JPS63279527A - Manufacture of superconductor device - Google Patents

Manufacture of superconductor device

Info

Publication number
JPS63279527A
JPS63279527A JP62114321A JP11432187A JPS63279527A JP S63279527 A JPS63279527 A JP S63279527A JP 62114321 A JP62114321 A JP 62114321A JP 11432187 A JP11432187 A JP 11432187A JP S63279527 A JPS63279527 A JP S63279527A
Authority
JP
Japan
Prior art keywords
oxide superconductor
film
superconductor
substrate
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62114321A
Other languages
Japanese (ja)
Inventor
Hiromi Nibu
丹生 ひろみ
Shin Fukushima
福島 伸
Hisashi Yoshino
芳野 久士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62114321A priority Critical patent/JPS63279527A/en
Publication of JPS63279527A publication Critical patent/JPS63279527A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To unify the thickness and composition of a film and prevent the peeling of the film due to the cooling and heating cycle by coating and baking the solution containing the metal salt of each element constituting a perovskite type oxide superconductor at the preset ratio to form the film. CONSTITUTION:An aqueous solution or an organic solution containing the metal salt of each element constituting an oxide superconductor at the preset ratio is coated on a substrate, this paint film is heated to heat-decompose the metal salt of each element, it is then heat-treated at the temperature of 700 deg.C-1000 deg.C in the oxygen containing atmosphere to form the oxide superconductor film. The standard composition of the ratio of each element is Y 1mol, Ba 2mol, Cu 3mol for the Y-Ba-Cu-O system, for example. A film with uniform thickness and composition can be thereby formed, the stress on the connection interface between the substrate and the film due to the cooling and heating cycle is reduced, the occurrence of the peeling or cracks is prevented, and the good characteristic can be maintained for a long time.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、ペロブスカイト型の酸化物超電導体被膜を用
いた超半導体装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a method for manufacturing a supersemiconductor device using a perovskite-type oxide superconductor film.

(従来の技術) 近年、Ba−La−Cu−0系の層状ペロブスカイト型
の酸化物が高い臨界温度を有する可能性のあることが発
表されて以来、各所で酸化物超電導体の研究が行われて
いる(2.Phys、B Condensed Mat
ter64、189−193(1986))、その中で
もY−Ba−Cu−0系で代表される酸素欠陥を有する
欠陥ペロブスカイト型(Aha2Cu3o7−、ffi
  (^は、Y、 Yb、 No、 [ly、 Eu。
(Prior Art) In recent years, it has been announced that layered perovskite-type oxides based on Ba-La-Cu-0 may have a high critical temperature, and since then, research on oxide superconductors has been carried out in various places. (2. Phys, B Condensed Mat
ter64, 189-193 (1986)), among which defective perovskite types with oxygen defects represented by the Y-Ba-Cu-0 system (Aha2Cu3o7-, ffi
(^ is Y, Yb, No, [ly, Eu.

Er、TnおよびLuから選ばれた元素、))の酸化物
超電導体は、臨界温度■。が90に以上と液体窒素以上
の高い温度を示すため非常に有望な材料として注目され
ている(Phys、Rev、Lett、vol、 58
 No、9゜908−910) 。
The oxide superconductor of elements selected from Er, Tn and Lu) has a critical temperature ■. It is attracting attention as a very promising material because it shows a high temperature of over 90, higher than liquid nitrogen (Phys, Rev. Lett, vol. 58).
No, 9°908-910).

このような酸化物超電導体を、例えば導線として使用す
る場合には、金属管に封入して線材化したり、基板上に
被膜をパターン状に形成して使用することが考えられる
When such an oxide superconductor is used as a conducting wire, for example, it may be sealed in a metal tube to form a wire, or it may be used by forming a film on a substrate in a pattern.

(発明が解決しようとする問題点) ところで、上述した酸化物超電導体の使用方法のうち、
後者の基板上に酸化物超電導体からなる被膜を形成して
使用する場合には、蒸着法やスパッタリング法により被
膜を形成することが考えられるが真空装置等の特別の装
置を心嚢とし、製造コストが高くなるという難点がある
(Problems to be solved by the invention) By the way, among the methods of using the oxide superconductor mentioned above,
In the case of forming and using a film made of an oxide superconductor on the latter substrate, it is possible to form the film by vapor deposition or sputtering, but it is also possible to use a special device such as a vacuum device as a pericardium to manufacture the film. The disadvantage is that the cost is high.

