JPS61163923A - Epoxy resin composition - Google Patents
Epoxy resin compositionInfo
- Publication number
- JPS61163923A JPS61163923A JP443285A JP443285A JPS61163923A JP S61163923 A JPS61163923 A JP S61163923A JP 443285 A JP443285 A JP 443285A JP 443285 A JP443285 A JP 443285A JP S61163923 A JPS61163923 A JP S61163923A
- Authority
- JP
- Japan
- Prior art keywords
- epoxy resin
- ion exchanger
- inorganic ion
- coupling agent
- treated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Epoxy Resins (AREA)
- Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
Abstract
Description
[技術分野]
本発明は耐湿信頼性を向上したエポキシ樹脂組成物殊に
、半導体封止用のエポキシ樹脂組成物らこ関するもので
ある。[Technical Field] The present invention relates to an epoxy resin composition with improved moisture resistance reliability, particularly to an epoxy resin composition for semiconductor encapsulation.
近年、半導体素子の高集積化、高密度化にはめざましい
ものがあり、半導体封止用のエポキシ樹脂組成物に対す
る要求もさらに厳しく成ってきでいる。エポキシ樹脂組
成物の適用分野として、トランジスタ、ICは勿論のこ
と、LSIさらには64KDRAM、256KDRAM
に代表されるようなll1LSIの封止も近年は上記エ
ポキシ樹脂組成物でなされている。ところが、エポキシ
樹脂組成物に代表される樹脂封止のデメリットは耐湿信
頼性にあり、セラミック封止に比較して劣るのが現状で
ある。樹脂封止における耐温性の低下は、封止用樹脂組
成物中に含まれているイオン成分、特にハロゲン、アル
カリのイオン化をもたらし、半導体素子の配線材料であ
るアルミニウムを腐食するという問題が生じてくるので
ある。
上記問題に対して、従来イオンを低減する方法として大
のような方法が試みられた。一つはベース樹脂合成の際
に副生ずる加水分解性イオン、待にクロルイオンを低減
する方法である。即ち、エポキシ樹脂を^純度化する方
法であるが、この方法では一応の効果は認められるもの
の樹脂合成の段階でクロルイオンを低減するには限界が
あり、充分なものとは言えなかった。他の方法は、イオ
ン化するイオンを無害なイオンに交換するイオン交換樹
脂をベース樹脂に混入する方法である。しかしながら、
この方法ではイオン交換樹脂の交換能力が低いばかりで
なくイオン交換樹脂の純度に問題があり、また耐熱性が
良くないために半田衝撃などの熱衝撃を受けるとイオン
交換能力が低下、ついには無くなるという問題があって
、共に充分な効果は得られでいないのが現状であった。
[発明の目的1
本発明は上記の点に鑑みで成されたものであって、耐熱
性が良く、イオン交換樹脂の純度が高く、しかもイオン
交換能力の高い無機イオン交換樹脂を用いてクロルイオ
ンやナトリウムイオンを減少し、耐湿信頼性を向上する
ことができるエポキシ樹脂組成物を提供することを目的
とするものである。
[発明の開示1
すなわち、本発明のエポキシ樹脂組成物は、一般式 M
xOs’M’ 205’nHzo(M、M’は3〜5価
の遷移金属、nは0〜2)で示される金属酸化物の1種
あるいは2種以上で形成される無機イオン交換体が、カ
ップリング剤又は樹脂で表面処理された処理s機イオン
交換体がエポキシ系樹脂に配合されて成ることを特徴と
するもので、この処理無機イオン交換体を添加すること
により上記目的を達成したものである。
以下本発明の詳細な説明する0本発明に係る無″J(、
f7’gf*i!・−f&x ”′。°°“’205”
1n H20(M %M ’は3〜5価の遷移
金属、nは0〜2)で示される金属酸化物の1種あるい
は2種以上より構成されるもので、これらの金属酸化物
を溶融混合、結晶化させたものである。ここで、M又は
M′としては例えば、アンチモン、ビスマス等があり、
MとM′は同じ金属でもあるいは異なる金属でも良いも
のである。また、nは整数とは限らず、例えば0.5.
