JPH0362845A - Semiconductor-sealing resin composition - Google Patents

Semiconductor-sealing resin composition

Info

Publication number
JPH0362845A
JPH0362845A JP19979289A JP19979289A JPH0362845A JP H0362845 A JPH0362845 A JP H0362845A JP 19979289 A JP19979289 A JP 19979289A JP 19979289 A JP19979289 A JP 19979289A JP H0362845 A JPH0362845 A JP H0362845A
Authority
JP
Japan
Prior art keywords
inorganic filler
epoxy
group
treated
epoxy resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19979289A
Other languages
Japanese (ja)
Inventor
Toshiki Saito
斉藤 俊樹
Masayuki Kobayashi
正之 小林
Shinichiro Asai
新一郎 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP19979289A priority Critical patent/JPH0362845A/en
Publication of JPH0362845A publication Critical patent/JPH0362845A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the subject composition excellent in soldering heat resistance and moisture resistance reliability and suitable for sealing various electronic parts by blending an inorganic filler surface treated with a specified silane compound and a specified silane coupling agent. CONSTITUTION:With (A) an epoxy resin (B) a phenol type hardener is blended so that the ratio of phenolic hydroxyl groups of the hardener to epoxy groups of the epoxy resin may be 0.5-1.5, preferably 0.7-1.2. To 100 pts.wt. of the resultant mixture, (C) 150-700 pts.wt. inorganic filler (e.g. crystalline silica or molten silica) treated with an alkoxysilane compound represented by formula l [(n) is 1-10; R1 is formula II ((m) is 0-5); R2 is formula III ((l) is 0-5)] and one or more silane coupling agents having a functional group selected from epoxy group, amino group, etc., in the molecule is added.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は半田耐熱性、釦よび耐湿信頼性にすぐれた半導
体封止用樹脂組成物に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a resin composition for semiconductor encapsulation that has excellent solder heat resistance, button and moisture resistance reliability.

〈従来の技術〉 近年半導体の封止にはほとんど樹脂封止で行われるよう
になり、樹脂の種類も素子との常湿性や価格の点からエ
ポキシ樹脂組成物が一般的になっている。會た、充填剤
には機械物性、電気特性、熱的性質、耐水性、入手のし
やすさなどから主としてシリカなどの無機充填剤が用い
られている。
<Prior Art> In recent years, most semiconductors have been encapsulated with resin, and epoxy resin compositions have become common in view of their normal humidity with elements and cost. Inorganic fillers such as silica are mainly used as fillers due to their mechanical properties, electrical properties, thermal properties, water resistance, and easy availability.

近年、電子部品の小型、薄型化が進むにつれて、半導体
の実装方式は従来のピン挿入方式から表面実装方式へと
移行しつつある。この場合、半導体は実装の際に半田浴
に浸漬されるなど高温で処理されるが、封止樹脂にクラ
ックが生じて耐湿性が低下するなどの問題が指摘されて
いた。
In recent years, as electronic components have become smaller and thinner, the semiconductor mounting method has been shifting from the conventional pin insertion method to the surface mounting method. In this case, the semiconductor is processed at high temperatures, such as by being immersed in a solder bath, during mounting, but problems have been pointed out, such as cracks occurring in the encapsulating resin and reduced moisture resistance.

このようなりラック発生の問題に対しては、従来種々の
検討がなされ、例えば、無機充填剤の品種を選択する方
法(特開昭58−1913(S号公報、特開昭60−2
02145号公報)、粒子径をコントロールすることに
よシ応力、ひずみを均−化させる方法(特開昭60−1
71750号公報、特開昭60−17937号公報)な
どがあるが必ずしも十分ではない。
To solve this problem of rack generation, various studies have been carried out in the past.
02145), a method for equalizing stress and strain by controlling the particle size (Japanese Patent Laid-Open No. 60-1
71750, Japanese Unexamined Patent Publication No. 17937/1983), but these are not necessarily sufficient.

〈発明が解決しようとする問題点〉 一方便脂と無機充填剤とは本質的に相溶性が悪いため、
種々のカップリング剤と表面処理方法とが開発されてい
るが、い捷だ満足いくものが見当らない。
<Problems to be solved by the invention> On the other hand, stool fat and inorganic fillers are essentially incompatible;
Various coupling agents and surface treatment methods have been developed, but none have been found to be completely satisfactory.

本発明はかかる欠点を解決するものであシ、半導体を封
止するために用いる樹脂組成物として、特に無機充填剤
の表面処理剤として、特定の構造を有するシラン化合物
と分子内に特定された基を有するシランカップリング剤
の少なくとも1種とを使用することによシ、実装時の半
田耐熱性にすぐれ、耐湿信頼性にすぐれた半導体封止用
樹脂組成物を提供しようとするものである。
The present invention is intended to solve such drawbacks, and is intended to be used as a resin composition used for encapsulating semiconductors, especially as a surface treatment agent for inorganic fillers. The object of the present invention is to provide a resin composition for semiconductor encapsulation that has excellent solder heat resistance during mounting and excellent moisture resistance reliability by using at least one silane coupling agent having a group of .

