JPS62146270A - Formation of thin metallic selenide film - Google Patents

Formation of thin metallic selenide film

Info

Publication number
JPS62146270A
JPS62146270A JP28606785A JP28606785A JPS62146270A JP S62146270 A JPS62146270 A JP S62146270A JP 28606785 A JP28606785 A JP 28606785A JP 28606785 A JP28606785 A JP 28606785A JP S62146270 A JPS62146270 A JP S62146270A
Authority
JP
Japan
Prior art keywords
metal
thin film
organometallic compound
forming
selenide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28606785A
Other languages
Japanese (ja)
Inventor
Yasuto Isozaki
康人 礒崎
Hiroshi Hasegawa
洋 長谷川
Kazuyuki Okano
和之 岡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP28606785A priority Critical patent/JPS62146270A/en
Publication of JPS62146270A publication Critical patent/JPS62146270A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1245Inorganic substrates other than metallic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1279Process of deposition of the inorganic material performed under reactive atmosphere, e.g. oxidising or reducing atmospheres

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemically Coating (AREA)

Abstract

PURPOSE:To easily form a thin metallic selenide film without using a vacuum vessel by forming the layer of an org. metallic compound having a metal- selenium bond on a substrate and by thermally decomposing the compound in an oxidizing atmosphere. CONSTITUTION:An org. metallic compound having at least one internal metal- selenium bond, e.g. cadmium laurylselenideis dissolved in a solvent and applied to the substrate of alumina or the like. After the solvent is volatilized by drying, the org. metallic compound is thermally decomposed by heating in an oxidizing atmosphere, e.g. in the air to form a thin metallic selenide film. This film may be baked in an inert atmosphere as required. By this method, the thin film of a large area can easily be produced.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は各種エレクトロニクスデバイスに使用される金
属セレン化物薄膜の形成方法に閉するイ、のである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is directed to a method for forming metal selenide thin films used in various electronic devices.

従来の技術 従来よりセレン化亜鉛、セレン化カドミウム等の金属セ
レン化物は薄膜あるいは結晶等の形でエレクトロニクス
分野で広く使用されている。
BACKGROUND OF THE INVENTION Metal selenides such as zinc selenide and cadmium selenide have been widely used in the electronics field in the form of thin films or crystals.

これら化合物の薄膜は、従来はスパッタリング法、蒸着
法、CVD法等によって基板上に形成されていた。
Thin films of these compounds have conventionally been formed on substrates by sputtering, vapor deposition, CVD, or the like.

発明が解決しようとする問題点 上記、金属セレン化物薄膜の形成方法は真空容器中で行
われるために生産性が悪く、連続操業が困難であるか、
あるいは非常に高額の生産設備を必要とする。また、真
空容器の大きさで製品の大きさを規定され、大面積の製
造が困難である等の問題点を有している。
Problems to be Solved by the Invention The above method for forming a metal selenide thin film is performed in a vacuum container, resulting in poor productivity and difficulty in continuous operation.
Or it requires very expensive production equipment. In addition, the size of the product is determined by the size of the vacuum container, making it difficult to manufacture a large area.

本発明は真空容器を使用せずに、金属セレン化′物薄膜
を形成することを目的とするものである。
The object of the present invention is to form a metal selenide thin film without using a vacuum vessel.

問題点を解決するだめの手段 本発明が上記問題点を解決するための手段は、金属−セ
レン結合を少なくとも一つ内部に有する有機金属化合物
層を基板上に形成した後、酸化雰囲気中で上記有機金属
化合物を熱分解して形成することと、熱分解後不活性雰
囲気中で焼成することにより形成することである。
Means for Solving the Problems The present invention solves the above problems by forming an organometallic compound layer having at least one metal-selenium bond therein on a substrate, and then forming the above-mentioned layer in an oxidizing atmosphere. One is to form by thermal decomposition of an organometallic compound, and the other is to form by firing in an inert atmosphere after thermal decomposition.

本発明に使用できる金属−セレン結合を少なくとも一つ
内部に有する有機金属化合物としては、各種金属セレニ
ド、各種セレノカルボン酸またはジセレノカルボン酸の
各種金属塩等を挙げることができる。これらの化合物の
合成方法は公知である。
Examples of the organometallic compound having at least one internal metal-selenium bond that can be used in the present invention include various metal selenides, various metal salts of various selenocarboxylic acids or diselenocarboxylic acids, and the like. Methods for synthesizing these compounds are known.

