JPS61166123A - Vapor growth apparatus - Google Patents

Vapor growth apparatus

Info

Publication number
JPS61166123A
JPS61166123A JP689785A JP689785A JPS61166123A JP S61166123 A JPS61166123 A JP S61166123A JP 689785 A JP689785 A JP 689785A JP 689785 A JP689785 A JP 689785A JP S61166123 A JPS61166123 A JP S61166123A
Authority
JP
Japan
Prior art keywords
gas
reaction
reaction tube
wall
vapor phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP689785A
Other languages
Japanese (ja)
Inventor
Motoji Morizaki
森崎 元司
Nobuyasu Hase
長谷 亘康
Mototsugu Ogura
基次 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP689785A priority Critical patent/JPS61166123A/en
Publication of JPS61166123A publication Critical patent/JPS61166123A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)

Abstract

PURPOSE:To enable to monitor the surface of a substrate at all times by a method wherein the reactive substance of the gas, to be used for vapor growth method, supplied into an internal pipe is prevented from adhering to the inner wall of a reaction pipe by the non-reaction gas running along the inner wall of the reaction pipe. CONSTITUTION:The hydrogen gas 5, which is the non-reaction gas having no relation with the growth of crystal, is supplied between a reaction pipe 3 and an internal pipe 4 from a gas feeding hole 6, and the gas 5 flows along the inner wall of the reaction pipe 3. On the other hand, the gas 7 and 8 to be used for a vapor growth method are supplied from the gas feeding holes 9 and 10 located inside the internal pipe 4 in such a manner that said gas is not flow into the space located between the reaction pipe 3 and the internal pipe 4, and the gas is subjected to thermal decomposition on the surface of a heated substrate 1, thereby enabling to grow crystals. The reaction substance generated at this time does not adhere at least to the inner wall of the reaction pipe 3 in the vicinity of the plate where the substrate 1 is placed by the action such as an air curtain of the non-reaction gas 5 flowing along the inner wall of the reaction pipe 3.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、高品質で均一な半導体結晶成長層を得ること
ができる気相成長装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a vapor phase growth apparatus capable of obtaining a high quality and uniform semiconductor crystal growth layer.

従来の技術 半導体装置を製作する上で必要な半導体結晶の2 ベー
ン エピタキシャル成長技術として、原料ガスの熱分解を利
用した気相成長法がある。たとえばモノシラン(S I
H,s )を用いたシリコン(Si )の気相成長法や
、有機金属(アルキル化物)を用いて化合物半導体結晶
を成長する有機金属気相成長法(MOCVD法)などで
ある。どれらの気相成長装置においては一般に基板を成
長温度に加熱し、原料ガスを基板表面上で熱分解させて
結晶を成長させる。
2. Description of the Related Art As a two-vane epitaxial growth technique for semiconductor crystals necessary for manufacturing semiconductor devices, there is a vapor phase growth method that utilizes thermal decomposition of raw material gas. For example, monosilane (SI
These methods include a silicon (Si) vapor phase epitaxy method using H, s ), and a metal organic chemical vapor deposition method (MOCVD method) for growing compound semiconductor crystals using an organic metal (alkylated compound). In any of the vapor phase growth apparatuses, a substrate is generally heated to a growth temperature, and raw material gas is thermally decomposed on the substrate surface to grow crystals.

ところが原料ガス、すなわち気相成長用ガスの熱分解反
応物質は、基板表面に結晶を形成するだけではなく、第
4図のように周囲の反応管3の内壁にも付着してしまう
。このため基板1を載置し、成長温度に加熱している基
板加熱台2よりガス流の下流側部分31の反応管内壁が
汚れ、外側から基板表面状態をモニターすることが困難
になる問題があった。さらに付着した反応物が、再びガ
スとなって発生したり、粒状や薄片となってはがれ、成
長面に付着したりするため、成長結晶層の品質に悪影響
を与えるといった問題があった。
However, the thermal decomposition reactant of the raw material gas, that is, the gas for vapor phase growth, not only forms crystals on the surface of the substrate, but also adheres to the inner wall of the surrounding reaction tube 3, as shown in FIG. For this reason, the inner wall of the reaction tube in the downstream part 31 of the gas flow from the substrate heating table 2 on which the substrate 1 is placed and heated to the growth temperature becomes dirty, causing a problem that it becomes difficult to monitor the substrate surface condition from the outside. there were. Furthermore, the attached reactants may be generated again as a gas, or may peel off as particles or flakes and adhere to the growth surface, which poses a problem of adversely affecting the quality of the grown crystal layer.

