JPS58132921A - Vapor phase growth method - Google Patents

Vapor phase growth method

Info

Publication number
JPS58132921A
JPS58132921A JP1601882A JP1601882A JPS58132921A JP S58132921 A JPS58132921 A JP S58132921A JP 1601882 A JP1601882 A JP 1601882A JP 1601882 A JP1601882 A JP 1601882A JP S58132921 A JPS58132921 A JP S58132921A
Authority
JP
Japan
Prior art keywords
gas
substrate
tei
region
mixing device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1601882A
Other languages
Japanese (ja)
Inventor
Mototsugu Ogura
基次 小倉
Yuzaburo Ban
雄三郎 伴
Nobuyasu Hase
長谷 亘康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1601882A priority Critical patent/JPS58132921A/en
Publication of JPS58132921A publication Critical patent/JPS58132921A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth

Abstract

PURPOSE:To quickly form an excellent epitaxial grown layer of InP series by mixing gases in the neighborhood of a substrate for growing in the compound semiconductor growth method. CONSTITUTION:A gas supply tube 13 for organic metal such as TEI is used to supply gas to a furnace core tube 1, whereas a gas tube 14 positioned outside the gas supply tube 13 is employed to lead PH3, etc. to a gas mixing apparatus 15. TEI is mixed with PH3 in the region 16 located at the edge of the substrate of the gas mixing apparatus 15. A high frequency heating coil 17 is mounted in the region covering a substrate 9, a susceptor 8 and the gas mixing apparatus 15. PH3 introduced in a heated condition at high temperatures through the gas supply tube 14 is thermally decomposed in the region 18 belonging to the gas mixing apparatus 18 and decomposed P and In of TEI react on each other in the region 16, so that InP is formed on the substrate 9.

Description

【発明の詳細な説明】 本発明は化合物半導体の良好な成長層をイ(することか
出来る気相成長装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a vapor phase growth apparatus capable of producing a good growth layer of a compound semiconductor.

I−■化合物半導体のエピタキシャル成長法としては液
相成長法と気相成長法があり、量産化には気相成長法が
適している。特に気相比と固相比がほぼ等しくとれ、ハ
ライド法に比べ、制御性がすぐれているMOCVD法(
MetaJ−Organic −CVD)がある。
Epitaxial growth methods for I-■ compound semiconductors include a liquid phase growth method and a vapor phase growth method, and the vapor phase growth method is suitable for mass production. In particular, the MOCVD method (which allows the gas phase ratio and solid phase ratio to be approximately equal and has superior controllability compared to the halide method)
MetaJ-Organic-CVD).

第1図に従来のMOCVD法を示す。同図において、炉
芯管1の両端部にエンドキャップ2.3を設けてあり、
エンドキャップ2にはガス供給管4゜6が設けである。
FIG. 1 shows the conventional MOCVD method. In the figure, end caps 2.3 are provided at both ends of the furnace core tube 1,
The end cap 2 is provided with a gas supply pipe 4.6.

例えばInPを結晶成長する場合は、有機金属としてT
EI()リエチルインジウム)をガス供給管4に、PH
3ガスをガス供給W6から独立に炉芯管に供給する。
For example, when growing InP crystals, T is used as the organic metal.
EI() ethyl indium) to the gas supply pipe 4, PH
3 gases are supplied to the furnace core tube independently from the gas supply W6.

炉芯管内を流れ出たガスは出口6より排気される。ポー
ト7上のサセプター8はSiCコーティング製のグラフ
ァイトで、その上に基板9が載置さより検知し、通常フ
ィードバックをかけ、一定温度調節を行なう。この装置
で、たとえばInP基板上にInPのエピタキシャル成
長を行なう場合、TEIの輸送量、 PH3の輸送量、
成長温度を変えてみても、その成長速度は著しく遅い。
The gas flowing out of the furnace core tube is exhausted from the outlet 6. The susceptor 8 on the port 7 is made of graphite coated with SiC, and the substrate 9 is placed on it to detect the susceptor 8 and normally apply feedback to control the temperature at a constant temperature. For example, when performing epitaxial growth of InP on an InP substrate with this equipment, the amount of TEI transported, the amount of PH3 transported,
Even when the growth temperature is changed, the growth rate is extremely slow.