1.5などでも良い、好ましい無機イオン交換体の一般
式を示すと、S b203・B izo s・0.5H
,Oである。この無機イオン交換体の表面状態を観察す
るとM−OHの構造を部分的に有しており、このM−O
Hがイオン交換に対して重要な役割を果たすのである。
すなわち、ハロゲンイオンに対しては、
M−OH+H”+CI−→M−CI +H” OH→M
−CI+8.0
また、アルカリイオンに対しては、
M OH+ Na” −*M−Na +OH−+
H”→M −N a 十Hz O
このようにしてイオン交換した後のM−Na。
M−CIは安定であり、2次分解する恐れはないもので
ある。また、交換した後に発生するH+とかOH−はH
20として再結合するものであり、半導体素子の配線材
料であるアルミニウムを腐食させることはないものであ
る。このようにイオン交換した後の生成物も非常に安定
であり、従来のイオン交換樹脂に見られない特徴を有す
るばかりでなく、カチオン、アニオン両方を単一物質で
トラップ、交換する特徴がある。また、このjltfl
イオン交換体は400〜450℃まで安定であり、半田
などの熱衝撃を与えでも交換能力は低下することはない
ものである。このような特性を持つp&機ビイオン交換
体カップリング剤で処理し、あるいはエポキシ樹脂、7
エノール樹脂等の樹脂で表面処理して処理jiffイオ
ン交換体を作成する。ここで、カップリング剤としては
エポキシシラン、アミ/シラン、脂環式エポキシシラン
等のシラン系カップリング剤を使用することができ、特
にエポキシシランが好ましい。また、カップリング剤と
無機イオン交換体の前処理については公知の方法で行う
ことができる。樹脂で無機イオン交換体を処理して処理
無機イオン交換体を作成する場合には、例えば120〜
170℃に溶融したエポキシ樹脂100重量部に無機イ
オン交換体を1〜30重量部添加した後、5〜60分溶
融混合し、その後冷却粉砕したものを使用することがで
きる。このようにして無機イオン交換体を樹脂と溶融混
合すれば、無機イオン交換体の表面は完全に樹脂にコー
トされるために他の樹脂との相溶性も非常に良くなり、
しかも処理無機イオン交換体の分散性も向上し、よりイ
オン交換能力が増すようになる。この処理無機イオン交
換体をエポキシ樹脂、あるいは変性エポキシ樹脂等のエ
ポキシ系樹脂に添加して混合し、シリカ等の無機充填材
、フェノールノボラック樹脂等の硬化剤及び必要に応じ
てワックス、着色剤、カップリング剤、難燃剤等を添加
して加熱混練し、その後冷却した後、粉砕してエポキシ
樹脂組成物を得るのである。樹脂組成物に添加する処理
無機イオン交換体の添加量としては、エポキシ系街N1
00重量部に対して1〜30重量部添加することができ
る。添加量が1重量部未満の場合には添加効果に乏しく
、また添加量が30重量部を超えたとしてもイオン交換
能力が向上せず経済的でないものである。また、処理無
機イオン交換体の粒度は200μ以下が望ましい、20
0μを超えるとデート詰まりなどの成型性の問題を生じ
るばかりでなく、単位重量当たりの表面積が小さくなる
ため交換能力が低下するという問題がある。従って、処
理無機イオン交換体の粒度は100μ以下がさらに好ま
しい。
しかしで、一般式 M 20 z ・M ’ 209
・nH20(M、M’は3〜5価の遷移金属、nはθ〜
2)で示される金属酸化物の1種あるいは2種以上より
構成されるjlllflイオン交換体がカップリング剤
又は樹脂で処理された処理無機イオン交換体をエポキシ
系樹脂に配合することにより、樹脂組成物中に存在する
ハロゲンイオンやナトリウムイオン等の各イオンと交換
して水素イオン及1水酸イオンを放出し、水素イオン及
び水酸イオンが再結合して水となり、配線材料であるア
ルミニウムを腐食させることがないものであり、従って
耐湿信頼性を向上することができるものである。具体的
には、抽出イオン量としては従来の1/2以下であり、
耐湿信頼性も従来の2倍以上に向上できた。しかも、j
lfiイオン交換体は上記したように交換能力が高く、
加えて金属酸化物であるために耐熱性にも優れており半
田衝撃などの熱衝撃を受けてもイオン交換能力が低下す
