1 to 10 minutes using a heating means such as a hot plate, but is not limited thereto.

ゲル化膜は次いで前焼成処理に付される。前焼成処理は
通常、空気中または好ましくは酸素気流中において、4
50〜950℃で1〜20分間行なう。
The gelled film is then subjected to a pre-baking treatment. The pre-calcination treatment is usually carried out in air or preferably in a stream of oxygen.
It is carried out at 50-950°C for 1-20 minutes.

この前焼成処理までの工程を複数回繰り返すことによっ
て、最終的に得られる薄膜の厚さを適宜調整することが
可能となる。
By repeating the steps up to this pre-baking treatment multiple times, it becomes possible to adjust the thickness of the finally obtained thin film as appropriate.

前焼成処理に付した薄膜を最後に酸素雰囲気下での焼鈍
処理およびその後の炉中冷却により、Y−Da−Cu−
0系の超伝導性複合酸化物薄膜が得られる。焼鈍処理は
通常、450〜950℃で10〜80時間行ない、処理
後の薄膜は炉内において徐冷しなければならない。
The thin film subjected to the pre-baking treatment is finally annealed in an oxygen atmosphere and then cooled in a furnace to form Y-Da-Cu-
A 0-based superconducting composite oxide thin film is obtained. The annealing treatment is usually carried out at 450 to 950° C. for 10 to 80 hours, and the thin film after treatment must be slowly cooled in a furnace.

本発明方法によって得られる薄膜の組成は金属アルコキ
シドの配合割合等によって左右されるが、例えば次の組
成が挙げられる: YBatCu30’  (x=6.5〜7.0)以下、
本発明を実施例によって説明する。
The composition of the thin film obtained by the method of the present invention depends on the blending ratio of metal alkoxide, etc., but examples include the following composition: YBatCu30' (x = 6.5 to 7.0) and below,
The present invention will be explained by examples.

実施例1 撹拌機と滴下漏斗を備えた反応容器内に金属バリウム0
.829とメタノール10Qieを入れ、窒素気流中で
2時間還流した後、イツトリウムブトキシドの0.44
 mol/12キシレン溶液(北興化学社市販品) 6
 *Qとトリエタノールアミン5村を添加し、さらに2
時間還流した。
Example 1 Metallic barium 0 in a reaction vessel equipped with a stirrer and a dropping funnel
.. 829 and 10 Qie of methanol were added and refluxed for 2 hours in a nitrogen stream.
mol/12 xylene solution (commercial product from Hokuko Kagakusha) 6
*Add Q and 5 molecules of triethanolamine, and add 2 more
Refluxed for an hour.

反応混合物を室温まで冷却した後、銅メトキシド1.1
9を添加し、撹拌を約2時間続行して得られた濃青色透
明溶液をジルコニア基板(21xmX2 + jfiX
 1 am:日本特殊陶業社製)上に4.l!i(約0
゜2 麓I2)滴下し、これをホットプレート上におい
て、約200℃で数分間の熱処理に付すことによって基
板上に形成されたゲル化膜を空気中において800°C
で5分間の前焼成処理に付した。
After cooling the reaction mixture to room temperature, copper methoxide 1.1
9 was added, stirring was continued for about 2 hours, and the resulting dark blue transparent solution was transferred to a zirconia substrate (21xmX2 + jfiX
1 am: manufactured by Nippon Tokushu Togyo Co., Ltd.) 4. l! i (approximately 0
゜2 Foot I2) The gelled film formed on the substrate was heated at 800°C in the air by placing it dropwise on a hot plate and subjecting it to heat treatment at approximately 200°C for several minutes.
The sample was pre-baked for 5 minutes.

上記のゲル化形成工程と前焼成処理工程を5回繰り返す
ことによって得られた薄膜を酸素気流中における800
℃で80時間の焼鈍処理に付した後、徐冷することによ
って調製された薄膜(厚さ約0゜5μm)は、X線回折
によればYI3atCu30x(x= 6 、5〜7.
0)の組成を有しており、その抵抗値(室温で約5Ω)
は冷却に伴って98Kから部域し、5GK付近でゼロと
なった。
The thin film obtained by repeating the above gel formation process and pre-baking process 5 times was heated to 800°C in an oxygen stream.
The thin film (approximately 0.5 μm thick) prepared by annealing for 80 hours at 0.degree.
0), and its resistance value (approximately 5Ω at room temperature)
The temperature ranged from 98K with cooling and reached zero around 5GK.