〈問題点を解決しようとする手段〉 すなわち本発明は、少なくともエポキシ樹脂、フェノー
ル型硬化剤公よび無機充填剤を含む組成物にpいて、無
機充填剤を下記一般式〔1〕で表わ(3) されるアルコキシシラン化合物、pよび分子内にエポキ
シ基、アミノ基、ウレイド基及びメルカプト基から選ば
れた基を有するシランカップリング剤の少なくとも1種
で処理してなることを特徴とする半導体封止用樹脂組成
物に関するものである。
<Means for Solving the Problems> That is, the present invention provides a composition containing at least an epoxy resin, a phenolic curing agent, and an inorganic filler, in which the inorganic filler is represented by the following general formula [1] ( 3) A semiconductor characterized by being treated with an alkoxysilane compound, p, and at least one silane coupling agent having a group selected from epoxy groups, amino groups, ureido groups, and mercapto groups in the molecule. The present invention relates to a sealing resin composition.

(R,○)3 S l(CH2) nS l(○R2)
3       l11)次に本発明の詳細な説明する
(R,○)3 S l(CH2) nS l(○R2)
3 l11) Next, the present invention will be explained in detail.

本発明に用いられるエポキシ樹脂は、1分子中に2個以
上のエポキシ基を右するものであればいずれも用いるこ
とができる。例えばビスフエノルA型エポキシ樹脂、各
種フェノール樹脂から合成されるノボラック型エポキシ
樹脂、ナフタレン1.6−シブリシジルエーテル、4,
4−ビス(2,3−エポキシプロポキシ)!、3,5゜
5−テトラメチルビフェニル、グリシゾルエステル型エ
ポキシ樹脂、グリシシルア□ン型エポキシ(4) 樹脂、鎖状脂肪族エポキシ樹脂、3官能エポキシ樹脂、
4官能エポキシ樹脂あるいはこれらに塩素、臭素などの
ハロゲンを導入したエポキシ樹脂などが挙げられ、これ
らのうち一種、もしくは二種以上の物が用いられる。こ
れらのうちクレゾールノホラツク型、フェノールノボラ
ック型エポキシ樹脂、及ヒ4 、4−ビス(2,3−エ
ポキシプロポキシ)−3,3,5,5−テトラメチルビ
フェニルが好筐しい。
Any epoxy resin used in the present invention can be used as long as it has two or more epoxy groups in one molecule. For example, bisphenol A type epoxy resin, novolac type epoxy resin synthesized from various phenolic resins, naphthalene 1,6-sibricidyl ether, 4,
4-bis(2,3-epoxypropoxy)! , 3,5゜5-tetramethylbiphenyl, glycysol ester type epoxy resin, glycysilane type epoxy (4) resin, chain aliphatic epoxy resin, trifunctional epoxy resin,
Examples include tetrafunctional epoxy resins and epoxy resins into which halogens such as chlorine and bromine are introduced, and one or more of these may be used. Among these, cresol novolak type epoxy resins, phenol novolac type epoxy resins, and 4,4-bis(2,3-epoxypropoxy)-3,3,5,5-tetramethylbiphenyl are preferred.

これらのエポキシ樹脂中のイオン性不純物及び分解して
イオンになシ易い成分は少ないほど好!しく、具体的に
は遊離のナトリウムイオン、塩素イオンがそれぞれ5 
ppm以下及び加水分解性ハロゲンは5 o o pp
m以下が好!しい。エポキシ当量は160から250、
特に160から210が好筐しい。そして樹脂軟化点は
、50〜110°Cのものが用いられる。
The fewer ionic impurities and components that easily decompose into ions in these epoxy resins, the better! Specifically, free sodium ions and chlorine ions are each 5
ppm or less and hydrolyzable halogens are 5 o o pp
I prefer m or less! Yes. Epoxy equivalent is 160 to 250,
Especially 160 to 210 is good. The resin used has a softening point of 50 to 110°C.

本発明に用いられるフェノール型硬化剤としては、1分
子中に少なくとも2個以上の水酸基を有するものが用い
られる。例えばフェノール、レゾルシノール、クレゾー
ル、キシレノール、プロピルフェノール、アミルフェノ
ール、フチルフエノル、オクチルフェノール、フェニル
フェノール、アリルフェノール、ビスフェノールAlど
が単独で、またはそれらを併用して合成されるノボラッ
ク樹脂、ポリイソゾロベニルフェノール、ポリビニルフ
ェノール類、及びこれらにノ・ロゲン基を導入したフェ
ノール型峡化剤などが挙げられ、これらのうち1種もし
くは2種以上のものが用いられる。これらのうち未縮合
のフェノール性化合物が1重蓋優以下、好!シ〈は0.
5重量φ以下のノボラック樹脂が好適である。そして軟
化点は、50〜110°Cのものが用いられる。
As the phenolic curing agent used in the present invention, one having at least two or more hydroxyl groups in one molecule is used. For example, phenol, resorcinol, cresol, xylenol, propylphenol, amylphenol, phthylphenol, octylphenol, phenylphenol, allylphenol, bisphenol Al, etc. are synthesized singly or in combination with novolak resin, polyisozorobenylphenol, etc. , polyvinyl phenols, and phenol-type choking agents in which no-logen groups are introduced, and one or more of these may be used. Among these, if the amount of uncondensed phenolic compound is less than 1 layer, it is good! 〈is 0.
Novolak resins having a weight φ of 5 or less are suitable. The softening point used is 50 to 110°C.