るということがなく複合信頼性も向上でき、また純度も
高いものである。また、無機イオン交換体の表面状態は
M−OHという形になっており、充填材として用いるシ
リカの表面状!1siOHと比較的に似ており、このM
−OHのOH基は部分的にカップリング剤に含まれるメ
トキシ基と加水分解を起こし、M−0−R(Rはカップ
リング剤)の構造になり、この構造になると、官能基の
介在によりエポキシ系樹脂とより密着することとなり、
その結果耐湿信頼性をさらに向上できるものである。
以下本発明を実施例に基づいて具体的に説明する。
uLL
エポキシシランで表面処理した処理無機イオン交換体を
使用し、表1に示す配合成分を均一に分散混合した後、
溶融混練し、次いで冷却後粉砕して半導体対土用エポキ
シ樹脂組成物を得た。
無機イオン交換体とエポキシ樹脂とを溶融混合しで作成
した処理無機イオン交換体を使用し、表1に示す配合成
分を均一に分散混合した後、溶融混練し、次いで冷却後
粉砕して半導体封止用エポキシ樹脂組成物を得た。
匿m
表面処理しない無機イオン交換体をそのまま使用し、表
1に示す配合成分を均一に分散混合した後、#融混練し
、次いで冷却後粉砕して半導体封止用エポキシ樹脂組成
物を得た。
丸(九り
無機イオン交換体を添加せず、表1に示す配合成分を均
一に分散混合した後、溶融混練し、次いで冷却後粉砕し
て半導体封止用エポキシ樹脂組成物を得た。
次に、得られた樹N組成物の耐湿性を測定した。
耐湿性試験は、16pDIPにアルミニウム配線をした
TEGを封止し、この封止品をPCT(151℃・10
0%RH)の条件及(/PCBT(133℃・100%
RH,B=20V)の条件に放置してアルミニウムの腐
食を目視にて観察し、封止品50%が不良となるまでの
時間で表した。結果を表2に示す0表2の結果から、比
較例1のように未処理の無機イオン交換体の添加は耐湿
性の向上に若干の効果があることが確認されるが充分で
はなく、一方実施例1,2の封止品は耐湿性に極表1
、注1)イミダゾール系硬化促進剣
法2)Sb、0.・B l 20 s・0.5H2O表
2
[発明の効果1
上記のように本発明は、一般式 M2O,・M′20、
・nHzo(M、M’は3〜5価の遷移金属、nはθ〜
2)で示される金属酸化物の1種あるいは2!a以上で
形成される無機イオン交換体であって、この無機イオン
交換体がカップリング剤又は樹脂で表面処理された処理
無機イオン交換体がエポキシ系樹脂に配合されているの
で、無機イオン交換体が街脂岨成物中に存在するハロゲ
ンイオンやナトリウムイオン等のイオンと交換してアル
ミニウムに無害な水素イオン及1水酸イオンを放出する
ために、配線材料であるアルミニウムを腐食させること
がなく、耐湿信頼性向上することができるものである。
しかも、この無機イオン交換体は交換能力が高く、加え
て金属酸化物であるために耐熱性にも優れており半田衝
撃などの熱衝撃を受けてもイオン交換能力が低下すると
いうことがなく複合信頼性も向上でき、また純度も高い
ものである。加えて、この無機イオン交換体がカップリ
ング剤やIfjlFで処理された処理無機イオン交換体
を配合するようにしているので、エポキシ系樹脂との相
溶性、分散性が良くなり、耐湿性の極めて優れた封止用
樹脂組成物が得られるものである。
代理人 弁理士 石 1)長 七
手続補正書(自発)
昭和60年4月8日In recent years, there has been a remarkable increase in the integration and density of semiconductor elements, and the demands on epoxy resin compositions for semiconductor encapsulation have become even more severe. The fields of application of the epoxy resin composition include not only transistors and ICs, but also LSIs, as well as 64KDRAM and 256KDRAM.
