JPS61163277A - Synthesizing method of aln thin film - Google Patents

Synthesizing method of aln thin film

Info

Publication number
JPS61163277A
JPS61163277A JP275185A JP275185A JPS61163277A JP S61163277 A JPS61163277 A JP S61163277A JP 275185 A JP275185 A JP 275185A JP 275185 A JP275185 A JP 275185A JP S61163277 A JPS61163277 A JP S61163277A
Authority
JP
Japan
Prior art keywords
raw material
gaseous
growth
substrate
temp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP275185A
Other languages
Japanese (ja)
Inventor
Shogo Matsubara
正吾 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP275185A priority Critical patent/JPS61163277A/en
Publication of JPS61163277A publication Critical patent/JPS61163277A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To synthesize efficiently a high-density AlN thin film without accompanying the formation of powder by introducing a gaseous halide of Al and gaseous NH3 into a growth chamber respectively through the separated routes and setting properly both the temp. of a mixing part of gaseous raw material and the temp. of a providing part of a substrate. CONSTITUTION:Gaseous halide of Al such as gaseous AlCl3 formed in a raw material chamber 1 and gaseous NH3 are respectively introduced into a growth chamber 2 through the introduction ports 5, 6 which are the separated routes and provided to a counter electrode. The temp. distribution in the growth chamber 2 is set so that the temp. is regulated to 350-400 deg.C in a mixing part 3 of gaseous raw material and it is regulated to >=420 deg.C in a providing part 4 of a substrate. Thereby the formation of the powdery crystal in the gas phase and the decrease of the film growth velocity can be prevented. Furthermore the growth temp. of AlN onto the substrate can be made minimum.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はAll5I薄膜の合成法に関するものである。[Detailed description of the invention] (Industrial application field) The present invention relates to a method for synthesizing All5I thin films.

(従来技術とその問題点) AIN薄膜の気相合成法としては、 従来、原料ガスに
トリメチルアルミニウム(TMA)等の有機金属とアン
モニアNH,=i用いたMOCVD法や。
(Prior art and its problems) Conventional methods for vapor phase synthesis of AIN thin films include the MOCVD method using an organic metal such as trimethylaluminum (TMA) and ammonia NH,=i as raw material gases.

アルミニウムのハロゲン化合物iX@(Xはハロゲン元
素)とNH■を用いたCVD法等がある。
There is a CVD method using an aluminum halide compound iX@ (X is a halogen element) and NH■.

MOCVD法による合成においては1200℃程の基板
@度を必要とし、しかも有機金属は高温で容易に分解す
るために、基板自身を高周波誘導加熱によって局部加熱
し基板表面の近傍でのみ有機金属の分解及び分解によっ
て得られるAnとNH,との窒化反応が起るように温度
コントロールを行わなければならず大面積の成長には適
さない等、工業的に有利な方法とはbえない。これに対
し、Air XsとNIP、による合成法では600〜
800℃の低い温度でAlNを合成でき、抵抗加熱によ
る均一加熱を用いることにより大面積の成長も可能であ
るO しかし、AA?X、 十NH春→A/N+31(Xなる
反応は平衡定数に、の値が大きく、気相中で均一反応を
起して粉末状結晶が生成することKより膜成長の過程で
粉末が堆積した密度の低い膜ができたり。
Synthesis using the MOCVD method requires a substrate temperature of about 1200°C, and since organic metals decompose easily at high temperatures, the substrate itself is locally heated by high-frequency induction heating to decompose the organic metal only in the vicinity of the substrate surface. It is not an industrially advantageous method because the temperature must be controlled so that the nitridation reaction between An obtained by decomposition and NH occurs, and it is not suitable for large-area growth. In contrast, the synthesis method using Air Xs and NIP
AlN can be synthesized at a temperature as low as 800°C, and growth over a large area is also possible by using uniform heating using resistance heating.However, AA? X, 10NH Spring → A/N + 31 (The reaction X has a large equilibrium constant, and a uniform reaction occurs in the gas phase to produce powdered crystals. From K, powder is deposited in the process of film growth. A film with low density is formed.

もしくは成長室の壁と激しく反応し、この壁にAINが
付着することにより、膜の成長速度が遅く、反応管が破
損しやすくなる等の問題があった。
Alternatively, AIN reacts violently with the walls of the growth chamber and adheres to the walls, resulting in problems such as slow film growth and easy damage to the reaction tube.

(発明の目的) 本発明の目的は、従来のAIN#膜の気相合成法の有す
る欠点を解消し、粉末生成を伴わない密度の高いA/N
薄膜を低温かつ速い成長速度で工業的に合成する方法を
提供するものである。
(Objective of the Invention) The object of the present invention is to eliminate the drawbacks of the conventional vapor phase synthesis method of AIN# film, and to produce a high-density A/N film without powder formation.
The present invention provides a method for industrially synthesizing thin films at low temperatures and high growth rates.

(構 成) 本発明はhlX*とNH,の反応系において。(composition) The present invention relates to a reaction system between hlX* and NH.

AlX、ガスとNH婁ガス全それぞれ別経路で成長室に
導入し、成長室の温度分布を上記原料カスを混合する部
分の温度が400℃以下、及び基板設置部の温度が42
0℃以上となるように設定することを特徴とするAlN
薄膜のC’VD合成法である。
AlX, gas, and NH gas were all introduced into the growth chamber through separate routes, and the temperature distribution in the growth chamber was adjusted so that the temperature at the part where the raw material scraps were mixed was below 400°C, and the temperature at the substrate installation part was 42°C.
AlN characterized by being set to be 0°C or higher
This is a thin film C'VD synthesis method.