フェノール型硬化剤の配合量は、硬化剤のフェノール性
水酸基とエポキシ樹脂のエポキシ基の比が0.5〜1.
5の範囲、特に好筐しくは0.7〜1.2の範囲にある
のがよい。上記範囲以外では耐湿信頼性を低下させるの
で好オしくない。
The blending amount of the phenolic curing agent is such that the ratio of the phenolic hydroxyl group of the curing agent to the epoxy group of the epoxy resin is 0.5 to 1.
It is preferably in the range of 5, particularly preferably in the range of 0.7 to 1.2. If it is outside the above range, it is not preferable because it lowers the moisture resistance reliability.

さらに本発明に用いられる無機充填剤としては、実質的
に破断面を有しない例えば球状、タマゴ状、ひょうたん
状、鱗片状、ウィスカー状、環状及び棒状の少なくとも
1種、及び実質的に破断面を有するものであシ、前記充
填剤を具体的に述べると、結晶質シリカ、溶融シリカ、
酸化チタン、アルミナ、マグネシア、メルク、珪酸カル
シウム、炭酸カルシウム、及び硫酸マグネシウムなどが
挙げられる。首た通常は結晶質シリカ及び溶融シリカが
好筐しい。
Furthermore, the inorganic filler used in the present invention may be at least one of spherical, egg-shaped, gourd-shaped, scale-shaped, whisker-shaped, ring-shaped, or rod-shaped, which does not substantially have a fractured surface, and Specifically speaking, the filler includes crystalline silica, fused silica,
Examples include titanium oxide, alumina, magnesia, Merck, calcium silicate, calcium carbonate, and magnesium sulfate. Crystalline silica and fused silica are usually preferred.

前記無機充填剤の実質的に破断面を有しない充填剤の製
法は、例えば結晶シリカ、溶融シリカ、アルミナ、珪酸
カルシウム、メルク及び炭酸カルシウム等の塊をボール
ミル、振動ミル等で粉砕して得た粉末をそれらが溶融す
るような温度の炎もしくはプラズマ中に吹き込んで、表
面のみもしくは全体を溶融し、冷却して製造する方法が
ある。
The inorganic filler having substantially no fractured surface can be produced by pulverizing lumps of crystalline silica, fused silica, alumina, calcium silicate, Merck, calcium carbonate, etc. using a ball mill, vibration mill, etc. There is a method of producing powders by blowing them into a flame or plasma at a temperature that melts them, melting only or the entire surface, and then cooling.

オたシリカの場合は、S I Hn C’ 4− n 
(n :0〜4の整数)で示されるようなシラン化合物
を高温加水分解または高温酸化し、得られた合成シリカ
微粉をスプレー造粒によって球状化し、焼成または溶融
することによっても製造することができる。
In the case of silica, S I Hn C' 4- n
It can also be produced by subjecting a silane compound represented by (n: an integer of 0 to 4) to high-temperature hydrolysis or high-temperature oxidation, spheroidizing the resulting synthetic silica fine powder by spray granulation, and firing or melting it. can.

(7) さらに無機充填剤の平均粒径は0.5〜150μm1好
普しくは1〜60μmである。平均粒径が0.5μm未
満であると組成物の溶融時の流動性が低下し、筺た15
0μmを越えると、成形時に金型への未充填やワイヤー
流れ等を生ずることがある。
(7) Furthermore, the average particle size of the inorganic filler is 0.5 to 150 μm, preferably 1 to 60 μm. If the average particle size is less than 0.5 μm, the fluidity of the composition during melting will decrease, resulting in
If it exceeds 0 μm, the mold may not be filled or the wire may flow during molding.

また前記無機充填剤の比表面積は、0.1〜15m”/
g好筐しくは0−5〜10 m2/ gである。比表面
積が、0.1 m”/ g未満であると充填剤の充填構
造が悪くなシ、成形性特にパリ性が悪化する。−また1
5m27gを越えると、組成物の溶融時の流動性が低下
してしまい問題を生ずる。
Further, the specific surface area of the inorganic filler is 0.1 to 15 m''/
Preferably, it is 0-5 to 10 m2/g. If the specific surface area is less than 0.1 m''/g, the filling structure of the filler will be poor, and the moldability, especially the crispiness, will be deteriorated.
If it exceeds 5 m27 g, the fluidity of the composition during melting will decrease, causing a problem.

無機充填剤の樹脂分に対する配合比は、一般にエポキシ
樹脂と硬化剤とを合わせた樹脂分100重量部に対して
150〜700重量部が好筺しい。
Generally, the blending ratio of the inorganic filler to the resin content is preferably 150 to 700 parts by weight per 100 parts by weight of the resin content, which is the combined epoxy resin and curing agent.

150ffif部未満だと耐熱衝撃性、熱伝導性及び熱
膨張性の改良が十分に行われず、700重量部を越える
と溶融時の流動性の低下が起こシ問題となる。
If the amount is less than 150 parts by weight, the thermal shock resistance, thermal conductivity and thermal expansion properties will not be sufficiently improved, and if it exceeds 700 parts by weight, the fluidity during melting will decrease, which poses a problem.