発明の効果 本発明による超伝導性複合酸化物薄膜の製造方法によれ
ば、微細構造が制御された均一組成の超伝導性複合酸化
物薄膜を簡易な装置を用いて容易に製造することができ
るばかりでなく、該薄膜の厚さ、表面積および形態等を
自由に設計することが可能である。
Effects of the Invention According to the method for producing a superconducting composite oxide thin film according to the present invention, a superconducting composite oxide thin film with a uniform composition and a controlled microstructure can be easily produced using a simple device. In addition, the thickness, surface area, shape, etc. of the thin film can be freely designed.

従って本発明は、低抵抗で高磁力が要求される広範囲の
分野、例えばジョセフソン素子、プリント配線回路、磁
気シールド、被覆磁気コイル等の分野において有効に利
用できる技術である。
Therefore, the present invention is a technology that can be effectively used in a wide range of fields that require low resistance and high magnetic force, such as fields such as Josephson elements, printed wiring circuits, magnetic shields, and coated magnetic coils.

Claims (1)

【特許請求の範囲】 1、イットリウムアルコキシド、バリウムアルコキシド
および銅アルコキシドをアルカノールアミン含有有機溶
媒に溶解させた溶液を基体上に塗布し、該塗布膜をゲル
化させ、該ゲル化膜を前焼成処理に付した後、酸素雰囲
気下での焼鈍処理後、炉中冷却することを特徴とする酸
化物超伝導体薄膜の製造方法。 2、ゲル化と前焼成処理を複数回繰り返した後、酸素雰
囲気下での焼鈍処理を行なう第1項記載の酸化物超伝導
体薄膜の製造方法。 3、イットリウム、バリウムまたは銅のアルコキシドが
メトキシド、エトキシド、ノルマルプロポキシド、イソ
プロポキシド、ノルマルブトキシド、イソブトキシド、
セカンダリーブトキシドまたはターシャリーブトキシド
である第1項記載の酸化物超伝導体薄膜の製造方法。 4、アルカノールアミンが、モノエタノールアミン、ジ
エタノールアミン、トリエタノールアミン、エチルモノ
エタノールアミン、ノルマルブチルモノエタノールアミ
ン、ジメチルエタノールアミン、ジエチルエタノールア
ミン、ノルマルブチルエタノールアミン、ジブチルエタ
ノールアミン、トリイソプロパノールアミンおよびイソ
プロパノールアミンから成る群から選択される1種もし
くはそれ以上のアルカノールアミンである第1項記載の
酸化物超伝導体薄膜の製造方法。 5、アルカノールアミンの含有量が1〜20%である第
1項記載の酸化物超伝導体薄膜の製造方法。 6、前焼成処理を空気中または酸素気流中において45
0〜950℃で1〜20分間行ない、酸素雰囲気下での
焼鈍処理を450〜950℃で10〜80時間行なう第
1項記載の酸化物超伝導体薄膜の製造方法。 7、薄膜の組成がYBa_2Cu_3O_x(x=6.
5〜7.0)である第1項記載の酸化物超伝導体薄膜の
製造方法。
[Claims] 1. A solution in which yttrium alkoxide, barium alkoxide, and copper alkoxide are dissolved in an alkanolamine-containing organic solvent is applied onto a substrate, the applied film is gelled, and the gelled film is pre-baked. 1. A method for producing an oxide superconductor thin film, the method comprising: annealing in an oxygen atmosphere; and cooling in a furnace. 2. The method for producing an oxide superconductor thin film according to item 1, wherein the gelation and pre-baking treatments are repeated multiple times, followed by annealing in an oxygen atmosphere. 3. Yttrium, barium or copper alkoxide is methoxide, ethoxide, normal propoxide, isopropoxide, normal butoxide, isobutoxide,
2. The method for producing an oxide superconductor thin film according to item 1, which is a secondary butoxide or a tertiary butoxide. 4. Alkanolamines include monoethanolamine, diethanolamine, triethanolamine, ethyl monoethanolamine, n-butyl monoethanolamine, dimethylethanolamine, diethylethanolamine, n-butylethanolamine, dibutylethanolamine, triisopropanolamine, and isopropanolamine. 2. The method for producing an oxide superconductor thin film according to claim 1, wherein the oxide superconductor thin film is one or more alkanolamines selected from the group consisting of: 5. The method for producing an oxide superconductor thin film according to item 1, wherein the alkanolamine content is 1 to 20%. 6. Pre-calcining treatment in air or oxygen stream for 45 minutes
2. The method for producing an oxide superconductor thin film according to item 1, wherein the annealing treatment is performed at 0 to 950°C for 1 to 20 minutes, and the annealing treatment is performed at 450 to 950°C for 10 to 80 hours. 7. The composition of the thin film is YBa_2Cu_3O_x (x=6.
5-7.0) The method for producing an oxide superconductor thin film according to item 1.
JP29577887A 1987-11-24 1987-11-24 Production of oxide superconductor thin film Pending JPH01138129A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29577887A JPH01138129A (en) 1987-11-24 1987-11-24 Production of oxide superconductor thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29577887A JPH01138129A (en) 1987-11-24 1987-11-24 Production of oxide superconductor thin film