例えば、TEIを65℃の恒温槽に置き、100W/m
inのH2でバブリングし、及びPH32%H2ペース
ガス200 (L / mi nを117m1nのH2
キャリアガスで輸送して、成長温度660℃で90m1
nの処理にて約0,1μmのInPのエピタキシャル層
が基板9上に形成される。
For example, place TEI in a constant temperature bath at 65°C, and
bubbling with H2 in, and pH 32% H2 pace gas 200 (L/min) with 117 m1N H2
Transported with carrier gas, 90m1 at growth temperature 660℃
An epitaxial layer of InP with a thickness of about 0.1 μm is formed on the substrate 9 by the n treatment.

しかしこの方法では成長速度が遅く実用的でない。この
ように成長速度が遅いのはPH3の分解がうまくゆかず
、PH3がTEIと反応して(C2H5)3、 PH3
のようなComp l ex を形成して、InP成長
を阻止するからである。そこで、加熱炉12をPH3ガ
スラインであるガス供給管6に設け、700℃程度に加
熱してPH3の分解を促す方法がある。
However, this method has a slow growth rate and is not practical. The reason for this slow growth rate is that the decomposition of PH3 is not successful, and PH3 reacts with TEI, resulting in (C2H5)3 and PH3.
This is because Comp l ex is formed to inhibit InP growth. Therefore, there is a method in which a heating furnace 12 is provided in the gas supply pipe 6, which is a PH3 gas line, and heated to about 700° C. to promote decomposition of PH3.

この方法だと、成長速度も少しよくなるが、基板7i以
外にもInPの成長があり、TEIの In (インジ
ウム)との反応領域に損失がある。又加熱炉12と反応
炉の炉芯管1とを近接しないと、その間のガス供給管5
の管壁にPが付着してしまい効率が悪い。更にこの場合
は加熱炉12内のガス供給管6領域は石英質の構造にす
る必要があり装置が複雑となる傾向がある。
This method improves the growth rate a little, but there is growth of InP in areas other than the substrate 7i, and there is a loss in the region where TEI reacts with In (indium). Also, if the heating furnace 12 and the furnace core tube 1 of the reaction furnace are not placed close to each other, the gas supply tube 5 between them
P adheres to the tube wall, resulting in poor efficiency. Furthermore, in this case, the region of the gas supply pipe 6 in the heating furnace 12 must be made of quartz, which tends to make the apparatus complicated.

本発明は、上記点にかんがみ、成長用の基板近傍でガス
の混合を行うようにし、良好なInP系のエピタキシャ
ル成長層を速く形成できる気相成長方法を一提供せんと
するものである。第2図に本発明に係る実施例を示す。
In view of the above points, the present invention aims to provide a vapor phase growth method in which gases are mixed near the growth substrate and a good InP-based epitaxial growth layer can be formed quickly. FIG. 2 shows an embodiment according to the present invention.

同図において、第1図と同一番号は同一物を示しており
、炉芯管1へのガス供給はTEI等の有機金属用として
ガス供給管13を用い、PH3等はガス供給管13の外
側のガス供給管14を用いて、ガス混合装置15内は導
入され、ガス混合装置150基板側端部の領域16にて
TEIとPH3が混合される。ガス混合装置16を例え
ば同軸円筒状で中を空胴にしたカーボンブロックの形状
とするとその内壁側と帷れてガス供給管13を設置する
。基板9、サセプター8とガス混合装置16をおおう領
域で高周波加熱コイル17を載置すると、高温加熱状態
でガス供給管14を介して導入しfCPH3はガス混合
装置内領域18にて熱分解され分解したPとTEIのI
nが領域16で反応し基板9上KInPが形成される。
In the figure, the same numbers as in FIG. 1 indicate the same parts, and the gas supply to the furnace core tube 1 is performed using the gas supply pipe 13 for organic metals such as TEI, and the gas supply pipe 13 is used for PH3 etc. outside the gas supply pipe 13. The gas is introduced into the gas mixing device 15 using the gas supply pipe 14, and TEI and PH3 are mixed in a region 16 at the substrate side end of the gas mixing device 150. If the gas mixing device 16 is, for example, in the shape of a coaxial cylindrical carbon block with a hollow space, the gas supply pipe 13 is installed across the inner wall thereof. When the high-frequency heating coil 17 is placed in a region covering the substrate 9, susceptor 8, and gas mixer 16, fCPH3 is introduced via the gas supply pipe 14 in a high-temperature heating state and is thermally decomposed and decomposed in the region 18 inside the gas mixer. P and I of TEI
n reacts in the region 16 to form KInP on the substrate 9.