本発明に訃いて用いる特定の構造のアルコキシ(8) シラン化合物は、 一般式〔1〕 (R,○)zsi(CH2)n81(ORz)3CDで
表される構造の化合物であシ、好捷しくはn−1〜5、
m=i〜3、t=1〜3である。このような化合物とし
ては、例えば1,2−ビス(トリメトキシシリル)エタ
ンなどがある。
The alkoxy(8) silane compound having a specific structure used in the present invention is a compound having a structure represented by the general formula [1] (R,○)zsi(CH2)n81(ORz)3CD. Or n-1 to 5,
m=i~3, t=1~3. Examples of such compounds include 1,2-bis(trimethoxysilyl)ethane.

本発明のシランカップリング剤としては、分子内にエポ
キシ基、アミノ基、ウレイド基及びメルカプト基の内の
いずれかを有するシランカップリング剤の少なくとも1
種を用いることができる。
The silane coupling agent of the present invention includes at least one silane coupling agent having any one of an epoxy group, an amino group, a ureido group, and a mercapto group in the molecule.
Seeds can be used.

かかるシランカップリング剤の例としては、γ−グリシ
シロキシゾロビルトリメトキシシラン、γ−グリシシロ
キシプロビルトリエトキシシラン、γ−グリシジロキシ
プロビルメチルゾメトキシシラン、γ−グリシシロキシ
プロビルメチルジェトキシシラン、(3,4−エポキシ
シクロヘキシル)エチルトリメトキシシラン、[(3,
4−エポキシシクロヘキシル)エチルコメチルジメトキ
シシラン、γ−アミノプロピルトリメトキシシラン、γ
−アミノプロピルトリエトキシシラン、N−β(アミノ
エチル)γ−アミノゾロピルトリメトキシシラン、N−
β(アミノエチル)r−アミノプロピルトリエトキシシ
ラン、N−β(アミノエチル)γ−アミノゾロピルメチ
ルジメトキシシラン、N−β(アミノエチル)γ−アミ
ノプロピルメチルジェトキシシラン、N−フェニル−γ
アミノプロピルトリメトキシシラン、N−フェニル−γ
−アミノゾロtルトリエトキシシラン、γ−ウレイドノ
ロビルトリメトギシシラン、r−ウレイドプロピルトリ
エトキシシラン、γ−メルカプトプロピルトリメトキシ
シラン、r−メルカプトプロピルトリエトキシシランな
どを挙げることができる。
Examples of such silane coupling agents include γ-glycidyloxyzolobyltrimethoxysilane, γ-glycidyloxyprobyltriethoxysilane, γ-glycidyloxypropylmethylzomethoxysilane, γ-glycidyloxypropyl methyl silane, Toxysilane, (3,4-epoxycyclohexyl)ethyltrimethoxysilane, [(3,
4-Epoxycyclohexyl)ethylcomethyldimethoxysilane, γ-aminopropyltrimethoxysilane, γ
-aminopropyltriethoxysilane, N-β(aminoethyl)γ-aminozolopyltrimethoxysilane, N-
β(aminoethyl)r-aminopropyltriethoxysilane, N-β(aminoethyl)γ-aminozolopylmethyldimethoxysilane, N-β(aminoethyl)γ-aminopropylmethyljethoxysilane, N-phenyl-γ
Aminopropyltrimethoxysilane, N-phenyl-γ
Examples include -aminozolotriethoxysilane, γ-ureidonorobyltriethoxysilane, r-ureidopropyltriethoxysilane, γ-mercaptopropyltrimethoxysilane, and r-mercaptopropyltriethoxysilane.

本発明において、無機充填剤を処理するのに用いられる
一般式〔1〕で表される特定の構造のアルコキシシラン
化合物と分子内にエポキシ基、アミノ基、ウレイド基、
メルカプト基の内のいずれかを少なくとも1種有するシ
ランカップリング剤の混合比は通常重量比率で0,1〜
10の範囲で用いるのが好ましい。すなわち、かかる添
加量の範囲外では耐湿信頼性及び半田耐熱性の改良効果
が乏しいためである。
In the present invention, an alkoxysilane compound having a specific structure represented by the general formula [1] used to treat an inorganic filler and an epoxy group, an amino group, a ureido group,
The mixing ratio of the silane coupling agent having at least one type of mercapto group is usually from 0.1 to 0.1 by weight.
It is preferable to use a range of 10. That is, if the amount added is outside of this range, the effect of improving moisture resistance reliability and soldering heat resistance is poor.

一般式〔1〕で表される特定の構造のアルコキシシラン
化合物(以下シラン化合物という)及び分子内にエポキ
シ基、アミノ基、ウレイド基、メルカプト基の内のいず
れかを少なくとも1種有するシランカップリング剤(以
下カップリング剤という)の混合物の使用量は無機充填
剤の平均粒径、表面状態及び比表面積などによって異な
るが、通常無機充填剤100重量部に対して各々0.0
1〜10重量部の範囲で用いるのが好!しい。すなわち
、かかる添加量の範囲外では、耐湿信頼性及び半田耐熱
性の改良効果が殆んど認められなくなる。
Silane coupling with an alkoxysilane compound having a specific structure represented by general formula [1] (hereinafter referred to as a silane compound) and having at least one of an epoxy group, an amino group, a ureido group, and a mercapto group in the molecule The amount of the mixture of coupling agents (hereinafter referred to as coupling agents) varies depending on the average particle size, surface condition, specific surface area, etc. of the inorganic filler, but is usually 0.0 parts by weight of each inorganic filler.
It is preferable to use it in a range of 1 to 10 parts by weight! Yes. That is, outside the range of the addition amount, the effect of improving moisture resistance and soldering heat resistance will hardly be recognized.