3 ′\− そこで気相成長用ガスの反応物質が反応管の内壁に付着
するのを防止するへめ、たとえば第5図のように反応管
を2重にし、内管41を着脱可能にした気相成長方法が
考えられた(特願昭57=65918号)。す々わち、
反応管3よりも径が小さく、反応管3内から着脱が容易
な内管41を反応管3内に入れる。そしてその内管41
内に基板1を載置した基板加熱台2を設置し、ガス導入
管42.43より気相成長用ガスを導入し、結晶成長を
行う。したがって気相成長用ガスの反応物質は内管41
の内壁に旬着するが反応管3には付着しない。それ故、
次の結晶成長時に内管41を取替えることにより、常に
汚れのない状態で結晶成長を行うことが可能となる。
3'\- Therefore, in order to prevent the reactant of the gas for vapor phase growth from adhering to the inner wall of the reaction tube, for example, the reaction tube was made double as shown in Fig. 5, and the inner tube 41 was made detachable. A vapor phase growth method was considered (Japanese Patent Application No. 65918 (1981)). Suwachi,
An inner tube 41, which has a smaller diameter than the reaction tube 3 and can be easily attached and detached from the reaction tube 3, is inserted into the reaction tube 3. and its inner tube 41
A substrate heating table 2 on which a substrate 1 is placed is installed inside, and a gas for vapor phase growth is introduced from gas introduction pipes 42 and 43 to perform crystal growth. Therefore, the reactant of the gas for vapor phase growth is contained in the inner tube 41.
However, it does not adhere to the reaction tube 3. Therefore,
By replacing the inner tube 41 during the next crystal growth, it becomes possible to always perform crystal growth in a clean state.

発明が解決しようとする問題点 しかし、このような方法では、結晶成長中に気相成長用
ガスの反応物質が内管41の内壁に伺着し、汚れるため
、やはり、反応管3の外から結晶表面をモニターするこ
とは困難である。したがって赤外線検知器等で基板表面
温度を検出したり、成長層の分析を反応管3の列側から
行うことはできない。さらに、各成長毎に内管41を取
替えるため、多数の内管を単価するか、もしくは汚れだ
内管を洗浄しなくてば々らず、手間がかかるといった問
題があった。
Problems to be Solved by the Invention However, in such a method, the reactants of the vapor growth gas arrive at the inner wall of the inner tube 41 during crystal growth and become dirty, so that it is still necessary to Monitoring the crystal surface is difficult. Therefore, it is not possible to detect the substrate surface temperature with an infrared detector or the like or to analyze the growth layer from the row side of the reaction tubes 3. Furthermore, since the inner tube 41 is replaced for each growth, there are problems in that a large number of inner tubes are required, or the dirty inner tubes are not cleaned frequently, which is time-consuming.

不発明幻:かかる点を鑑みてんされたもので、簡易な構
成で、常に反応管内部の様子がよく見え、基板表面状態
が結晶成長中でもモニターできること、反応管内壁の伺
着物に」=る成長層への汚染をなくすととを可能とした
気相成長装置を提供することを目的としている。
Uninvented illusion: It was created with these points in mind, and it has a simple configuration, the inside of the reaction tube can always be clearly seen, and the surface condition of the substrate can be monitored even during crystal growth. It is an object of the present invention to provide a vapor phase growth apparatus that eliminates contamination of layers.

