JPS61165664A - Power source voltage detection circuit - Google Patents

Power source voltage detection circuit

Info

Publication number
JPS61165664A
JPS61165664A JP691885A JP691885A JPS61165664A JP S61165664 A JPS61165664 A JP S61165664A JP 691885 A JP691885 A JP 691885A JP 691885 A JP691885 A JP 691885A JP S61165664 A JPS61165664 A JP S61165664A
Authority
JP
Japan
Prior art keywords
voltage
power source
source voltage
power supply
supply voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP691885A
Other languages
Japanese (ja)
Inventor
Teruhiko Kyogoku
京極 照彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP691885A priority Critical patent/JPS61165664A/en
Publication of JPS61165664A publication Critical patent/JPS61165664A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Current Or Voltage (AREA)
  • Electronic Switches (AREA)

Abstract

PURPOSE:To enable the titled circuit to be received in IC and to reduce current consumption by dispensing with the high resistance in IC, by operating an inverter when the output of a power source voltage dividing circuit due to the series connection of MOSFET reached a predetermined value. CONSTITUTION:The voltage V1 of a terminal 3 increases so as to be made almost near to power source voltage VCC with the increase in said power source voltage VCC and, after the voltage VCC reached a certain definite level V1, a definite voltage value is held. The threshold voltage V2 of a CMOS inverter increases with the increase in the voltage VCC. As a result, when the voltage V1 of the terminal 3 is inputted, the output voltage V4 of a terminal 4 is reversed. By using the change in the output voltage V4 of said inverter, reset input voltage at the time of the variation in power source voltage is obtained. Therefore, by setting the element dimensions of TR1-TR4, VTP, VTN and VTD so as to set the predetermined voltage V3 of power source voltage VCC to a detection voltage value to be calculated, a desired power source voltage detector is obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、MOSFETよシ構成される電源電圧検出回
路に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a power supply voltage detection circuit constructed of MOSFETs.

従来の技術 従来の電源電圧検出回路例として、電源電圧を抵抗分割
することによシ得られる電圧と電源電圧または接地電圧
よシある一定電圧レベルだけレベルシフトした電圧とを
比較して検出を行う回路がある。この場合、抵抗分割に
は線型抵抗が使われている。また、レベルシフト電圧を
得る手段としては、ダイオードの順方向電圧、ツェナー
ダイオード、エンハンスメント型MO3FETのしきい
値電圧などが使われている。
2. Description of the Related Art As an example of a conventional power supply voltage detection circuit, detection is performed by comparing a voltage obtained by dividing a power supply voltage with a voltage level-shifted by a certain voltage level from the power supply voltage or ground voltage. There is a circuit. In this case, a linear resistor is used for resistance division. Further, as means for obtaining the level shift voltage, the forward voltage of a diode, a Zener diode, the threshold voltage of an enhancement type MO3FET, etc. are used.

発明が解決しようとする問題点 線型抵抗としては、外付は抵抗を使う方式と集積回路内
に抵抗を形成する方式とがある。しかし外付は抵抗を用
いる方式は外付けの抵抗を必要とし、また外付は端子が
雑音の影響を受けやすい問題がある。内蔵抵抗方式には
通常の集積回路内で使われている程度の低抵抗値では抵
抗分割回路での消費電力が大きくなる。小面積で高抵抗
を形成するためには製造工程数が増加する問題点がある
Problems to be Solved by the Invention There are two types of linear resistors: one uses an external resistor, and the other forms a resistor within an integrated circuit. However, the method using an external resistor requires an external resistor, and the external resistor has the problem that the terminals are susceptible to noise. If the built-in resistor method uses low resistance values such as those used in ordinary integrated circuits, the power consumption in the resistor divider circuit will be large. There is a problem in that the number of manufacturing steps increases in order to form a high resistance in a small area.

本発明は、上記の問題点を減少させるもので、集積回路
内に内蔵され、小面積で、外付は抵抗を必要としないこ
と、および集積回路内に高抵抗を形成する必要のない低
消費電力の電源電圧検出器を提供することを目的とする
The present invention reduces the above-mentioned problems by being built into an integrated circuit, having a small area, requiring no external resistor, and having low power dissipation without the need to form a high resistance within the integrated circuit. The purpose is to provide a power supply voltage detector.

問題点を解決するための手段 本発明はNチャンネル・二/ノ・ンスメント型MO3F
ETとNチャンネル・テフレソシゴン型MOSFETと
を直列接続した電源電圧分圧回路と、この分圧出力を入
力するインバータとで回路を構成したものである。
Means for Solving the Problems The present invention is an N-channel two/no-insment type MO3F.
The circuit consists of a power supply voltage divider circuit in which an ET and an N-channel Teflon type MOSFET are connected in series, and an inverter that inputs the divided voltage output.