Publications (1)

Publication Number Publication Date
JPH01138129A true JPH01138129A (en) 1989-05-31

Family

ID=17825034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29577887A Pending JPH01138129A (en) 1987-11-24 1987-11-24 Production of oxide superconductor thin film

Country Status (1)

Country Link
JP (1) JPH01138129A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5231074A (en) * 1990-04-17 1993-07-27 Massachusetts Institute Of Technology Preparation of highly textured oxide superconducting films from mod precursor solutions
US5504226A (en) * 1991-11-28 1996-04-02 Kyocera Corporation Copper oxide superconductor, a process for its production, and a copper complex used therein
US6788247B2 (en) 2001-02-21 2004-09-07 Mitsubishi Denki Kabushiki Kaisha Distance/velocity measuring method and radar signal processing device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5231074A (en) * 1990-04-17 1993-07-27 Massachusetts Institute Of Technology Preparation of highly textured oxide superconducting films from mod precursor solutions
US5504226A (en) * 1991-11-28 1996-04-02 Kyocera Corporation Copper oxide superconductor, a process for its production, and a copper complex used therein
US5578553A (en) * 1991-11-28 1996-11-26 Kyocera Corporation 1-2-4 copper oxide superconductor, a process for its production, and a copper used therein
US6788247B2 (en) 2001-02-21 2004-09-07 Mitsubishi Denki Kabushiki Kaisha Distance/velocity measuring method and radar signal processing device

Similar Documents

Publication Publication Date Title
JPH01138129A (en) Production of oxide superconductor thin film
JPH027307A (en) Barrier layer arrangement for conductive layer on silicon substrate
JP2810047B2 (en) Stable solution for producing superconductor and method for producing superconducting thin film
JPS63279527A (en) Manufacture of superconductor device
JPH01138133A (en) Production of complex oxide containing copper oxide utilizing sol-gel transformation
JPS63279528A (en) Manufacture of superconductor device
JPH07118012A (en) Oxide superconductor and its production
JPS63301424A (en) Manufacture of oxide superconductor membrane
JP2832002B2 (en) Method for producing Bi-Sr-Ca-Ci-O-based superconducting thin film
JPH01215702A (en) Production of superconducting thin film
JPH01126208A (en) Production of superconducting thin film
JP2589087B2 (en) Manufacturing method of superconducting thin film
Parola et al. New sol-gel route for processing of PMN thin films
JPH01203217A (en) Production of thin superconducting oxide film
JPH0211776A (en) Production of superconductive metal oxide film by pyrolysis
JPH0421521A (en) Production of bi-based superconductor having ni base material
JP2796587B2 (en) Method for producing Bi-Pb-Sr-Ca-Cu-based oxide superconducting film
JPH01137523A (en) Manufacture of oxide superconductive thin film
JPH02116620A (en) Formation of superconducting thin film
JPH02102123A (en) Production of superconductor
JPS63298921A (en) Manufacture of superconductive wire material
Tomashpol'skii et al. 94-K Superconducting yttrium barium cuprate films prepared by spray pyrolysis of methacrylate solutions
JPH0264012A (en) Method for forming yba2cu3o7-delta-based oxide superconductor thin film
JPH03177304A (en) Production of oxide superconductor thin film
JPH0453817B2 (en)