本発明に訃いてシラン化合物とカップリング剤で無機充
填剤を処理する方法としては、例えばこれらをそれぞれ
水または有機溶媒にとかしたもの全無機充填剤と混合し
、しばらく放置した後、ろ過、乾燥する方法、加熱また
は減圧によって溶媒を留去、乾燥する方法、溶媒を用い
ずにシラン化合物とカップリング剤と無機充填剤とを直
接接触、混合する方法、溶媒を用いずにシラン化合物と
カップリング剤と無機充填剤とをミキサーへあるいはボ
ールミル中で処理する方法、−マたはシラン化合物及び
カップリング剤をともに、あるいはそれぞれ水または有
機溶媒にとかしたものを無機充填剤と混合し、ミキサー
あるいはボールミル中で処理した後乾燥する方法など通
常の方法で行なうことができる。
According to the present invention, a method of treating an inorganic filler with a silane compound and a coupling agent includes, for example, dissolving these in water or an organic solvent, mixing them with the whole inorganic filler, leaving them for a while, filtering and drying. method, method of distilling off the solvent by heating or reduced pressure and drying method, method of directly contacting and mixing the silane compound, coupling agent, and inorganic filler without using a solvent, and coupling with the silane compound without using a solvent. A method in which the silane compound and the coupling agent are mixed together or each dissolved in water or an organic solvent with the inorganic filler, and then the silane compound and the coupling agent are mixed together with the inorganic filler, and the silane compound and the coupling agent are mixed together with the inorganic filler, It can be carried out by a conventional method such as processing in a ball mill and then drying.

また、その他無機充填剤を処理する方法としては、シラ
ン化合物及びカップリング剤′(il−混合して同時に
無機充填剤を処理する方法、無機充填剤をシラン化合物
で処理した後、カップリング剤で処理する方法、曾たは
、無機充填剤をカップリング剤で処理した後シラン化合
物で処理する方法のいずれの方法も適用可能である。
Other methods for treating inorganic fillers include a method of mixing a silane compound and a coupling agent (IL) and treating the inorganic filler at the same time, and treating the inorganic filler with a silane compound and then treating the inorganic filler with a coupling agent. Any method can be applied, including treating the inorganic filler with a coupling agent and then treating it with a silane compound.

これらの処理した無機充填剤、エポキシ樹脂及び硬化剤
はロール、ニーダ−などによシ溶融混線、溶液法等によ
シ均一に混練して組成物とすることができる。
These treated inorganic fillers, epoxy resins, and curing agents can be uniformly kneaded into a composition using a roll, a kneader, etc., a melt mixing method, a solution method, or the like.

本発明の組成物には必要に応じて、トリフェニルフォス
フイン、1.8−ゾアテヒシクロ[5゜4.0)−7−
ウンデセン、およびその塩などの値化促進剤、ヘキスト
ワックス、カルナバワックスなどの離型剤、着色剤、難
燃剤、難燃助剤などを添加することができる。
The composition of the present invention optionally contains triphenylphosphine, 1,8-zoatehycyclo[5°4.0)-7-
Value accelerators such as undecene and its salts, release agents such as Hoechst wax and carnauba wax, colorants, flame retardants, flame retardant aids, and the like can be added.

〈実施例〉 以下、実施例によシ本発明金さらに具体的に説明する。<Example> Hereinafter, the present invention will be described in more detail with reference to Examples.

実施例1 無機充填剤100重量部に対して1,2−ビス(トリメ
トキシシリル)エタン0.25 、F トγ−グリシジ
口キシグロビルトリメトキシシラン2.25gとした混
合物を溶融シリカ(商品名FS−892:電気化学工業
(株)製)に加えよく混合した。このものをヘンシェル
ミキサー中、常温下6分間処理金行なったのち、70℃
、2時間加熱した。
Example 1 A mixture of 0.25 g of 1,2-bis(trimethoxysilyl)ethane and 2.25 g of Fgamma-glycidoxyglobyltrimethoxysilane per 100 parts by weight of the inorganic filler was mixed with fused silica (commercial product). FS-892 (manufactured by Denki Kagaku Kogyo Co., Ltd.) and mixed well. After processing this material in a Henschel mixer for 6 minutes at room temperature, it was heated to 70°C.
, heated for 2 hours.

上記処理した溶融シリカ480gとエポキシ価18乙の
4,4′−ビス(2,6−ニポキシプロポキシ)−6,
5’、5.5’−テトラメチルピフェニル95gに○H
f1ffi105のフェノールノボラック樹脂45g、
さらに硬化触媒としてトリフェニルフォスフイン1.8
8g、ヘキストlノックス82.56gを加え、100
℃のロールで溶融混練したのち、冷却、粉砕し−C樹脂
組底物を得た。
480 g of the above-treated fused silica and 4,4'-bis(2,6-nipoxypropoxy)-6 with an epoxy value of 18,
○H to 95g of 5',5.5'-tetramethylpiphenyl
45g of f1ffi105 phenol novolak resin,
Furthermore, triphenylphosphine 1.8 is used as a curing catalyst.
8g, add 82.56g of Hoechst L Knox, 100g
After melt-kneading with rolls at 0.degree. C., the mixture was cooled and pulverized to obtain a -C resin composite.