有機金属化合物を形成する基板としては、熱分解温度に
耐えるものであれば任意に選ぶことができる。通常熱分
解温度は320〜450℃程度であるため、安価なソー
ダ石炭ガラス等を十分使用より有機分である、炭素や水
素を完全に分解することができる。また、より焼結度を
増すために高温に上げる場合は、酸化雰囲気では得られ
た金属セレン化物薄膜が酸化され、酸化物を含んだ薄膜
になるため、熱分解後不活性雰囲気中で焼成することが
有効である。
The substrate on which the organometallic compound is formed can be arbitrarily selected as long as it can withstand the thermal decomposition temperature. Since the thermal decomposition temperature is usually about 320 to 450°C, carbon and hydrogen, which are organic components, can be completely decomposed by sufficiently using inexpensive soda coal glass or the like. In addition, when raising the temperature to a high temperature to further increase the degree of sintering, the obtained metal selenide thin film is oxidized in an oxidizing atmosphere and becomes a thin film containing oxides, so it is necessary to sinter it in an inert atmosphere after thermal decomposition. This is effective.

作  用 上記本発明の手段を用いることにより、従来の方法の問
題となっている真空容器を使用せずに金属セレン化物薄
膜を形成できるため、薄膜の製造に関して、生産性の向
上が計られ、かつ大面積の製造を容易に行うことができ
る。また、薄膜中に炭素や、水素の残留のない金属セレ
ン化物薄膜を形成することができる。
Effect: By using the means of the present invention, a metal selenide thin film can be formed without using a vacuum container, which is a problem with conventional methods, so productivity can be improved in the production of thin films. Moreover, large-area manufacturing can be easily performed. Furthermore, a metal selenide thin film without residual carbon or hydrogen can be formed.

実施例 以下実施例により説明する。Example This will be explained below using examples.

(実施例1) カドミウムラウリルセレニドをテトラリンに混合、溶解
し、アルミナ基板上にスピナーにて塗布し、1601シ
で乾燥し溶媒を揮散させた後、大気中てて450 ”C
11時間熱分解する。この結果、膜厚SOO〜5000
Aのほぼ無色〜赤色の亀裂の無い均一なセレン化カドミ
ウムの薄1模が得られた。この薄膜を元素分析にかけた
結果、セレン化カドミウムが生成していることが確認さ
れた。また、膜内に炭素・水素の残留は認められなかっ
た。
(Example 1) Cadmium lauryl selenide was mixed and dissolved in tetralin, coated on an alumina substrate with a spinner, dried with a 1601 cylinder to evaporate the solvent, and then heated at 450 ''C in the air.
Pyrolyze for 11 hours. As a result, the film thickness SOO~5000
A uniform thin pattern of cadmium selenide with almost no color to red color and no cracks was obtained. When this thin film was subjected to elemental analysis, it was confirmed that cadmium selenide was produced. Further, no residual carbon or hydrogen was observed within the film.

(実施例2) カドミウムラウリルセレニドをテトラリンに混合、溶解
し、アルミナ基板上にスピナーにて塗布し、150t:
で乾燥し溶媒を揮散させた後、大気中にて45CI、3
0分熱分解する。その後窒素気流中で700℃1時間焼
成する。この結果、膜厚SOO〜5000へのほぼ無色
〜赤色の亀裂の無い均一なセレン化カドミウムの薄膜が
得られた。
(Example 2) Cadmium lauryl selenide was mixed with tetralin, dissolved, and applied onto an alumina substrate using a spinner.
After drying and volatilizing the solvent, 45CI, 3
Pyrolyze for 0 minutes. Thereafter, it is fired at 700° C. for 1 hour in a nitrogen stream. As a result, a uniform cadmium selenide thin film with a thickness of SOO~5000 and an almost colorless to red color without cracks was obtained.

この薄膜を元素分析にかけた結果、セレン化カドミウム
が生成していることが確認された。また、膜内に炭素、
水素の残留は認められなかった。また、走査型電子顕微
鏡で観察した結果、酸化雰囲気中で熱分解しただけの膜
に比べ結晶の成長が顕著であった。
When this thin film was subjected to elemental analysis, it was confirmed that cadmium selenide was produced. In addition, carbon in the film,
No residual hydrogen was observed. Furthermore, as a result of observation using a scanning electron microscope, crystal growth was more remarkable than in a film that was simply thermally decomposed in an oxidizing atmosphere.