In recent years, the epoxy resin composition described above has also been used to seal ll1LSIs such as those typified by the following. However, a disadvantage of resin sealing, typified by epoxy resin compositions, is its moisture resistance reliability, which is currently inferior to ceramic sealing. The decrease in temperature resistance in resin encapsulation causes the ionization of ionic components, especially halogens and alkalis, contained in the encapsulation resin composition, causing the problem of corrosion of aluminum, which is the wiring material for semiconductor elements. It is coming. In order to solve the above problem, conventional methods have been attempted to reduce ions. One method is to reduce hydrolyzable ions, especially chloride ions, which are produced as by-products during base resin synthesis. That is, this method purifies the epoxy resin, but although this method is somewhat effective, there is a limit to the reduction of chlorine ions at the resin synthesis stage, and it cannot be said to be sufficient. Another method is to incorporate into the base resin an ion exchange resin that exchanges ionizing ions for harmless ions. however,
In this method, not only the exchange capacity of the ion exchange resin is low, but also there is a problem with the purity of the ion exchange resin, and the heat resistance is not good, so when subjected to thermal shock such as solder shock, the ion exchange capacity decreases and eventually disappears. Due to these problems, the current situation is that sufficient effects have not been obtained. [Objective of the Invention 1] The present invention has been made in view of the above-mentioned points. The object of the present invention is to provide an epoxy resin composition that can reduce moisture and sodium ions and improve moisture resistance reliability. [Disclosure of the Invention 1 That is, the epoxy resin composition of the present invention has the general formula M
An inorganic ion exchanger formed of one or more metal oxides represented by xOs'M'205'nHzo (M, M' are trivalent to pentavalent transition metals, n is 0 to 2), It is characterized by a treated inorganic ion exchanger whose surface is treated with a coupling agent or resin and is blended with an epoxy resin, and the above object is achieved by adding this treated inorganic ion exchanger. It is. The present invention will be described in detail below.
f7'gf*i!・-f&x ”′.°°“'205”
It is composed of one or more metal oxides represented by 1n H20 (M%M' is a trivalent to pentavalent transition metal, n is 0 to 2), and these metal oxides are melted and mixed. , is crystallized. Here, M or M' includes, for example, antimony, bismuth, etc.
M and M' may be the same metal or different metals. Also, n is not necessarily an integer, for example 0.5.
The general formula of a preferable inorganic ion exchanger, which may be 1.5, is S b203・Bizo s・0.5H
,O. Observation of the surface state of this inorganic ion exchanger shows that it partially has the structure of M-OH, and this M-O
H plays an important role in ion exchange. That is, for halogen ions, M-OH+H"+CI-→M-CI+H" OH→M
-CI+8.0 Also, for alkali ions, M OH+ Na" -*M-Na +OH-+
H"→M -Na 10Hz O M-Na after ion exchange in this way. M-CI is stable and there is no risk of secondary decomposition. Also, the H+ generated after the exchange or OH- is H
20, and does not corrode aluminum, which is the wiring material for semiconductor elements. The product after ion exchange is also very stable and has characteristics not seen in conventional ion exchange resins, as well as the ability to trap and exchange both cations and anions with a single substance. Also, this jltfl
The ion exchanger is stable up to 400 to 450°C, and its exchange ability does not decrease even when subjected to thermal shock such as soldering. Treated with a p&bi ion exchanger coupling agent having such properties, or treated with an epoxy resin, 7
A treated jiff ion exchanger is created by surface treatment with a resin such as enol resin. Here, as the coupling agent, silane coupling agents such as epoxysilane, amide/silane, and alicyclic epoxysilane can be used, and epoxysilane is particularly preferred. Further, the pretreatment of the coupling agent and the inorganic ion exchanger can be carried out by a known method. When treating an inorganic ion exchanger with a resin to create a treated inorganic ion exchanger, for example, 120~
It is possible to use a product obtained by adding 1 to 30 parts by weight of an inorganic ion exchanger to 100 parts by weight of an epoxy resin melted at 170°C, followed by melt-mixing for 5 to 60 minutes, followed by cooling and pulverization. If the inorganic ion exchanger is melt-mixed with the resin in this way, the surface of the inorganic ion exchanger will be completely coated with the resin, resulting in very good compatibility with other resins.