なお、基板9上に成長するInP成長層の膜厚均一性は
、反応ガスのmixingの状態が重要であり、反応ガ
スの流速等の関係から領域16にガスmi!lnq用の
石英ブロックあるいはカーボンブロックを設置してもよ
い。また、ガス混合装置15の内壁とTEl等のガス供
給管13は十分離す等の工夫が望しい。こうしないと、
ガス混合装置16からの熱によりTEI等が熱分解して
ガス供給管13のガス混合装置15内の領域18の管壁
に Inの状態で付着し、基板9上へのInPの成長速
度が遅くなる。したがって、16の内壁と管13を十分
離すか、又は例えばPH3,T E Iの流速を速くし
て冷却する等が望しい。又、反応ガスと基板9との衝突
角度は、はぼ900に近い状態がよく、サセプター8上
にカーボンブロック19を載置のがよい。
Note that the mixing state of the reaction gas is important for the uniformity of the film thickness of the InP growth layer grown on the substrate 9, and the gas mi! A quartz block or carbon block for lnq may be installed. Further, it is desirable to keep the inner wall of the gas mixing device 15 and the gas supply pipe 13 such as TEL sufficiently apart. If you don't do this,
TEI and the like are thermally decomposed by the heat from the gas mixing device 16 and adhere in the form of In to the pipe wall of the region 18 in the gas mixing device 15 of the gas supply pipe 13, slowing down the growth rate of InP on the substrate 9. Become. Therefore, it is desirable to provide a sufficient distance between the inner wall of tube 16 and tube 13, or to cool the tube 13 by increasing the flow rate of PH3 and TEI, for example. Further, it is preferable that the collision angle between the reaction gas and the substrate 9 be close to 900, and that the carbon block 19 be placed on the susceptor 8.

第3図に本発明の他の実施例を示す。第1図と同一番号
は同一物を示す。TEI等の有機金属系はガス供給管2
oを用いPH3等はガス供給管21を用いる。第2図の
実施例と異なるのは、′ガス混合装置22が石英ででき
ていることである。但し、領域23はラッパ状にし、ガ
ス供給管21より導入されるPH3等を効率よく基板9
の周辺に供給するようkする。なお、領域23の形状は
効率よりガスを集めてmixingできる形状であれば
よい、。
FIG. 3 shows another embodiment of the invention. The same numbers as in FIG. 1 indicate the same items. For organometallic systems such as TEI, use gas supply pipe 2.
For PH3 and the like, a gas supply pipe 21 is used. The difference from the embodiment of FIG. 2 is that the gas mixing device 22 is made of quartz. However, the region 23 is shaped like a trumpet to efficiently transfer the PH3 etc. introduced from the gas supply pipe 21 to the substrate 9.
k so as to supply the surrounding area. Note that the shape of the region 23 may be any shape as long as it can collect and mix gas in terms of efficiency.

TEIとPH3はガス混合装置22の領域24にてmi
xingされ、基板9上に搬送される。基板9上の膜厚
の均−性及び膜質は基板9と反応ガスとの衝突角度、同
筒状のガス混合装置22の径、TEI 、 PH3の流
速及び濃度比等で決る。mixingをよくするには領
域24にmLxincl用の石英プロ、ツク又はカーボ
ンブロックを載置してもよい。高周波加熱コイル25は
領域24、サセプター8をおおう領域に載置する。
TEI and PH3 are mixed in the region 24 of the gas mixing device 22.
xing and transported onto the substrate 9. The uniformity of the film thickness and film quality on the substrate 9 are determined by the collision angle between the substrate 9 and the reaction gas, the diameter of the cylindrical gas mixing device 22, the flow rate and concentration ratio of TEI and PH3, and the like. To improve mixing, a quartz block, a block, or a carbon block for mLxincl may be placed in the area 24. The high frequency heating coil 25 is placed in the area 24, which covers the susceptor 8.