問題点を解決するだめの手段 そして上記問題点を解決する本発明の技術的手段は、反
応炉内部に載置された基板加熱台」:リガス流の」−流
側に上記反応管の内径より小さん外径を有する内管を備
えており、気相成長に関係しない非反応ガスが上記反応
管の内壁に沿って流れるように上記反応管と上記内管と
の間に上記非反応ガスのガス供給口を備え、また気相成
長用ガスが上記反応管と上記内管との間に流れ込ないよ
うに5べ一7゛ 上記内管の内部に上記気相成長用ガスのガス供給口を備
えるものである。
Means for solving the problems and the technical means of the present invention for solving the above problems are as follows: A substrate heating table placed inside the reaction furnace is provided on the flow side of the reaction tube from the inside diameter of the reaction tube. The non-reactive gas is provided between the reaction tube and the inner tube so that the non-reactive gas unrelated to vapor phase growth flows along the inner wall of the reaction tube. A gas supply port for the vapor phase growth gas is provided inside the inner tube to prevent the vapor phase growth gas from flowing between the reaction tube and the inner tube. It is equipped with the following.

作  用 この技術的手段による作用は次のようになる。For production The effect of this technical means is as follows.

す々わち、気相成長に関係しない非反応ガスは反応管と
内管との間に供給され、基板設置付近では、これらの間
から反応管の内壁に沿って流れ出てくる。したがって内
管の内部に供給された気相成長用ガスの反応物質は、エ
アーカーテンのごとく反応管内壁に沿って流れる非反応
ガスによって、反応管内壁に付着し汚染することを妨げ
られる。
That is, a non-reactive gas not related to vapor phase growth is supplied between the reaction tube and the inner tube, and flows out from between them along the inner wall of the reaction tube in the vicinity of the substrate installation. Therefore, the reactants of the vapor phase growth gas supplied into the inner tube are prevented from adhering to and contaminating the inner wall of the reaction tube by the non-reactive gas flowing along the inner wall of the reaction tube like an air curtain.

その結果、結晶成長中でも反応管内壁は汚れないため、
常に基板表面をモニターすることができる。
As a result, the inner wall of the reaction tube is not contaminated even during crystal growth.
The substrate surface can be constantly monitored.

実施例 以下、本発明の一実施例を添付図面にもとづいて説明す
る。第1図において、基板1を載置し、成長温度に加熱
する基板加熱台2よりガス流の上流側部分に、反応管3
の内径よシも小さな内管4が備えである。通常、石英製
である。基板1を加熱する方法は高周波加熱、抵抗加熱
方式等があるが、反応管内部が見える方法であれば良い
。本実施例では高周波加熱方式で気相成長を行った。結
晶成長に関係しない非反応ガスである水素ガス5は、ガ
ス供給口6から反応管3と内管4の間に供給され、図の
ように反応管3の内壁に沿って流れる。一方、気相成長
用ガス7.8は反応管3と内管4の間に流れ込まないよ
う内管4内部にあるガス供給口9,1oから供給される
。内管4内部に供給された気相成長用ガスは、加熱され
た基板1表面で熱分解反応し、結晶を成長させる。この
とき生じた反応物質は、反応管3の内壁に沿って流れる
非反応ガス5によってエアーカーテンの様々作用により
、少なくとも基板1の載置しである付近の反応管3内壁
に付着しんい。つまり、非反応ガス5と熱分解反応後の
気相成長用ガスとが混合するまでの領域では反応管3の
内壁は汚れない。
Embodiment Hereinafter, one embodiment of the present invention will be described based on the accompanying drawings. In FIG. 1, a reaction tube 3 is placed on the upstream side of the gas flow from the substrate heating table 2 on which the substrate 1 is placed and heated to the growth temperature.
An inner tube 4 with a smaller inner diameter is provided. Usually made of quartz. Methods for heating the substrate 1 include high frequency heating, resistance heating, etc., but any method that allows the inside of the reaction tube to be seen may be used. In this example, vapor phase growth was performed using a high frequency heating method. Hydrogen gas 5, which is a non-reactive gas not related to crystal growth, is supplied between the reaction tube 3 and the inner tube 4 from the gas supply port 6, and flows along the inner wall of the reaction tube 3 as shown in the figure. On the other hand, the gas for vapor phase growth 7.8 is supplied from gas supply ports 9, 1o inside the inner tube 4 so as not to flow between the reaction tube 3 and the inner tube 4. The vapor growth gas supplied into the inner tube 4 undergoes a thermal decomposition reaction on the heated surface of the substrate 1, causing crystal growth. The reactants generated at this time are prevented from adhering to the inner wall of the reaction tube 3 at least near where the substrate 1 is placed due to various effects of the air curtain caused by the non-reactive gas 5 flowing along the inner wall of the reaction tube 3. In other words, the inner wall of the reaction tube 3 is not contaminated in the region until the non-reactive gas 5 and the gas for vapor phase growth after the thermal decomposition reaction are mixed.