Moreover, the dispersibility of the treated inorganic ion exchanger is improved, and the ion exchange capacity is further increased. This treated inorganic ion exchanger is added to an epoxy resin or an epoxy resin such as a modified epoxy resin, mixed, an inorganic filler such as silica, a curing agent such as a phenol novolac resin, wax, a coloring agent, etc. as necessary, A coupling agent, a flame retardant, etc. are added, the mixture is heated and kneaded, and then cooled and pulverized to obtain an epoxy resin composition. The amount of the treated inorganic ion exchanger added to the resin composition is as follows:
It can be added in an amount of 1 to 30 parts by weight per 00 parts by weight. If the amount added is less than 1 part by weight, the effect of the addition is poor, and even if the amount added exceeds 30 parts by weight, the ion exchange ability will not improve and it will be uneconomical. In addition, the particle size of the treated inorganic ion exchanger is preferably 200μ or less, 20
If it exceeds 0μ, not only will moldability problems such as date clogging occur, but also the surface area per unit weight will become smaller, leading to a problem of lower exchangeability. Therefore, the particle size of the treated inorganic ion exchanger is more preferably 100 microns or less. However, the general formula M 20 z ・M ' 209
・nH20 (M, M' are trivalent to pentavalent transition metals, n is θ~
By blending a treated inorganic ion exchanger in which a jllllfl ion exchanger composed of one or more metal oxides shown in 2) is treated with a coupling agent or a resin into an epoxy resin, the resin composition can be changed. Hydrogen ions and monohydroxide ions are released by exchanging each ion such as halogen ion and sodium ion present in the object, and the hydrogen ions and hydroxide ions recombine to become water, which corrodes aluminum, which is the wiring material. Therefore, moisture resistance reliability can be improved. Specifically, the amount of extracted ions is less than half of the conventional amount,
Moisture resistance reliability has also been improved by more than twice that of conventional products. Moreover, j
As mentioned above, the lfi ion exchanger has a high exchange capacity,
In addition, since it is a metal oxide, it has excellent heat resistance, so even if it is subjected to thermal shock such as solder shock, its ion exchange ability will not decrease, improving composite reliability, and it is also highly pure. . In addition, the surface state of the inorganic ion exchanger is M-OH, and the surface state of silica used as a filler! It is relatively similar to 1siOH, and this M
The OH group of -OH partially undergoes hydrolysis with the methoxy group contained in the coupling agent, resulting in the structure M-0-R (R is the coupling agent). It will adhere more closely to the epoxy resin,
As a result, moisture resistance reliability can be further improved. The present invention will be specifically described below based on examples. uLL Using a treated inorganic ion exchanger surface-treated with epoxy silane, after uniformly dispersing and mixing the ingredients shown in Table 1,