(実施例3) セレノ安息香酸亜鉛をテトラリンに混合、溶解し、アル
ミナ基板上にスピナーにて塗布し、150℃で乾燥し溶
媒を揮散させた後、大気中にて450C11時間熱分解
する。この結果、膜厚500=50oO人のほぼ無色〜
黄色の亀裂の無い均一なセレノ化亜鉛の薄膜が得られた
。この薄膜を元素分析にかけた結果、セレン化亜鉛が生
成していることが確認された。また、炭素、水素の残留
は認められなかった。
(Example 3) Zinc selenobenzoate is mixed and dissolved in tetralin, applied on an alumina substrate using a spinner, dried at 150°C to volatilize the solvent, and then thermally decomposed at 450C in the air for 11 hours. As a result, the film thickness of 500 = 50oO is almost colorless.
A yellow, crack-free, uniform zinc selenide thin film was obtained. As a result of subjecting this thin film to elemental analysis, it was confirmed that zinc selenide was produced. Further, no residual carbon or hydrogen was observed.

(実施例4) セレノ安息香酸亜鉛をテトラリンに混合、溶解し、アル
ミナ基板上にスピナーにて塗布し、100℃で乾燥し溶
媒を揮散させた後、大気中にて450℃、30分熱分解
する。その後不活性雰囲気に変え700’01時間焼成
する。この結果、膜厚500〜50o〇へのほぼ無色〜
黄色の亀裂の無い均一なセレン化亜鉛の薄膜が得られた
。この薄膜を元素分析にかけた結果、セレン化亜鉛が生
成していることが確認された。また、炭素、水素の残留
は認められなかった。また、走査型電子顕微鏡で観察し
た結果、酸化雰囲気中で熱分解しただけの膜に比べ結晶
の成長が顕著であった。
(Example 4) Zinc selenobenzoate was mixed and dissolved in tetralin, applied on an alumina substrate with a spinner, dried at 100°C to volatilize the solvent, and then thermally decomposed in the air at 450°C for 30 minutes. do. Thereafter, the atmosphere was changed to an inert atmosphere and fired for 700'01 hours. As a result, the film thickness is 500~50o〇 and almost colorless~
A yellow, crack-free, uniform zinc selenide thin film was obtained. As a result of subjecting this thin film to elemental analysis, it was confirmed that zinc selenide was produced. Further, no residual carbon or hydrogen was observed. Furthermore, as a result of observation using a scanning electron microscope, crystal growth was more remarkable than in a film that was simply thermally decomposed in an oxidizing atmosphere.

発明の効果 以上のように本発明の金属セレン化物薄膜の形成方法は
金属−セレン結合を少なくとも一つ内部に有する有機金
属化合物層を基板上に形成した後、酸化雰囲気中で上記
有機金属化合物を・熱分解して形成することと、熱分解
後不活性雰囲気中で焼成して形成することにより、スパ
ッタリング法、蒸着法、CVD法等に比較して、生産性
に優れ、非常に高額の設備を必要とせず、大面積の製造
を容易に行うことができ、その実用的効果は大なるもの
がある。
Effects of the Invention As described above, the method for forming a metal selenide thin film of the present invention involves forming an organometallic compound layer having at least one metal-selenium bond therein on a substrate, and then depositing the organometallic compound in an oxidizing atmosphere.・By forming by thermal decomposition and by firing in an inert atmosphere after thermal decomposition, it has superior productivity compared to sputtering, vapor deposition, CVD, etc., and requires very expensive equipment. It can be easily manufactured over a large area and has great practical effects.

Claims (8)