また、前述した酸化物超電導体は、線膨脹係数が16X
 10−’ /にと、通常の金属のそれに比べて1桁程
度大きいため、臨界温度までの冷熱サイクルを繰り返し
な場合、基板上から剥離してしまうおそれがあり、密着
性に乏しいという難点もある。
Furthermore, the aforementioned oxide superconductor has a linear expansion coefficient of 16X.
10-'/, which is about an order of magnitude larger than that of ordinary metals, so there is a risk of it peeling off from the substrate if the cooling and heating cycles up to the critical temperature are repeated, and there is also the problem of poor adhesion. .

本発明はこのような従来の難点を解消すべくなされたも
ので、基板上へのペロブスカイト型酸化物超電導体被膜
の形成が容易で、かつ得られる被膜の膜厚および組成が
均一で、冷熱サイクルによっても被膜剥離のおそれのな
い超半導体装置を製造する方法を提供することを目的と
する。
The present invention has been made to solve these conventional difficulties, and it is easy to form a perovskite-type oxide superconductor film on a substrate, the resulting film has a uniform thickness and composition, and can be easily cycled through cooling and heating. It is an object of the present invention to provide a method for manufacturing a super semiconductor device without fear of film peeling.

[発明の構成] (問題点を解決するための手段) 本発明の超半導体装置の製造方法は、基板上にペロブス
カイト型の酸化物超電導体の被膜を形成してなる超半導
体装置を製造するにあたり、前記酸化物超電導体の被膜
を、この酸化物超電導体を構成する各元素の金属塩を所
定の比率で含有する水溶液または有機溶液を前記基板上
に塗布し、この塗膜を加熱することにより前記各元素の
金属塩を熱分解し、次いで酸素含有雰囲気中で700℃
〜1000℃の温度で熱処理することにより形成するこ
とを特徴としている。
[Structure of the Invention] (Means for Solving the Problems) The method for manufacturing a super-semiconductor device of the present invention includes steps for manufacturing a super-semiconductor device in which a film of a perovskite-type oxide superconductor is formed on a substrate. , by applying a coating of the oxide superconductor on the substrate with an aqueous solution or an organic solution containing metal salts of each element constituting the oxide superconductor in a predetermined ratio, and heating the coating. The metal salts of each of the above elements are thermally decomposed and then heated at 700°C in an oxygen-containing atmosphere.
It is characterized by being formed by heat treatment at a temperature of ~1000°C.

本発明における酸化物超電導体は、希土類元素を含有し
ペロブスカイト型構造を有する酸化物超電導体であって
、超電導状態を実現できればよく、ABa  Cu  
O系(δは酸素欠陥を表し通常1237−δ 以下、^は、’/、 Wb、 Ho、 Dy、 Eu、
 Er、 Ti、 Lu ; Baの一部はS「等で置
換可能)等の酸素欠陥を有する欠陥ペロブスカイト型、
5r−La−Cu−Q系等の層状ペロブスカイト型等の
広義にペロブスカイト構造を有する酸化物とする。また
希土類元素も広義の定義とし、Sc、Yおよびランタン
系を含むものとする0代表的な系としてY−Ba−Cu
−0系のほかに、5c−Ba−Cu−0系、5r−La
−Cu−0系、さらにS「をBa、Caで置換した糸環
が挙げられる。ペロブスカイト型酸化物超電導体を構成
する元素は、基本的に化学量論比の組成となるように混
合するが、多少製造条件等との関係等でずれていても構
わない0例えばY−Ba−Cu−0系ではY 1101
に対しBa 2io1 、Cu 3nolが標準組成で
あるが、実用上はY O,6〜1.4 not%、Ba
1.5〜3.Olo1%、Cu 2.0〜4.Onot
%程度のずれは問題ない。
The oxide superconductor in the present invention only needs to be an oxide superconductor containing a rare earth element and having a perovskite structure, and can realize a superconducting state.
O-based (δ represents oxygen defect, usually less than 1237-δ, ^ is '/, Wb, Ho, Dy, Eu,
Defect perovskite type with oxygen defects such as Er, Ti, Lu; a part of Ba can be replaced with S (etc.);
The oxide is an oxide having a perovskite structure in a broad sense, such as a layered perovskite type such as a 5r-La-Cu-Q system. Rare earth elements are also broadly defined to include Sc, Y, and lanthanum. A representative system is Y-Ba-Cu.
-0 series, 5c-Ba-Cu-0 series, 5r-La
Examples include -Cu-0 series, and also thread rings in which S is replaced with Ba or Ca.The elements constituting the perovskite oxide superconductor are basically mixed in a stoichiometric composition. , it doesn't matter if it deviates slightly due to manufacturing conditions etc. For example, in the Y-Ba-Cu-0 system, Y 1101
The standard composition is Ba 2io1 and Cu 3nol, but in practice, Y O, 6-1.4 not%, Ba
1.5-3. Olo1%, Cu 2.0-4. Onot
A deviation of about % is not a problem.