The mixture was melt-kneaded, cooled, and pulverized to obtain an epoxy resin composition for use with semiconductors. Using a treated inorganic ion exchanger created by melt-mixing an inorganic ion exchanger and an epoxy resin, the ingredients shown in Table 1 are uniformly dispersed and mixed, then melt-kneaded, cooled, and then pulverized to produce semiconductor encapsulation. A stopper epoxy resin composition was obtained. An inorganic ion exchanger without surface treatment was used as it was, and the ingredients shown in Table 1 were uniformly dispersed and mixed, melt-kneaded, and then cooled and crushed to obtain an epoxy resin composition for semiconductor encapsulation. . After uniformly dispersing and mixing the ingredients shown in Table 1 without adding an inorganic ion exchanger, the mixture was melt-kneaded, and then cooled and crushed to obtain an epoxy resin composition for semiconductor encapsulation.Next The moisture resistance of the obtained tree N composition was measured.The moisture resistance test was carried out by sealing a TEG with aluminum wiring on a 16p DIP, and subjecting this sealed product to PCT (151℃・10
0%RH) conditions and (/PCBT (133℃・100%
Corrosion of aluminum was visually observed after being left under conditions of (RH, B = 20 V), and was expressed as the time until 50% of the sealed products became defective. The results are shown in Table 2. From the results in Table 2, it is confirmed that the addition of an untreated inorganic ion exchanger as in Comparative Example 1 has a slight effect on improving moisture resistance, but it is not sufficient. The sealed products of Examples 1 and 2 had an extremely high moisture resistance of 1.・B l 20 s・0.5H2O Table 2 [Effect of the invention 1 As described above, the present invention has the general formula M2O, ・M′20,
・nHzo (M, M' are trivalent to pentavalent transition metals, n is θ~
1 or 2 of the metal oxides shown in 2)! A treated inorganic ion exchanger formed by above a, which is surface-treated with a coupling agent or resin, is blended with the epoxy resin, so it is an inorganic ion exchanger. exchanges with ions such as halogen ions and sodium ions that are present in the street fat compound and releases hydrogen ions and monohydroxide ions that are harmless to aluminum, so it does not corrode aluminum, which is the wiring material. , moisture resistance reliability can be improved. Moreover, this inorganic ion exchanger has a high exchange capacity, and since it is a metal oxide, it also has excellent heat resistance, so even if it is subjected to thermal shock such as solder shock, the ion exchange capacity does not decrease, and the composite The reliability can be improved and the purity is also high. In addition, this inorganic ion exchanger is blended with a treated inorganic ion exchanger treated with a coupling agent or IfjlF, which improves compatibility and dispersibility with the epoxy resin, resulting in extremely moisture resistance. An excellent sealing resin composition can be obtained. Agent Patent Attorney Ishi 1) Chief Seven Procedures Amendment (Voluntary) April 8, 1985
Claims (3)
O(M、M’は3〜5価の遷移金属、nは0〜2)で示
される金属酸化物の1種あるいは2種以上で形成される
無機イオン交換体が、カップリング剤又は樹脂で表面処
理された処理無機イオン交換体がエポキシ系樹脂に配合
されて成ることを特徴とするエポキシ樹脂組成物。(1) General formula M_2O_3・M'_2O_5・nH_2
An inorganic ion exchanger formed of one or more metal oxides represented by O (M, M' are trivalent to pentavalent transition metals, n is 0 to 2) is combined with a coupling agent or resin. An epoxy resin composition comprising a surface-treated inorganic ion exchanger blended with an epoxy resin.
ことを特徴とする特許請求の範囲第1項記載のエポキシ
樹脂組成物。(2) The epoxy resin composition according to claim 1, wherein the coupling agent is a silane coupling agent.