作用 この構成により、分圧回路からのインバータ入力が所定
値になったとき、出力電圧が反転する。
Effect: With this configuration, when the inverter input from the voltage dividing circuit reaches a predetermined value, the output voltage is inverted.

実施例 第1図に、本発明の一実施例による電源電圧検出回路の
概略構成を示す。TR1はNチャンネル・デプレッショ
ン型MO3FET、TR2はNチャンネル・エンハンス
メント型据 T R4ハP fヤンネル、Nチャンネルノ各エンノ蔦
ンスメント型MOSFETで、TR3、TR4がC−M
O3構成である。1は電源電圧端子、2は接地端子、3
は基準入力端子、4は出力端子である。TR1のドレイ
ンを電源電圧端子1に接続し、同TR1のゲートとソー
スとをTR2のゲートとに接続し、且つ、TR3および
TR4で構成するインバータの入力端子3に接続する。
Embodiment FIG. 1 shows a schematic configuration of a power supply voltage detection circuit according to an embodiment of the present invention. TR1 is an N-channel depletion type MO3FET, TR2 is an N-channel enhancement type MOSFET, R4 is an N-channel enhancement type MOSFET, and TR3 and TR4 are C-M.
It is an O3 configuration. 1 is the power supply voltage terminal, 2 is the ground terminal, 3
is a reference input terminal, and 4 is an output terminal. The drain of TR1 is connected to power supply voltage terminal 1, the gate and source of TR1 are connected to the gate of TR2, and are also connected to input terminal 3 of an inverter constituted by TR3 and TR4.

TR2のソースは接地端子2に接続する。The source of TR2 is connected to ground terminal 2.

TR1,TR2に流れる電流を工、とすると、飽和領域
では式(1)で表わせる。  。
Assuming that the current flowing through TR1 and TR2 is , it can be expressed by equation (1) in the saturation region. .

KD・・・・・・Nチャンネルーテクレノンヨン型MO
SFETの導電パラメータ、 KE・・・・・・Nチャンネル−エンハンスメント型M
OS F E T cD導電ハラ) −タ、Wn・・・
・・MOSFETnのチャンネル幅(n=1.2)、 Ln・・・・・MOSFETnのチャンネル長(n=1
.2)、 vTD・・・・Nfヤンネルーテフレッション型MOS
FETのしきい値電圧、 vTN・・・・・Nチャンネル会エンハンスメント型M
OSFETのしきい値電圧、 ■TP・・・・・・Pチャンネル・エンハンスメント型
MOSFETのしきい値電圧、 vl ・・・・・・TR1,TR2で構成される回路の
出力電圧、 式(1)から基準入力端子3の電圧■1 は式(2)で
表わされる。
KD・・・・・・N channel-technical type MO
Conductive parameters of SFET, KE...N channel - enhancement type M
OS F E T cD conductive hara) -ta, Wn...
...Channel width of MOSFETn (n=1.2), Ln...Channel length of MOSFETn (n=1
.. 2), vTD...Nf Janner route flexion type MOS
FET threshold voltage, vTN...N channel enhancement type M
Threshold voltage of OSFET, ■TP...Threshold voltage of P-channel enhancement type MOSFET, vl...Output voltage of the circuit composed of TR1 and TR2, Formula (1) The voltage ■1 at the reference input terminal 3 is expressed by equation (2).

7たTR3、TR4で構成されるCMOSインバータは
、TR3とTR4とのレシオによるしきい値v2を持つ
。しきい値■2は電源電圧の変化によシ、はぼ直線的な
変化をする。
The CMOS inverter composed of TR3 and TR4 has a threshold value v2 based on the ratio of TR3 and TR4. The threshold value (2) changes approximately linearly with changes in the power supply voltage.

第2図に基準入力端子3の電圧v1およびTR3゜TR
4によって構成されるCMOSインバータのしきい値電
圧v2と電源電圧■ccとの関係を示す。
Figure 2 shows the voltage v1 and TR3°TR of the reference input terminal 3.
4 shows the relationship between the threshold voltage v2 of the CMOS inverter configured with 4 and the power supply voltage cc.

電源電圧の増加に伴ない、端子3の電圧v1はvccに
ほぼ近い値で増加し、vCGがある一定の値、すなわち
式@)の基準入力レベルv1に到達後、一定の値を保持
する。一方、CMOSインバータのしきい値電圧■2は
vccの増加に伴って増加する。
As the power supply voltage increases, the voltage v1 at the terminal 3 increases at a value approximately close to vcc and remains constant after vCG reaches a certain value, that is, the reference input level v1 of the formula @). On the other hand, the threshold voltage (2) of the CMOS inverter increases as vcc increases.