本発明の超半導体装置の製造方法についてさらに詳述す
ると、まず上述した酸化物超電導体を構成する各元素の
金属塩を所定の比率で含有する水溶液または有機溶液を
作製する。この溶液に使用する金属塩としては、容易に
熱分解可能なハロゲン化物や硝酸塩等が好ましい、この
溶液は、例えばY−Ba−Cu−0系の酸化物超電導体
であれば、これらの元素を含む各金属塩をこれらの元素
量として前述した一般式に対して化学量論比の組成とな
るように水またはアルコールのような有機溶剤に溶解す
ることにより得られる。なお、上記の各金属塩の混合比
は、多少製造条件等との関係で変えることもでき、例え
ばY−Ba−Cu−0系では、Y ll1olに対して
Ba2n+o l、Cu31o lが標準組成であるが
、実用上はYを基準として他の成分が±3O%程度ずれ
ても問題は生じない。
To explain in more detail the method for manufacturing a supersemiconductor device of the present invention, first, an aqueous solution or an organic solution containing metal salts of each element constituting the above-mentioned oxide superconductor in a predetermined ratio is prepared. The metal salt used in this solution is preferably a halide or nitrate that can be easily thermally decomposed. It is obtained by dissolving each of the metal salts contained in an organic solvent such as water or alcohol so that the amount of these elements becomes a stoichiometric composition based on the general formula described above. The mixing ratio of each of the metal salts mentioned above can be changed somewhat depending on the manufacturing conditions, etc. For example, in the Y-Ba-Cu-0 system, the standard composition is Ba2n+ol and Cu31ol for Yll1ol. However, in practice, there is no problem even if other components deviate by about ±30% with Y as a reference.

次いで、このようにして作製した各金属塩を含む溶液を
基板上に塗布する。この基板としては、面方向の線膨脹
係数が5X 10−’ /に〜25X 10−’ /に
のものが好ましい。基板の面方向の線膨脹係数が5XI
O−6/K〜25x 10−’ /にの範囲外になると
酸化物超電導体との線1li7J脹係数の差が大きくな
りすぎ、被膜が基板から剥離し易くなる。このような基
板の素材としては、例えば次のようなものがあげられる
Next, a solution containing each of the metal salts prepared in this manner is applied onto the substrate. This substrate preferably has a coefficient of linear expansion in the plane direction of 5X 10-'/ to 25X 10-'/. The coefficient of linear expansion in the plane direction of the substrate is 5XI
If it is outside the range of O-6/K to 25x 10-'/, the difference in linear 1li7J expansion coefficient with the oxide superconductor becomes too large, making it easy for the film to peel off from the substrate. Examples of materials for such a substrate include the following:

(基板)      (線膨脹係数) LiNbOl       15.4x 1G−’ /
KLiTa03      16. IX 1O−G7
72r0 2                 8x
  1o−s  uAI203       8x 1
0−’ J/^(119,3X 10−’ /K Pd              12×1O−SI)
次に、このようにして形成した被膜を加熱することによ
り熱分解し、酸化物超電導体を構成する各元素の酸化物
を形成する。この熱分解は、例えば被膜を形成した基板
をホットプレートのような間接加熱器上で加熱すること
により行える。また、予め所定の温度に加熱した基板上
に前述した各元素の金属塩を含む溶液を直接塗布するこ
とによっても同様に行える。
(Substrate) (Linear expansion coefficient) LiNbOl 15.4x 1G-' /
KLiTa03 16. IX 1O-G7
72r0 2 8x
1os uAI203 8x 1
0-' J/^(119,3X 10-' /KPd 12×1O-SI)
Next, the film thus formed is thermally decomposed by heating to form oxides of each element constituting the oxide superconductor. This thermal decomposition can be carried out, for example, by heating the coated substrate on an indirect heater such as a hot plate. Alternatively, the same method can be performed by directly applying a solution containing the metal salts of the aforementioned elements onto a substrate that has been heated to a predetermined temperature in advance.

そして、前述した各元素の金属塩を含む溶液の塗布と熱
分解を繰返し行い所望の膜厚にする。
Then, the coating and thermal decomposition of the solution containing the metal salts of each element described above are repeated to obtain a desired film thickness.

この後、100℃〜1000℃の酸素含有雰囲気中で熱
処理することにより酸化物超電導体を構成する各元素の
酸化物の混在した被膜を結晶化させ、酸化物超電導体の
被膜を得る。
Thereafter, heat treatment is performed in an oxygen-containing atmosphere at 100° C. to 1000° C. to crystallize the film in which oxides of various elements constituting the oxide superconductor are mixed, thereby obtaining a film of the oxide superconductor.

この酸化物超電導体の被膜の厚さは、100人〜lX1
06人の範囲が好ましく、被膜の厚さが100人未満で
あると磁場浸透により所定の超電導特性が得られなくな
り、また1×106人を越えてもそれ以上の超電導特性
の向上が得られなくなる上に、脆くなり基板から剥離し
たり、クラックが生じ易くなる。
The thickness of the film of this oxide superconductor is 100 to 1×1
A range of 0.06 people is preferable; if the thickness of the coating is less than 100 people, it will not be possible to obtain the desired superconducting properties due to magnetic field penetration, and if it exceeds 1 x 106 people, no further improvement in superconducting properties will be obtained. Moreover, it becomes brittle and easily peels off from the substrate or cracks occur.

(作 用) 本発明の超半導体装置の製造方法では、ペロブスカイト
型の酸化物超電導体を構成する各元素の金属塩を所定の
比率で含有する溶液の塗布、焼成により酸化物超電導体
の被膜を形成しているので、容易に膜厚および組成の均
一な被膜を形成することができる。また、面方向の線膨
脹係数が5X10−6/K〜25X10−6/Kの基板
を使用することにより、得られる酸化物超電導体被膜と
の線膨脹係数が近似し、これにより基板と被膜との接合
界面の冷熱サイクルによるストレスが小さくなり、密着
性に優れたものとなる。
(Function) In the method for manufacturing a super-semiconductor device of the present invention, a film of an oxide superconductor is formed by coating and baking a solution containing metal salts of each element constituting a perovskite-type oxide superconductor in a predetermined ratio. Therefore, a film having a uniform thickness and composition can be easily formed. In addition, by using a substrate with a linear expansion coefficient of 5X10-6/K to 25X10-6/K in the planar direction, the linear expansion coefficients of the obtained oxide superconductor coating become similar, and this makes it possible for the substrate and the coating to The stress caused by cooling and heating cycles at the bonding interface is reduced, resulting in excellent adhesion.

(実施例) 次に、本発明の実施例について説明する。(Example) Next, examples of the present invention will be described.

実施例 まずY(NO3) z ・6th O粉末、Ba (N
O3) 2粉末およびCu (NOi ) 2 ・3t
120粉末を、Y:Ba:CIJ=1:2:3のモル比
となるように混合し、この混合粉を水中に溶解させる。
Example First, Y(NO3) z ・6th O powder, Ba(N
O3) 2 powder and Cu (NOi) 2 ・3t
120 powder is mixed in a molar ratio of Y:Ba:CIJ=1:2:3, and this mixed powder is dissolved in water.