第3図の本発明での成長条件の一例は例えばPH34c
t−/ rnxn 、 T E I OバブリングH2
1o0ec / min、  T E I 65℃、T
OTAL  H24g/min。
An example of the growth conditions in the present invention shown in FIG. 3 is, for example, PH34c.
t-/rnxn, T EIO bubbling H2
1o0ec/min, T E I 65℃, T
OTAL H24g/min.

成長湯度650℃とすると、約1μm/h rのInP
エピタキシャル層が、8X12fiの大きさの基板の全
域についてほぼ均一に得られた。得られたエピタキシャ
ル層は、’ non −dopeの状態で、室温でのP
L(フォトルミネッセンス)の半値巾は30nm、キー
yリア濃度2 X 1016cm−3,移動度3000
 cn /V −SeCという良好な成長層が得られた
If the growth temperature is 650℃, InP of about 1μm/hr
An epitaxial layer was obtained that was substantially uniform over the entire area of the 8x12fi sized substrate. The obtained epitaxial layer was in a non-doped state with P at room temperature.
Half width of L (photoluminescence) is 30 nm, key y rear concentration 2 x 1016 cm-3, mobility 3000
A good growth layer of cn/V-SeC was obtained.

以上の本実・流側から明らかなようにTEIとPH3と
のmixingを効率よくすることにより、良好なIn
Pエピタキシャル層を速く形成することが可能でしかも
、ガス混合装置、ガス供給管、サセプター等は着脱可能
のため、管内のクリーニングは容易である。
As is clear from the above facts and flows, by improving the mixing of TEI and PH3, good In
It is possible to quickly form a P epitaxial layer, and since the gas mixing device, gas supply pipe, susceptor, etc. are removable, the inside of the pipe can be easily cleaned.

尚、上記実施例において、InP系の気相成長について
述べたが本発明はInP系と同様な反応過程を有するも
のたとえばP (IJン)を含む他の化合物半導体層の
エピタキシャル成長、さらに他の熱分解性の良くないガ
スを用いる化合物半導体の成以上のように、本発明は簡
単な構成で比較的速く、シかも良質のエピタキシャル成
長層を形成できるので、a−v、n−vr系化合物半導
体の成長層形成の量産化に適するものであり、工業的価
値は高い。
In the above embodiments, InP-based vapor phase growth was described, but the present invention also applies to epitaxial growth of other compound semiconductor layers that have a reaction process similar to that of InP-based materials, such as P (IJn), and other thermal growth methods. As described above for the formation of compound semiconductors using gases with poor decomposition properties, the present invention has a simple structure, is relatively quick, and can form high-quality epitaxial growth layers. It is suitable for mass production of growth layer formation and has high industrial value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の気相成長装置の概略図、第2図。 第3図は本発明に係る実施例に用いる気相成長装置の概
略図を示す。 1・・・・・・炉芯管、7.・・・−・・ボート、8・
・・・・・サセプター、9o・・…基板、17,25.
・・@・−高周波加熱コイ゛ル、13 、20・・−−
−−T E I供給管、1421・−・・−IIPH3
供給管、15,22・コ、−・ガス混合装置。
FIG. 1 is a schematic diagram of a conventional vapor phase growth apparatus, and FIG. 2 is a schematic diagram of a conventional vapor phase growth apparatus. FIG. 3 shows a schematic diagram of a vapor phase growth apparatus used in an embodiment of the present invention. 1... Furnace core tube, 7.・・・-・・・Boat, 8・
... Susceptor, 9o... Substrate, 17, 25.
・・@・−High frequency heating coil, 13, 20・・−
--T E I supply pipe, 1421...-IIPH3
Supply pipe, 15, 22 · · · Gas mixing device.