この結果、端子3の電圧v1 を入力とするCMOSイ
ンバータは第2図のV とV との交点v3の電源電圧
vCoが印加されたとき、出力端子4の出力電圧v4が
反転する。
As a result, when the CMOS inverter which inputs the voltage v1 of the terminal 3 is applied with the power supply voltage vCo at the intersection v3 of V 1 and V 2 in FIG. 2, the output voltage v4 of the output terminal 4 is inverted.

インバータの出力電圧v4の変化を利用して電源電圧変
動時のリセット入力電圧として用いることができる。し
たがって電源電圧vCCの所定電圧v3が求める検出電
圧値となるようにTR1゜TR2、TR3、TR4O,
1子寸法、■TP、vTN。
The change in the output voltage v4 of the inverter can be used as a reset input voltage when the power supply voltage fluctuates. Therefore, TR1°TR2, TR3, TR4O,
1 child size, ■TP, vTN.

vTD を設定すれば希望する電源電圧検出器が得られ
る。
By setting vTD, the desired power supply voltage detector can be obtained.

また、本発明は前述の回路例に限定されず、第3図の実
施例のようにTR1,TR2をゲルトがソースに結合さ
れたNチャンネル・エンハンスメント型MO3FET 
TR6、同チャンネル9デプレッション型MOSFET
 TR6に置き換えても同様に可能であり、特性は第4
図のようになる。
Furthermore, the present invention is not limited to the circuit example described above, but as in the embodiment shown in FIG.
TR6, same channel 9 depression type MOSFET
It is also possible to replace it with TR6, and the characteristics are the same as the fourth
It will look like the figure.

まfCNチャンネルMOSFETとPチャンネルMO3
FETを全て置き換えて電位を逆転させた同様の回路が
可能である。
fCN channel MOSFET and P channel MO3
A similar circuit is possible with all the FETs replaced and the potentials reversed.

発明の効果 本発明によれば、外付は抵抗や内蔵抵抗による抵抗分割
回路を必要とせず、MO8FIi:Tの寸法によっては
低消費電力化が可能である。まだこの回路は通常の0M
O5にデグレソショ/型MO5の工程を付加するだけで
あり集積回路内に内蔵することが容易である。
Effects of the Invention According to the present invention, there is no need for a resistance divider circuit using an external resistor or a built-in resistor, and it is possible to reduce power consumption depending on the dimensions of MO8FIi:T. This circuit is still normal 0M
It is easy to incorporate it into an integrated circuit by simply adding a step of degradation/type MO5 to O5.

またCMOSインバータでレベル判定をするためにオペ
アンプを必要とせず、回路が簡単である。
Further, the CMOS inverter does not require an operational amplifier for level determination, and the circuit is simple.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の電源電圧検出回路の概略構成
図、第2図はその動作を説明する特性図、第3図は本発
明の別の実施例回路図、第4図はその動作を説明する特
性図である。 TR1,TRe・・・Nチャンネルーテフレノシッン型
MO9FET、TR2、TR4、TR5=・・Nチャン
ネル・エンハンスメント型MOSFET。 TR3・・・・Pチャンネル・エンハンスメント型MO
3FT、 1.s・・・・電源電圧端子、2,6・・・
・接地端子。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第 
1 因 第2図 第3図 第4図 I7?Vcc
FIG. 1 is a schematic configuration diagram of a power supply voltage detection circuit according to an embodiment of the present invention, FIG. 2 is a characteristic diagram explaining its operation, FIG. 3 is a circuit diagram of another embodiment of the present invention, and FIG. FIG. 3 is a characteristic diagram illustrating the operation. TR1, TRe...N-channel tephrenosine type MO9FET, TR2, TR4, TR5=...N-channel enhancement type MOSFET. TR3...P channel enhancement type MO
3FT, 1. s...Power supply voltage terminal, 2, 6...
・Ground terminal. Name of agent: Patent attorney Toshio Nakao and 1 other person
1 Cause Figure 2 Figure 3 Figure 4 I7? Vcc

Claims (3)