に溶融されたエポキシ樹脂に無機イオン交換体を添加し
て溶融混合させた後、冷却粉砕したものを用いることを
特徴とする特許請求の範囲第1項記載のエポキシ樹脂組
成物。(3) As a treated inorganic ion exchanger, 120 to 170°C
The epoxy resin composition according to claim 1, wherein the epoxy resin composition is obtained by adding an inorganic ion exchanger to the epoxy resin, melt-mixing the epoxy resin, and then cooling and pulverizing the mixture.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP443285A JPS61163923A (en) | 1985-01-14 | 1985-01-14 | Epoxy resin composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP443285A JPS61163923A (en) | 1985-01-14 | 1985-01-14 | Epoxy resin composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61163923A true JPS61163923A (en) | 1986-07-24 |
JPS6337126B2 JPS6337126B2 (en) | 1988-07-22 |
Family
ID=11584081
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP443285A Granted JPS61163923A (en) | 1985-01-14 | 1985-01-14 | Epoxy resin composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61163923A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4716184A (en) * | 1986-03-14 | 1987-12-29 | Matsushita Electric Works, Ltd. | Epoxy resin encapsulating composition with enhanced moisture resistance and method for producing the same |
WO1997033932A1 (en) * | 1996-03-15 | 1997-09-18 | Sony Chemicals Corporation | Epoxy resin composition and optical information recording medium made by using the same |
US5965269A (en) * | 1995-04-04 | 1999-10-12 | Hitachi Chemical Company, Ltd. | Adhesive, adhesive film and adhesive-backed metal foil |
US7569808B2 (en) | 2005-10-31 | 2009-08-04 | Ricoh Company, Ltd. | Rotary encoder, belt conveyance apparatus, and image forming apparatus |
-
1985
- 1985-01-14 JP JP443285A patent/JPS61163923A/en active Granted
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4716184A (en) * | 1986-03-14 | 1987-12-29 | Matsushita Electric Works, Ltd. | Epoxy resin encapsulating composition with enhanced moisture resistance and method for producing the same |
US5965269A (en) * | 1995-04-04 | 1999-10-12 | Hitachi Chemical Company, Ltd. | Adhesive, adhesive film and adhesive-backed metal foil |
WO1997033932A1 (en) * | 1996-03-15 | 1997-09-18 | Sony Chemicals Corporation | Epoxy resin composition and optical information recording medium made by using the same |
US6121339A (en) * | 1996-03-15 | 2000-09-19 | Sony Chemicals Corporation | Cationically polymerizable epoxy resins and optical information recording medium made therefrom |
US6447867B1 (en) | 1996-03-15 | 2002-09-10 | Sony Chemicals Corporation | Epoxy resin composition and optical information recording medium using the same |
CN1092680C (en) * | 1996-03-15 | 2002-10-16 | 索尼化学株式会社 | Epoxy resin compsn. and optical information recording medium made by using the same |
US7569808B2 (en) | 2005-10-31 | 2009-08-04 | Ricoh Company, Ltd. | Rotary encoder, belt conveyance apparatus, and image forming apparatus |
Also Published As
Publication number | Publication date |
---|---|
JPS6337126B2 (en) | 1988-07-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS62212422A (en) | Epoxy resin composition | |
JP2006241411A (en) | Epoxy resin composition for sealing semiconductor and its manufacturing method, and semiconductor using the same | |
JP4337411B2 (en) | Inorganic anion exchanger and epoxy resin composition for sealing electronic parts using the same | |
JPS6336614B2 (en) | ||
JPS61163923A (en) | Epoxy resin composition | |
JPS5829858A (en) | Resin composition for sealing electronic component | |
JPS63146917A (en) | Epoxy resin composition for sealing semiconductor | |
JPS6040124A (en) | Resin composition for sealing | |
JPS58176237A (en) | Epoxy resin molding material | |
JPS61285242A (en) | Epoxy resin composition | |
JPS61228058A (en) | Epoxy resin composition for sealing semiconductor | |
JPH11302501A (en) | Epoxy resin composition and semiconductor device | |
JPH0478648B2 (en) | ||
JPH0362845A (en) | Semiconductor-sealing resin composition | |
JPS6042418A (en) | Sealing resin composition | |
JPS62192444A (en) | Epoxy resin molding material for use in sealing semiconductor | |
JPH0558444B2 (en) | ||
JPS6225118A (en) | Sealing resin composition | |
TWI292422B (en) | ||
JPH0656970A (en) | Epoxy resin composition and semiconductor device sealed therewith | |
JPH06107914A (en) | Production of flame-resistant epoxy resin composition | |
JPS5975921A (en) | Epoxy resin composition | |
JPH08319341A (en) | Epoxy resin composition for sealing and semiconductor device using the same | |
JPH02261857A (en) | Epoxy resin composition for semiconductor sealing and semiconductor device sealed therewith | |
JPH04202321A (en) | Epoxy resin composition for sealing semiconductor |