次に、この溶液をスプレー法により肉厚0.1nのジル
コニアからなる基板上に塗布し、次いでこの基板をホッ
トプレート上に載置し、約650℃の温度で塗膜の熱分
解を行う、そして、結晶化後の被膜の厚さが1xio’
人となるように、この溶液の塗布と熱分解を繰返し行う
Next, this solution is applied by a spray method onto a substrate made of zirconia with a thickness of 0.1 nm, and then this substrate is placed on a hot plate, and the coating film is thermally decomposed at a temperature of about 650 ° C. The thickness of the film after crystallization is 1xio'
The application and thermal decomposition of this solution are repeated as if it were a human being.

この後、この熱分解による被膜を形成した基板を酸素中
で約900℃の温度により24時間熱処理し、一般式 %式% で示されるペロプスカイト型の酸化物超電導体からなる
被膜を有する超半導体装置を得た。
Thereafter, the substrate on which the film was formed by thermal decomposition was heat-treated in oxygen at a temperature of about 900°C for 24 hours, and a superconductor having a film made of a perovskite-type oxide superconductor represented by the general formula % Got the device.

このようにして得た超半導体装置の超電導特性を測定し
たところ、臨界温度は90にであった。
When the superconducting properties of the supersemiconductor device thus obtained were measured, the critical temperature was found to be 90°C.

次に、この超半導体装置を超電導体被膜の形成されてい
る面を外側にして曲率半径3O G Onに曲げ被膜に
ストレスを加えた状態で、液体窒素中への浸漬と常温へ
の復帰の冷熱サイクルを10回加えたが、超電導体被膜
面にクラックの発生は認められなかった。
Next, this super-semiconductor device was bent with the surface on which the superconductor coating was formed outward to a radius of curvature of 3O G On, and with stress applied to the coating, it was immersed in liquid nitrogen and cooled to return to room temperature. Although the cycle was applied 10 times, no cracks were observed on the superconductor coating surface.

[発明の効果] 以上の実施例からも明らかなように、本発明の超半導体
装置の製造方法によれば、ペロブスカイト型の酸化物超
電導体を構成する各元素の金属塩を所定の比率で含有す
る溶液の塗布、焼成により被膜を形成しているので、容
易に膜厚および組成の均一な酸化物超電導体被膜を有す
る超半導体装置が得られる。
[Effects of the Invention] As is clear from the above examples, according to the method for manufacturing a supersemiconductor device of the present invention, metal salts of each element constituting a perovskite-type oxide superconductor are contained in a predetermined ratio. Since the coating is formed by coating and baking a solution, a supersemiconductor device having an oxide superconductor coating with uniform thickness and composition can be easily obtained.

また、基板として面方向の線膨脹係数が5×10−6/
K〜25X 10−’ /にの素材を使用することによ
り、得られる酸化物超電導体被膜との線膨脹係数が近似
し、これにより基板と被膜との接合界面の冷熱サイクル
によるひずみの発生が小さく、剥離やクラックの発生の
おそれがなく、長期にわたって良好な特性を維持するこ
とができる超半導体装置が得られる。
In addition, the linear expansion coefficient in the plane direction of the substrate is 5×10-6/
By using a material of K ~ 25X 10-'/, the coefficient of linear expansion is similar to that of the resulting oxide superconductor coating, which reduces the occurrence of strain due to cooling and heating cycles at the bonding interface between the substrate and the coating. , a super-semiconductor device that can maintain good characteristics over a long period of time without the risk of peeling or cracking can be obtained.