【特許請求の範囲】[Claims] (1)Nチャンネル・エンハンスメント型MOSFET
とNチャンネル・デプレッション型MOSFETとを直
列接続した電源電圧分圧回路および前記分圧回路の出力
を入力に結合したインバータとで構成した電源電圧検出
回路。
(1) N-channel enhancement type MOSFET
and an N-channel depletion type MOSFET connected in series, and an inverter having an input coupled to the output of the voltage dividing circuit.
(2)電源電圧分圧回路中の互いのMOSFETの各ゲ
ートが共通接続されて、両MOSFETの直列結合部に
接続された特許請求の範囲第1項に記載の電源電圧検出
回路。
(2) The power supply voltage detection circuit according to claim 1, wherein the gates of the MOSFETs in the power supply voltage divider circuit are commonly connected and connected to the series coupling portion of both MOSFETs.
(3)電源電圧分圧回路中の互いのMOSFETの各ゲ
ートが、それぞれのソース側電源電圧端子に接続された
特許請求の範囲第1項に記載の電源電圧検出回路。
(3) The power supply voltage detection circuit according to claim 1, wherein each gate of each MOSFET in the power supply voltage voltage dividing circuit is connected to each source side power supply voltage terminal.
JP691885A 1985-01-18 1985-01-18 Power source voltage detection circuit Pending JPS61165664A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP691885A JPS61165664A (en) 1985-01-18 1985-01-18 Power source voltage detection circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP691885A JPS61165664A (en) 1985-01-18 1985-01-18 Power source voltage detection circuit

Publications (1)

Publication Number Publication Date
JPS61165664A true JPS61165664A (en) 1986-07-26

Family

ID=11651612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP691885A Pending JPS61165664A (en) 1985-01-18 1985-01-18 Power source voltage detection circuit

Country Status (1)

Country Link
JP (1) JPS61165664A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63221711A (en) * 1987-03-11 1988-09-14 Nippon Denso Co Ltd Reset circuit
JP2009198476A (en) * 2008-01-24 2009-09-03 Ricoh Co Ltd Voltage detecting circuit
JPWO2013042285A1 (en) * 2011-09-22 2015-03-26 パナソニックIpマネジメント株式会社 Voltage detection circuit and voltage regulator device including the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5133667A (en) * 1975-07-18 1976-03-22 Suwa Seikosha Kk DENSHIDOKEI
JPS55101058A (en) * 1979-01-26 1980-08-01 Hitachi Ltd Detection circuit for operating lowest limit voltage
JPS55128162A (en) * 1979-03-28 1980-10-03 Hitachi Ltd Power supply voltage drop detector
JPS5749870A (en) * 1980-09-09 1982-03-24 Toshiba Corp Monitoring device for brush sparking
JPS5910859A (en) * 1982-07-12 1984-01-20 Hitachi Ltd Detecting circuit for power source voltage drop

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5133667A (en) * 1975-07-18 1976-03-22 Suwa Seikosha Kk DENSHIDOKEI
JPS55101058A (en) * 1979-01-26 1980-08-01 Hitachi Ltd Detection circuit for operating lowest limit voltage
JPS55128162A (en) * 1979-03-28 1980-10-03 Hitachi Ltd Power supply voltage drop detector
JPS5749870A (en) * 1980-09-09 1982-03-24 Toshiba Corp Monitoring device for brush sparking
JPS5910859A (en) * 1982-07-12 1984-01-20 Hitachi Ltd Detecting circuit for power source voltage drop

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63221711A (en) * 1987-03-11 1988-09-14 Nippon Denso Co Ltd Reset circuit
JP2009198476A (en) * 2008-01-24 2009-09-03 Ricoh Co Ltd Voltage detecting circuit
JPWO2013042285A1 (en) * 2011-09-22 2015-03-26 パナソニックIpマネジメント株式会社 Voltage detection circuit and voltage regulator device including the same

Similar Documents

Publication Publication Date Title
EP0454135B1 (en) MOS type input circuit
US5434534A (en) CMOS voltage reference circuit
US5959477A (en) Precision power-on reset circuit
JPH05175811A (en) Power-on reset circuit
US20070024332A1 (en) All MOS power-on-reset circuit
JPS61165664A (en) Power source voltage detection circuit
JPS6134471A (en) Power source voltage detection circuit
JPS58207728A (en) Transistor circuit
US6828821B2 (en) Input buffer circuit
US20010035776A1 (en) Fixed transconductance bias apparatus
JP4218153B2 (en) Voltage detection circuit
JP2877178B2 (en) Power-on reset circuit
JPH02143608A (en) Semiconductor integrated circuit
JPH0474208A (en) Power-on reset circuit
JPS63276316A (en) Oscillation circuit
JP2889706B2 (en) Power-on reset circuit
JPH0697796A (en) Power-on reset circuit
JPH04301921A (en) Inverter circuit
JP2927112B2 (en) Test circuit
JP2000059184A (en) Delay circuit
JPS62222713A (en) Cmos inverter circuit for delay
JPH03227115A (en) Semiconductor integrated circuit
JP2808784B2 (en) Input circuit
JPH01208913A (en) Inverter circuit
JPS5834956A (en) Input circuit