その結果、結晶成長中でも基板1表面を常にモニターす
ることができる。したがって基板1表面の温度を赤外線
検知器等で検知することが可能である。さらに反応管3
の付着物による基板成長層への汚染も防ぐことができる
As a result, the surface of the substrate 1 can be constantly monitored even during crystal growth. Therefore, it is possible to detect the temperature of the surface of the substrate 1 with an infrared detector or the like. Furthermore, reaction tube 3
It is also possible to prevent contamination of the substrate growth layer due to deposits.

なお、内管4は第2図のようにガス流の上流」lが閉じ
た形状であってもか寸わない。反応管3内のガスは全て
排気管11から排気される。
Note that the inner tube 4 may have a shape in which the upstream portion of the gas flow is closed, as shown in FIG. 2. All the gas in the reaction tube 3 is exhausted from the exhaust pipe 11.

第3図は、上記の構造の反応炉3をもつ有機金属気相成
長装置のガス系統概略図である。21は非反応ガスであ
るとともにキャリアガスである水素ガスの高圧ボンベ、
22は流量制御用のマスフロー、23は気相成長用ガス
の高圧ボンベ、24は有機金属の入った容器である。2
5は高周波コイル、26は高周波発生装置、27は排ガ
ス処理装置である。
FIG. 3 is a schematic diagram of a gas system of a metal organic vapor phase growth apparatus having a reactor 3 having the above structure. 21 is a high-pressure cylinder of hydrogen gas, which is a non-reactive gas and a carrier gas;
22 is a mass flow for flow rate control, 23 is a high pressure cylinder for vapor phase growth gas, and 24 is a container containing an organic metal. 2
5 is a high frequency coil, 26 is a high frequency generator, and 27 is an exhaust gas treatment device.

以上の説明において有機金属気相成長装置を示したが通
常の気相成長装置にも本発明を適当することは可能であ
る。寸だ非反応ガスをキャリアガスと同一のもので示し
たが、別のガスでも結晶成長に関係しないガス(たとえ
ばN2ガスなど)でも良い。
In the above explanation, a metal organic vapor phase growth apparatus has been described, but the present invention can also be applied to a normal vapor phase growth apparatus. Although the non-reactive gas is shown to be the same as the carrier gas, it may be a different gas or a gas unrelated to crystal growth (for example, N2 gas).

発明の効果 以上述べてきだように、本発明によれば、気相成長の難
点の一つである反応管内壁への反応物質の伺着が防+h
でき、そのため反応管内が見えなくなること、および成
長層への汚染が解決され、高品質な結晶が得られるため
今後、気相成長においてきわめて有用である。
Effects of the Invention As mentioned above, according to the present invention, the adhesion of reactants to the inner wall of the reaction tube, which is one of the difficulties in vapor phase growth, can be prevented.
This eliminates the problem of not being able to see the inside of the reaction tube and contamination of the growth layer, and provides high-quality crystals, which will be extremely useful in vapor phase growth in the future.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の気相成長装置の反応管部の
構≠断面慨翰図、第2図は本発明の他の実施例の気相成
長装置の反応管部の構竜断面奨滞図、第3図は本発明の
一実施例の気相成長装置のガス系統發呻図、第4図は従
来の気相成長装置の反応管部のfil−m断面概葡図、
第5図は従来の二重反応管型の気相成長装置の反応管部
の構丑断面概楠図である。 2・・・・基板加熱台、3・・・・・・反応管、4・・
・・・・内管、5・・・・・・非反応ガス、6,9.1
0・・・・・・ガス供給口、7.8・・・・・・気相成
長用ガス。
FIG. 1 is a schematic cross-sectional view of the reaction tube section of a vapor phase growth apparatus according to an embodiment of the present invention, and FIG. 2 is a schematic cross-sectional view of the reaction tube section of a vapor phase growth apparatus according to another embodiment of the present invention. 3 is a gas system diagram of a vapor phase growth apparatus according to an embodiment of the present invention; FIG. 4 is a fil-m cross-sectional schematic diagram of a reaction tube section of a conventional vapor phase growth apparatus;
FIG. 5 is a schematic cross-sectional view of the reaction tube section of a conventional double reaction tube type vapor phase growth apparatus. 2...Substrate heating table, 3...Reaction tube, 4...
...Inner tube, 5...Non-reactive gas, 6,9.1
0... Gas supply port, 7.8... Gas for vapor phase growth.