Claims (1)

【特許請求の範囲】 (1)基板上にペロブスカイト型の酸化物超電導体の被
膜を形成してなる超電導体装置を製造するにあたり、 前記酸化物超電導体の被膜を、この酸化物超電導体を構
成する各元素の金属塩を所定の比率で含有する水溶液ま
たは有機溶液を前記基板上に塗布し、この塗膜を加熱す
ることにより前記各元素の金属塩を熱分解し、次いで酸
素含有雰囲気中で700℃〜1000℃の温度で熱処理
することにより形成することを特徴とする超半導体装置
の製造方法。 (2)前記酸化物超電導体は、希土類元素を含有するペ
ロブスカイト型の酸化物超電導体であることを特徴とす
る特許請求の範囲第1項記載の超半導体装置の製造方法
。 (3)前記酸化物超電導体は、ABa_2Cu_3O_
7_−_δ系の酸化物超電導体(Aは、Y、Yb、Ho
、Dy、Eu、Er、Tm、およびLuから選ばれた元
素。)であることを特徴とする特許請求の範囲第1項ま
たは第2項記載の超電導体装置の製造方法。(4)前記
酸化物超電導体は、Y−Ba−Cu−O系であることを
特徴とする特許請求の範囲第3項記載の超電導体装置の
製造方法。 (5)前記基板の面方向の線膨脹係数が、5×10^−
^6/K〜25×10^−^6/Kであることを特徴と
する特許請求の範囲第1項ないし第4項のいずれか1項
記載の超電導体装置の製造方法。 (6)前記基板が、LiNb0_3、LiTa0_3、
ジルコニア、安定化ジルコニア、Ag、Al_2O_3
およびPdから選ばれたものからなることを特徴とする
特許請求の範囲第5項記載の超電導体装置の製造方法。 (7)前記酸化物超電導体を構成する各元素の金属塩が
、ハロゲン化物または硝酸塩であることを特徴とする特
許請求の範囲第1項ないし第6項のいずれか1項記載の
超電導体装置の製造方法。
[Claims] (1) In manufacturing a superconductor device formed by forming a film of a perovskite-type oxide superconductor on a substrate, the film of the oxide superconductor constitutes the oxide superconductor. An aqueous or organic solution containing metal salts of each element in a predetermined ratio is applied onto the substrate, the coating film is heated to thermally decompose the metal salts of each element, and then the metal salts of each element are thermally decomposed in an oxygen-containing atmosphere. A method for manufacturing a super semiconductor device, characterized in that it is formed by heat treatment at a temperature of 700°C to 1000°C. (2) The method for manufacturing a supersemiconductor device according to claim 1, wherein the oxide superconductor is a perovskite-type oxide superconductor containing a rare earth element. (3) The oxide superconductor is ABa_2Cu_3O_
7_-_δ-based oxide superconductor (A is Y, Yb, Ho
, Dy, Eu, Er, Tm, and Lu. ) A method for manufacturing a superconductor device according to claim 1 or 2, characterized in that: (4) The method for manufacturing a superconductor device according to claim 3, wherein the oxide superconductor is Y-Ba-Cu-O based. (5) The coefficient of linear expansion in the plane direction of the substrate is 5×10^-
The method for manufacturing a superconductor device according to any one of claims 1 to 4, characterized in that ^6/K to 25x10^-^6/K. (6) The substrate is LiNb0_3, LiTa0_3,
Zirconia, stabilized zirconia, Ag, Al_2O_3
6. The method for manufacturing a superconductor device according to claim 5, wherein the superconductor device is made of a material selected from Pd and Pd. (7) The superconductor device according to any one of claims 1 to 6, wherein the metal salt of each element constituting the oxide superconductor is a halide or a nitrate. manufacturing method.
JP62114321A 1987-05-11 1987-05-11 Manufacture of superconductor device Pending JPS63279527A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62114321A JPS63279527A (en) 1987-05-11 1987-05-11 Manufacture of superconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62114321A JPS63279527A (en) 1987-05-11 1987-05-11 Manufacture of superconductor device

Publications (1)

Publication Number Publication Date
JPS63279527A true JPS63279527A (en) 1988-11-16

Family

ID=14634916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62114321A Pending JPS63279527A (en) 1987-05-11 1987-05-11 Manufacture of superconductor device

Country Status (1)