【特許請求の範囲】[Claims] (1)金属−セレン結合を少なくとも一つ内部に有する
有機金属化合物層を基板上に形成し、酸化雰囲気中で上
記有機金属化合物を熱分解して形成することを特徴とす
る金属セレン化物薄膜の形成方法。
(1) A metal selenide thin film characterized in that an organometallic compound layer having at least one metal-selenium bond therein is formed on a substrate, and the organometallic compound is thermally decomposed in an oxidizing atmosphere. Formation method.
(2)金属−セレン結合を有する有機金属化合物が金属
セレニドであることを特徴とする特許請求の範囲第1項
記載の金属セレン化物薄膜の形成方法。
(2) The method for forming a metal selenide thin film according to claim 1, wherein the organometallic compound having a metal-selenium bond is a metal selenide.
(3)金属−セレン結合を有する有機金属化合物が金属
のセレノカルボン酸塩であることを特徴とする特許請求
の範囲第1項記載の金属セレン化物薄膜の形成方法。
(3) The method for forming a metal selenide thin film according to claim 1, wherein the organometallic compound having a metal-selenium bond is a metal selenocarboxylate.
(4)金属−セレン結合を有する有機金属化合物が金属
のジセレノカルボン酸塩であることを特徴とする特許請
求の範囲第1項記載の金属セレン化物薄膜の形成方法。
(4) The method for forming a metal selenide thin film according to claim 1, wherein the organometallic compound having a metal-selenium bond is a metal diselenocarboxylate.
(5)金属−セレン結合を少なくとも一つ内部に有する
金属化合物層を基板上に形成し、酸化雰囲気中で上記有
機金属化合物を熱分解した後、不活性雰囲気中での焼成
により形成することを特徴とする金属セレン化物薄膜の
形成方法。
(5) A metal compound layer having at least one metal-selenium bond therein is formed on a substrate, the organometallic compound is thermally decomposed in an oxidizing atmosphere, and then the layer is fired in an inert atmosphere. Characteristic method for forming metal selenide thin films.
(6)金属−セレン結合を有する有機金属化合物が金属
セレニドであることを特徴とする特許請求の範囲第5項
記載の金属セレン化物薄膜の形成方法。
(6) The method for forming a metal selenide thin film according to claim 5, wherein the organometallic compound having a metal-selenium bond is a metal selenide.
(7)金属−セレン結合を有する有機金属化合物が金属
のセレノカルボン酸塩であることを特徴とする特許請求
の範囲第5項記載の金属セレン化物薄膜の形成方法。
(7) The method for forming a metal selenide thin film according to claim 5, wherein the organometallic compound having a metal-selenium bond is a metal selenocarboxylate.
(8)金属−セレン結合を有する有機金属化合物が金属
のジセレノカルボン酸塩であることを特徴とする特許請
求の範囲第5項記載の金属セレン化物薄膜の形成方法。
(8) The method for forming a metal selenide thin film according to claim 5, wherein the organometallic compound having a metal-selenium bond is a metal diselenocarboxylate.
JP28606785A 1985-12-19 1985-12-19 Formation of thin metallic selenide film Pending JPS62146270A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28606785A JPS62146270A (en) 1985-12-19 1985-12-19 Formation of thin metallic selenide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28606785A JPS62146270A (en) 1985-12-19 1985-12-19 Formation of thin metallic selenide film

Publications (1)

Publication Number Publication Date
JPS62146270A true JPS62146270A (en) 1987-06-30

Family

ID=17699522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28606785A Pending JPS62146270A (en) 1985-12-19 1985-12-19 Formation of thin metallic selenide film

Country Status (1)

Country Link
JP (1) JPS62146270A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01298010A (en) * 1988-05-26 1989-12-01 Mitsubishi Metal Corp Production of metal selenide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01298010A (en) * 1988-05-26 1989-12-01 Mitsubishi Metal Corp Production of metal selenide

Similar Documents

Publication Publication Date Title
Galembeck et al. BiVO4 thin film preparation by metalorganic decomposition
JPH10273783A (en) Production of chalcopyrite light absorption film
JP4848815B2 (en) Method for producing corundum laminate
JPS62146270A (en) Formation of thin metallic selenide film
JPH0699809B2 (en) Method for forming sulfide thin film
JPS62146273A (en) Thin zinc selenide film and its formation
JPS62146272A (en) Thin strontium sulfide film and its formation
JPS63239742A (en) Manufacture for film superconductor
US4885188A (en) Process for forming thin film of metal sulfides
JPS62146274A (en) Thin calcium sulfide film and its formation
JPS62146275A (en) Thin zinc sulfide film and its formation
JPS62146271A (en) Thin cadmium sulfide film and its formation
JPH07118012A (en) Oxide superconductor and its production
JPS61166978A (en) Formation of thin sulfide film
JP2627803B2 (en) Method of forming metal nitride thin film
JPS61166983A (en) Formation of thin sulfide film
US3223552A (en) Method for producing thin titano-ceramic film
JPH0211776A (en) Production of superconductive metal oxide film by pyrolysis
JPH01313332A (en) Production of thin oxide superconducting film
JPS62243285A (en) Electroluminescence panel and manufacture of the same
JPH0260974A (en) Ink for forming thin film of base metal
JPH0551755A (en) Production of lead-based multi component perovskite type oxide thin film
JPS61166979A (en) Formation of thin sulfide film
JPH0467518A (en) Surface reforming of ceramic base material
JPH03177304A (en) Production of oxide superconductor thin film