この樹脂組成物を用い、低圧トランスファー成形法によ
り170℃、2.5分の条件で成形して模擬素子を封止
した8 0 pin Q、FPを得、175°Cで12
時間ポストキュアーした。ポストキュアー後、下記の測
定法によシ各樹脂組成物の半田耐熱性および耐湿信頼性
を測定した。結果を表に示す。
This resin composition was molded by low pressure transfer molding at 170°C for 2.5 minutes to obtain an 80 pin Q, FP with a simulated element sealed therein.
Time post cured. After post-curing, the solder heat resistance and moisture resistance reliability of each resin composition were measured using the following measuring method. The results are shown in the table.

実施例2 実施例1にかいて、γ−グリシジロギシグロビルトリメ
トキシシラン2.25 gに代えてγ−アミノゾロピル
トリメトキシシラン2.25 gを用いた以外は全く同
様に処理して組成物を得た。半田耐熱性訃よび耐湿信頼
性の測定結果を表に示す。
Example 2 A product was treated in exactly the same manner as in Example 1 except that 2.25 g of γ-aminozolopyltrimethoxysilane was used instead of 2.25 g of γ-glycidyloxyglobiltrimethoxysilane. A composition was obtained. The measurement results of solder heat resistance and moisture resistance reliability are shown in the table.

実施例5 実施例1にかいて、γ−グリシシロキシプロビルトリメ
トキシシラン2.25 gに代えてγ−ウレイドプロピ
ルトリメトキシシラン2.25 、V k用いた以外は
全く同様に処理して組成物を得た。半田耐熱性pよび耐
fM信頼性のd111定結果を表に示す。
Example 5 A composition was prepared in exactly the same manner as in Example 1 except that 2.25 g of γ-ureidopropyltrimethoxysilane and Vk were used in place of 2.25 g of γ-glycisyloxypropyltrimethoxysilane. I got something. The d111 constant results of solder heat resistance p and fM reliability are shown in the table.

実施例4 実施例1において、γ−グリシゾロギシグロビルトリメ
トキシシラン2.25 gに代えてr−メルカゾトゾロ
ビルトリメトキシシラン2.25 gを用いた以外は全
く同様に処理して組成物を得た。半田耐熱性pよび耐湿
信頼性の測定結果を表に示す。
Example 4 The same procedure as in Example 1 was carried out except that 2.25 g of r-mercazotozolobyltrimethoxysilane was used in place of 2.25 g of γ-glycyzologyciglobiltrimethoxysilane. A composition was obtained. The measurement results of solder heat resistance p and moisture resistance reliability are shown in the table.

実施例5 実施例1に吠いて、γ−グリシシロキシプロビルトリメ
トキシシラン2.25 gに代えてγ−グリシジロギシ
プロビルトリメトキシシランIA5g及びγ−アミノゾ
ロビルトリメトギシシラン1.15gを用いた以外は全
く同様に処理して組成物を得た。半田耐熱性及び耐湿信
頼性の測定結果を表に示す。
Example 5 Similar to Example 1, 5 g of γ-glycidyloxyprobyltrimethoxysilane IA and 1.15 g of γ-aminozorobyltrimethoxysilane were used in place of 2.25 g of γ-glycysiloxyprobyltrimethoxysilane. A composition was obtained by processing in exactly the same manner except that . The measurement results of solder heat resistance and moisture resistance reliability are shown in the table.

実施例6 実施例1にかいて、1,2−ビス(トリメトキシシリル
)エタン0.25F及び(γ−クリシジロキシプロビル
)トリメトキシシラン2.25 gに代えて1.2−ビ
ス(トリメトキシシリル)エタン0.50g、(γ−グ
リシジロキシグロビル)トリメトキシシラン2.00 
gを用いた以外は全く同様に処理して組成物を得た。半
田耐熱性卦よび耐湿信頼性の測定結果を表に示す。
Example 6 In Example 1, 1,2-bis(trimethoxysilyl)ethane 0.25F and 2.25 g of (γ-cricidyloxyprobyl)trimethoxysilane were replaced with 1,2-bis( Trimethoxysilyl)ethane 0.50g, (γ-glycidyloxyglobil)trimethoxysilane 2.00
A composition was obtained by processing in exactly the same manner except that g was used. The measurement results of solder heat resistance and moisture resistance reliability are shown in the table.

実施例7 無機充填剤100重量部に対して1,2−ビス(トリメ
トキシシリル)エタン0.25 gトした割合で溶融シ
リカ(商品名FS−892:を気化学工業(株)M)に
加えよく混合した。このものをヘンシェルミキサー中、
常温下5分間処理を行なったのち、70°C−2時間加
熱した。得られた処理フィラーに(γ−グリシシロキシ
プロビル)トリメトキシシラン2.25 Fを加えよく
混合した。これをさらにヘンシェルミキサー中、常温下
5分間処理を行なったのち、70’O−2時間加熱した
Example 7 Fused silica (trade name FS-892: M, manufactured by Keikagaku Kogyo Co., Ltd.) was added at a ratio of 0.25 g of 1,2-bis(trimethoxysilyl)ethane to 100 parts by weight of the inorganic filler. Add and mix well. Mix this in a Henschel mixer.
After processing at room temperature for 5 minutes, it was heated at 70°C for 2 hours. 2.25 F of (γ-glycisyloxyprobyl)trimethoxysilane was added to the obtained treated filler and mixed well. This was further treated in a Henschel mixer at room temperature for 5 minutes, and then heated for 70'O-2 hours.