Country Link
JP (1) JPS63279527A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6410527A (en) * 1987-07-02 1989-01-13 Teikoku Kako Co Ltd Manufacture of superconductive material
JPS6410528A (en) * 1987-07-02 1989-01-13 Teikoku Kako Co Ltd Manufacture of superconductive film
JPS6419783A (en) * 1987-06-26 1989-01-23 Hewlett Packard Yokogawa Manufacture of superconductor film
JPS6465007A (en) * 1987-01-30 1989-03-10 Agency Ind Science Techn Starting material solution for superconductive material
JPS6465003A (en) * 1987-01-30 1989-03-10 Agency Ind Science Techn Superconductive material and production thereof
US4994420A (en) * 1989-10-12 1991-02-19 Dow Corning Corporation Method for forming ceramic materials, including superconductors
US5786306A (en) * 1990-06-22 1998-07-28 Massachusetts Institute Of Technology Synthesis of high TC superconducting coatings and patterns by melt writing and oxidation of metallic precursor alloys

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6465007A (en) * 1987-01-30 1989-03-10 Agency Ind Science Techn Starting material solution for superconductive material
JPS6465003A (en) * 1987-01-30 1989-03-10 Agency Ind Science Techn Superconductive material and production thereof
JPH0476324B2 (en) * 1987-01-30 1992-12-03 Kogyo Gijutsuin
JPH0476323B2 (en) * 1987-01-30 1992-12-03 Kogyo Gijutsuin
JPS6419783A (en) * 1987-06-26 1989-01-23 Hewlett Packard Yokogawa Manufacture of superconductor film
JPS6410527A (en) * 1987-07-02 1989-01-13 Teikoku Kako Co Ltd Manufacture of superconductive material
JPS6410528A (en) * 1987-07-02 1989-01-13 Teikoku Kako Co Ltd Manufacture of superconductive film
US4994420A (en) * 1989-10-12 1991-02-19 Dow Corning Corporation Method for forming ceramic materials, including superconductors
US5786306A (en) * 1990-06-22 1998-07-28 Massachusetts Institute Of Technology Synthesis of high TC superconducting coatings and patterns by melt writing and oxidation of metallic precursor alloys

Similar Documents

Publication Publication Date Title
US6226858B1 (en) Method of manufacturing an oxide superconductor wire
US6440211B1 (en) Method of depositing buffer layers on biaxially textured metal substrates
US20060051600A1 (en) Precursor solutions and methods of using same
US7625843B2 (en) Method for manufacturing a metal organic deposition precursor solution using super-conduction oxide and film superconductor
JP3548801B2 (en) A solution composition containing a metal complex in which a specific ligand is coordinated to a specific metal species, a solution composition for producing a rare-earth superconducting film, an amorphous solid of a specific metal complex, a specific coordination to a specific metal species A method for producing a solution containing a metal complex coordinated with an atom, a method for producing a solution for producing a rare earth superconducting film, and a method for forming a superconducting thin film.
JPS63279527A (en) Manufacture of superconductor device
JP2003300726A (en) Tape-like oxide superconductor and manufacturing method therefor
US5141918A (en) Method of forming an oxide superconducting thin film of a single phase having no carbonate
JPS63279528A (en) Manufacture of superconductor device
JPS63279521A (en) Superconductor device
AU592943B2 (en) Formation of superconducting metal oxide film by pyrolysis
JPS63298921A (en) Manufacture of superconductive wire material
JP2011201712A (en) Method for producing oriented oxide film, oriented oxide film, and oxide superconductor
JPS63298922A (en) Manufacture of superconductive wire material
Clem et al. Process for forming epitaxial perovskite thin film layers using halide precursors
Araki et al. Dip-coated YBa2Cu3O7− x film by metalorganic deposition using trifluoroacetate
JPH01215702A (en) Production of superconducting thin film
JP2577056B2 (en) Preparation method of composite oxide superconducting thin film
JPH01219019A (en) Production of oxide superconductor film
JPH04179004A (en) Oxide superconductive tape conductor
JP2822328B2 (en) Superconductor manufacturing method
JP2532986B2 (en) Oxide superconducting wire and coil using the same
JPS63248019A (en) Manufacture of oxide superconductive thin film
JPH0753639B2 (en) Method for producing thin film made of oxide superconducting material
JPH0244782A (en) Superconductive element and manufacture thereof