Claims (3)

【特許請求の範囲】[Claims] (1)結晶成長用炉芯管内のガス混合装置の下流側に基
板を載置し、前記ガス混合装置内の上流側端部から反応
ガスを供給し、前記ガス混合装置内の下流側端部近傍に
有機金属系ガスを供給することにより基板上に化合物半
導体層を形成することを特徴とする気相成長方法。
(1) A substrate is placed on the downstream side of a gas mixing device in a crystal growth furnace core tube, a reaction gas is supplied from the upstream end of the gas mixing device, and a reaction gas is supplied from the downstream end of the gas mixing device. A vapor phase growth method characterized by forming a compound semiconductor layer on a substrate by supplying an organometallic gas nearby.
(2)ガス混合装置の一部あるいは全部をカーボン製と
することを特徴とする特許請求の範囲第1項に記載の気
相成長方法。
(2) The vapor phase growth method according to claim 1, wherein part or all of the gas mixing device is made of carbon.
(3)  ガス混合装置を同、軸筒状とし、その内側に
有機金属系ガスを外側に熱分解性の良くない反応ガ(4
)反応ガスとしてPH3を用いることを特徴とする特許
請求の範囲第1項に記載の気相成長方法。
(3) The gas mixing device has the same cylindrical shape, and the organometallic gas is placed on the inside and the reactive gas (4), which has poor thermal decomposition properties, is placed on the outside.
) The vapor phase growth method according to claim 1, characterized in that PH3 is used as the reaction gas.
JP1601882A 1982-02-03 1982-02-03 Vapor phase growth method Pending JPS58132921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1601882A JPS58132921A (en) 1982-02-03 1982-02-03 Vapor phase growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1601882A JPS58132921A (en) 1982-02-03 1982-02-03 Vapor phase growth method

Publications (1)

Publication Number Publication Date
JPS58132921A true JPS58132921A (en) 1983-08-08

Family

ID=11904830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1601882A Pending JPS58132921A (en) 1982-02-03 1982-02-03 Vapor phase growth method

Country Status (1)

Country Link
JP (1) JPS58132921A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4985281A (en) * 1988-08-22 1991-01-15 Santa Barbara Research Center Elemental mercury source for metal-organic chemical vapor deposition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4985281A (en) * 1988-08-22 1991-01-15 Santa Barbara Research Center Elemental mercury source for metal-organic chemical vapor deposition

Similar Documents

Publication Publication Date Title
JPS6055478B2 (en) Vapor phase growth method
JPS6115322A (en) Homogeneous chemical depositing method and device therefor
JPS60112694A (en) Gas-phase growth method of compound semiconductor
US20010021593A1 (en) Chemical vapor deposition apparatus and chemical vapor deposition process
JPS58132921A (en) Vapor phase growth method
JPS59223294A (en) Vapor phase growth device
JPH0658880B2 (en) Vapor phase epitaxial growth system
JP2845105B2 (en) Thin film vapor deposition equipment
JPH03236221A (en) Vapor growth apparatus
JPS58140391A (en) Device for vapor deposition
JPS63277591A (en) Apparatus for vapor-phase epitaxial growth
JPS58223695A (en) Device for vapor-phase epitaxial growth
JP2003328136A (en) Vapor growth system and vapor growth method
JPH10167897A (en) Method for growing gan film
JPS6373617A (en) Method for vapor growth of compound semiconductor
JPS6389491A (en) Vapor growth device
JPS6131393A (en) Vapor phase growth device
JPS6321822A (en) Vapor phase epitaxial growth method for silicon
JPH06115913A (en) Synthesis of boron carbonitride
JPS6353160B2 (en)
JPS6266621A (en) Vapor growth apparatus
JPH03236220A (en) Vapor growth method for semiconductor
JPS58156592A (en) Method for vapor-phase epitaxial growth
JPS60235796A (en) Device for gaseous phase growth and method of gaseous phase growth
JPS61114521A (en) Method of crystal growth of semiconductor