上記処理したシリカ480gとエポキシ価186の4,
4′−ビス(2,3−エポキシプロポキシ)−5,5,
5,5−テトラメチルビフェニル95F17i:0H(
iffi103のフェノールノボラック樹脂45g、さ
らに硬化触媒としてトリフェニルフォスフインi、ss
g、ヘキストワックス82.56gを加え、100℃の
ロールで溶融混練したのち、冷却、粉砕して樹脂組成物
を得た。
480g of the above-treated silica and 4 with an epoxy value of 186,
4'-bis(2,3-epoxypropoxy)-5,5,
5,5-tetramethylbiphenyl 95F17i:0H(
45g of phenol novolac resin of iffi103, and triphenylphosphine i, ss as a curing catalyst.
g and 82.56 g of Hoechst wax were added thereto, and the mixture was melt-kneaded using rolls at 100° C., cooled and pulverized to obtain a resin composition.

この樹脂組成物を用い、低圧トランスファー成形法によ
り170℃、2.5分の条件で成形して模擬素子を側止
した8 0 pin Q、FPを得、175°Cで12
時間ポストキュアーした。ポストキュアー後、下記の測
定法によシ各樹脂組成物の半田耐熱性および耐湿信頼性
を測定した。結果を表に示す。
Using this resin composition, molding was performed at 170°C for 2.5 minutes using a low-pressure transfer molding method to obtain 80 pin Q and FP with side-stopped simulated elements.
Time post cured. After post-curing, the solder heat resistance and moisture resistance reliability of each resin composition were measured using the following measuring method. The results are shown in the table.

比較例1〜5 シラン処理を行なわなかった溶融シリカ及び実施例1に
かいて(γ−グリシシロキシプロピル)トリメトキシシ
ラン2.25 gのみを用いてシランカツノリング剤処
理のみを行なった溶融シリカ及び1.2−ビx<+−リ
メトキシシリル)エタン0.25 gのみを用いての処
理のみを行なった溶融シリカを用いて実施例1と同様の
組成物を得た後実施例1同様の操作を行って封止成形8
得、半田耐熱性訃よび耐湿信頼性を測定した。結果を捷
とめて第1表に示す。
Comparative Examples 1 to 5 Fused silica that was not subjected to silane treatment, and fused silica that was treated with a silane cutting agent only using 2.25 g of (γ-glycisyloxypropyl)trimethoxysilane in Example 1; A composition similar to that in Example 1 was obtained using fused silica treated only with 0.25 g of 1.2-bix<+-rimethoxysilyl)ethane. Perform the operation and seal molding 8
The soldering heat resistance and humidity resistance reliability were measured. The results are summarized and shown in Table 1.

半田耐熱性の測定法:  80 pin QFP6個を
85°C/85%RHで72時間及び96時間処理 後、ペーパーフェーズリフロー215 00で90秒処理し、クラックの発生 したパッケージの個数の割合を求め た。
Method for measuring solder heat resistance: Six 80-pin QFPs were treated at 85°C/85%RH for 72 hours and 96 hours, then treated with Paper Phase Reflow 21500 for 90 seconds, and the percentage of packages with cracks was determined. Ta.

耐湿信頼性の測定法: アルミニウム金属電極の腐食を
検討するために設計した半導体素子をモ ールド被覆した8 0 ptn Q F P 20個を
プレッシャークツカー状態 (121°C12abm  、 100  % R,T
()に500時間放置した後のアルミニ ウム腐食を調べた。不良はアルミパ ターンのオープンの発生もしくは一 定限度以上へのリーク電流の増加に よって判定した。
Measuring method for moisture resistance reliability: In order to investigate the corrosion of aluminum metal electrodes, 20 pieces of 80 ptn QFP coated with a molded semiconductor element were placed in a pressure cooker (121°C, 12abm, 100% R,T).
() Aluminum corrosion after being left for 500 hours was investigated. Failure was determined by the occurrence of an open aluminum pattern or an increase in leakage current beyond a certain limit.

1)GPT:  γ−グリシシロキシプロピルトリメト
キシシラン APT :  γ−アミノゾロピルトリメトキシシラン TJPT :  γ−ウレイドプロピルトリメトキシシ
ラン MPT 二  γ−メルカプトゾロピルトリメトキシシ
ラン BTE:n=2、m = # = 1であるシラン化合
物2)不良数/試料数 〈発明の効果〉 以上のとS−t)本発明のエポキシ樹脂組成物は、半導
体封止用として用いて硬化物とした際に半田耐熱性訃よ
び耐湿信頼性にすぐ!tた性質を示し、各種の電子部品
封止用の樹脂として有用である。
1) GPT: γ-glycisyloxypropyltrimethoxysilane APT: γ-aminozolopyltrimethoxysilane TJPT: γ-ureidopropyltrimethoxysilane MPT 2 γ-mercaptozolopyltrimethoxysilane BTE: n = 2, m = # = 1 2) Number of defectives/number of samples <Effects of the invention> Above and S-t) The epoxy resin composition of the present invention has low solder heat resistance when used for semiconductor encapsulation and is made into a cured product. Immediately improves reliability and moisture resistance! It exhibits excellent properties and is useful as a resin for encapsulating various electronic components.