Claims (1)

【特許請求の範囲】[Claims] 反応管内部に載置された基板加熱台よりガス流の上流側
に前記反応管の内径より小さな外径を有する内管を備え
ており、気相成長に関係しない非反応ガスが前記反応管
の内壁に沿って流れるように前記反応管と前記内管との
間に前記非反応ガスのガス供給口を備え、気相成長用ガ
スが前記反応管と前記内管との間に流れ込ないように前
記内管の内部に前記気相成長用ガスのガス供給口を備え
ていることを特徴とする気相成長装置。
An inner tube having an outer diameter smaller than the inner diameter of the reaction tube is provided on the upstream side of the gas flow from the substrate heating stand placed inside the reaction tube, and non-reactive gases not related to vapor phase growth are contained in the reaction tube. A gas supply port for the non-reactive gas is provided between the reaction tube and the inner tube so that the gas flows along the inner wall, so that the gas for vapor phase growth does not flow between the reaction tube and the inner tube. A vapor phase growth apparatus characterized in that a gas supply port for the vapor phase growth gas is provided inside the inner tube.
JP689785A 1985-01-18 1985-01-18 Vapor growth apparatus Pending JPS61166123A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP689785A JPS61166123A (en) 1985-01-18 1985-01-18 Vapor growth apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP689785A JPS61166123A (en) 1985-01-18 1985-01-18 Vapor growth apparatus

Publications (1)

Publication Number Publication Date
JPS61166123A true JPS61166123A (en) 1986-07-26

Family

ID=11651010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP689785A Pending JPS61166123A (en) 1985-01-18 1985-01-18 Vapor growth apparatus

Country Status (1)

Country Link
JP (1) JPS61166123A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007504081A (en) * 2003-08-28 2007-03-01 ケープ シミュレイションズ, インコーポレイテッド High purity crystal growth

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007504081A (en) * 2003-08-28 2007-03-01 ケープ シミュレイションズ, インコーポレイテッド High purity crystal growth

Similar Documents

Publication Publication Date Title
JP2010232402A (en) Vapor deposition apparatus and method
GB2282825A (en) Chemical vapour deposition apparatus
JPH09246192A (en) Thin film gas phase growing device
EP0605725B1 (en) Apparatus for introducing gas, and apparatus and method for epitaxial growth
JPH0322523A (en) Vapor growth device
JP2010238831A (en) Vapor phase deposition device, and vapor phase deposition method
JPS61166123A (en) Vapor growth apparatus
JPS59223294A (en) Vapor phase growth device
JP2001250783A (en) Vapor growth device and method
JPH0779088B2 (en) Semiconductor thin film vapor phase growth equipment
JPS62263629A (en) Vapor growth device
JP3609329B2 (en) Nitride film forming method
JPS6168393A (en) Hot wall type epitaxial growth device
JP2001284269A (en) Vapor phase growth apparatus and method
JPH11240794A (en) Epitaxial growth apparatus
JPH0494117A (en) Vapor growth device
JPS607378B2 (en) CVD equipment
JPH1145858A (en) Compound semiconductor vapor growth equipment and its method
JP5370209B2 (en) Manufacturing method of silicon epitaxial wafer
JPH02190473A (en) Raw gas feeder for plasma cvd
JPH03273616A (en) Cvd apparatus
JP2002261030A (en) Method and apparatus for 3-5-family compound semiconductor epitaxial growth
JPS61251119A (en) Chemical vapor deposition method
JPS6126217A (en) Vapor growth apparatus
JPS58132921A (en) Vapor phase growth method