Claims (1)

【特許請求の範囲】[Claims] (1)少なくともエポキシ樹脂、フェノール型硬化剤お
よび無機充填剤を含む組成物において、前記無機充填剤
を下記一般式〔1〕で表されるアルコキシシラン化合物
、および分子内にエポキシ基、アミノ基、ウレイド基及
びメルカプト基から選ばれた基を有するシランカップリ
ング剤の少なくとも1種で処理してなることを特徴とす
る半導体封止用樹脂組成物。 ((R_1O)_3Si(CH_2)_nSi(OR_
2)_3〔1〕n:1〜10の整数 R_1:C_mH_2_m_+_1(mは0〜5の整数
)R_2:ClH_2_l_+_1(lは0〜5の整数
))
(1) In a composition containing at least an epoxy resin, a phenolic curing agent, and an inorganic filler, the inorganic filler is an alkoxysilane compound represented by the following general formula [1], and an epoxy group, an amino group in the molecule, 1. A resin composition for semiconductor encapsulation, which is treated with at least one silane coupling agent having a group selected from a ureido group and a mercapto group. ((R_1O)_3Si(CH_2)_nSi(OR_
2)_3 [1] n: Integer from 1 to 10 R_1: C_mH_2_m_+_1 (m is an integer from 0 to 5) R_2: ClH_2_l_+_1 (l is an integer from 0 to 5))
JP19979289A 1989-08-01 1989-08-01 Semiconductor-sealing resin composition Pending JPH0362845A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19979289A JPH0362845A (en) 1989-08-01 1989-08-01 Semiconductor-sealing resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19979289A JPH0362845A (en) 1989-08-01 1989-08-01 Semiconductor-sealing resin composition

Publications (1)

Publication Number Publication Date
JPH0362845A true JPH0362845A (en) 1991-03-18

Family

ID=16413695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19979289A Pending JPH0362845A (en) 1989-08-01 1989-08-01 Semiconductor-sealing resin composition

Country Status (1)

Country Link
JP (1) JPH0362845A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001038442A1 (en) * 1999-11-22 2001-05-31 Kyowa Chemical Industry Co., Ltd. Resin composition, molded article therefrom, and utilization thereof
US7166361B2 (en) 2000-03-31 2007-01-23 Hitachi Chemical Co., Ltd. Thermosetting resin composition, resin film, metallic foil provided with an insulation material, insulation film provided with a metallic foil on each side, metal-clad laminate, multi-layered metal-clad laminate and multi-layered printed wiring board
JP2012140501A (en) * 2010-12-28 2012-07-26 Nitto Denko Corp Photocurable resin composition and optical material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001038442A1 (en) * 1999-11-22 2001-05-31 Kyowa Chemical Industry Co., Ltd. Resin composition, molded article therefrom, and utilization thereof
US6506828B1 (en) 1999-11-22 2003-01-14 Kyowa Chemical Industry Co., Ltd. Resin composition, molded article therefrom, and utilization thereof
US7166361B2 (en) 2000-03-31 2007-01-23 Hitachi Chemical Co., Ltd. Thermosetting resin composition, resin film, metallic foil provided with an insulation material, insulation film provided with a metallic foil on each side, metal-clad laminate, multi-layered metal-clad laminate and multi-layered printed wiring board
US7736749B2 (en) 2000-03-31 2010-06-15 Hitachi Chemichal Co., Ltd. Thermosetting resin composition, resin film, metallic foil provided with an insulation material, insulation film provided with a metallic foil on each side, metal-clad laminate, multi-layered metal-clad laminate, and multi-layered printed wiring board
JP2012140501A (en) * 2010-12-28 2012-07-26 Nitto Denko Corp Photocurable resin composition and optical material

Similar Documents

Publication Publication Date Title
EP0926196B1 (en) Epoxy resin compositions for encapsulating semiconductors, and semiconductor devices
JP3334998B2 (en) Epoxy resin composition
JPH0362845A (en) Semiconductor-sealing resin composition
JPH10152599A (en) Epoxy resin composition
JP2000273281A (en) Epoxy resin composition and semiconductor device
JP2000169671A (en) Epoxy resin composition and semiconductor device
JP3003887B2 (en) Resin composition for semiconductor encapsulation
JP2991849B2 (en) Epoxy resin composition
JPH07107091B2 (en) Epoxy resin composition for semiconductor encapsulation
JPH11302501A (en) Epoxy resin composition and semiconductor device
JPH04296046A (en) Resin-sealed semiconductor device
JPH10168282A (en) Semiconductor sealing epoxy resin composition
JPH0588904B2 (en)
JP3235798B2 (en) Epoxy resin composition
JPS6225118A (en) Sealing resin composition
JP2006143784A (en) Epoxy resin composition and semiconductor device
JPH10147628A (en) Epoxy resin composition for sealing semiconductor
JPH09316306A (en) Epoxy resin composition
JP3093051B2 (en) Epoxy resin composition
JP2004315753A (en) Resin composition for sealing and semiconductor device
JPH02240133A (en) Epoxy resin composition for semiconductor sealing
JPH04202321A (en) Epoxy resin composition for sealing semiconductor
JP3093050B2 (en) Epoxy resin composition
JPH05343570A (en) Epoxy resin composition
JPH0222321A (en) Resin compound for sealing