(構成の詳細な説明) CVD法による結晶成長において均一な膜厚なものを大
面積かつ再現性良く作るためには次の3つの要素条件が
必要である。即ち、■原料ガスが十分混合されており濃
度が一定である。
(Detailed explanation of the structure) In order to grow a film with uniform thickness over a large area with good reproducibility in crystal growth using the CVD method, the following three elemental conditions are necessary. That is, (1) the raw material gases are sufficiently mixed and the concentration is constant.

■基板表面でガス流が層流状態になって因る。■原料ガ
スの温度が基板付近で均一に制御されている。本発明は
これらの条件を満足するものである。
■This is caused by the gas flow becoming laminar on the substrate surface. ■The temperature of the source gas is uniformly controlled near the substrate. The present invention satisfies these conditions.

本発明のAlN合成装置を第1図に示す。前記■の条件
を満すためにA、lマを用い、原料室1で600℃の温
度におけるAI+3)1(J−→kljc1. 十2■
(、なる反応で、生成されたfi、l1c1.ガスとN
H,ガスをそれぞれ別経路で成長室にそれぞれ対極に設
けられた導入口5,6から成長室2に導入1/た。これ
によりklcl、とNH,の原料ガスは乱流状態で激【
7く混合され濃度が均一な混合原料ガスとなる。ここで
AIと■I(JによってhlClaを生成したのは、A
lCl aを原料として用いる場合、AltJaけ朝解
性が強く酸素の混合をさけるためであり、酸素の混入を
気処しな−場合にはAljClj−を気化し原料ガスと
しても良い。更にこの装置は横型であるので混合原料ガ
スは基板8と支持台9とからなる基板設置部4に至る間
に層流・状態となり前記■の条件を満足する。前記条件
■■全満すために加熱方式は抵抗加熱とした。高周波加
熱による基板の直接加熱では成長室内の温度分布が不均
一になるばかりでなく熱対流が生じ前記条件■が満足さ
れない。
The AlN synthesis apparatus of the present invention is shown in FIG. In order to satisfy the above condition (■), A and lma were used, and AI+3)1(J-→kljc1.12■
(, in the reaction, generated fi, l1c1. gas and N
H and gas were introduced into the growth chamber 2 through separate routes through inlets 5 and 6 provided at opposite poles of the growth chamber, respectively. As a result, the raw material gases for klcl and NH are in a turbulent state.
The raw material gases are mixed together to form a mixed raw material gas with a uniform concentration. Here, hlCla was generated by AI and ■I (J.
When lCl a is used as a raw material, it is because AltJa has a strong early decomposition property and mixing with oxygen is avoided. If mixing of oxygen is not to be taken into account, AljClj may be vaporized and used as the raw material gas. Furthermore, since this apparatus is of a horizontal type, the mixed raw material gas enters a laminar flow state while reaching the substrate installation part 4 consisting of the substrate 8 and the support stand 9, and satisfies the condition (2) above. In order to fully satisfy the above conditions (■■), resistance heating was used as the heating method. Direct heating of the substrate by high-frequency heating not only makes the temperature distribution in the growth chamber non-uniform, but also causes thermal convection, which does not satisfy the above condition (2).

上記の装置を用いてAlNを合成する場合、重要なのは
反応室のガス流方向の温度分布である。前述の如(Al
Cl! 、 +NH,→A!ぺ+3HC1lなる反応の
平衡定数Kpが大きいため、原料ガスが混合部3におい
ては一部で混合原料ガス濃度が高8ので気相中で均一反
応を起し粉末状結晶を生成したり壁上にA7Nが合成付
着されてしまう。このため膜の成長過程で粉末状結晶が
堆積して緻密な膜ができなかった夕、基板付近での混合
原料ガスの濃度が吸下し膜の成長速度が遅くなる。そこ
で原料ガス混合部3の温度が400’C以上、及び基板
設置部の温度4が420”C以上になるように温度分布
を設定した。原料ガス混合部3の温度を400℃以下に
することにより気相中における粉末状結晶の生成及び成
長速度の低下を防ぎしかも基板上へA7Nが成長する温
度を最低にすることができる。
When synthesizing AlN using the above apparatus, what is important is the temperature distribution in the gas flow direction in the reaction chamber. As mentioned above (Al
Cl! , +NH,→A! Since the equilibrium constant Kp of the reaction P + 3 HC 1 l is large, the concentration of the mixed raw material gas is high in some parts of the mixing section 3, causing a homogeneous reaction in the gas phase, producing powdery crystals or depositing on the wall. A7N is synthetically attached. For this reason, when powdery crystals are deposited during the film growth process and a dense film cannot be formed, the concentration of the mixed raw material gas near the substrate is sucked down, slowing down the growth rate of the film. Therefore, the temperature distribution was set so that the temperature of the raw material gas mixing part 3 was 400'C or higher, and the temperature 4 of the substrate installation part was 420"C or higher.The temperature of the raw material gas mixing part 3 was set to be 400"C or lower. This prevents the formation of powdery crystals in the gas phase and a reduction in the growth rate, and also minimizes the temperature at which A7N grows on the substrate.

また、原料ガス混合部の温度T・かAIC)3の350
℃よ夕低い場合は原料ガス混合部3にIc l lが凝
縮付着しやすくなり、原料輸送が妨げられるので望まし
くな−。
In addition, the temperature of the raw material gas mixing section T. or AIC) 350
If the temperature is as low as 0.degree. C., Icl is likely to condense and adhere to the raw material gas mixing section 3, which will impede the transportation of the raw material, which is undesirable.

(実施例1) 前記の反応装置it+用い(100)Si単結晶基板上
にA7Nを合成した。
(Example 1) A7N was synthesized on a (100) Si single crystal substrate using the above-described reactor it+.

基板設置部4の温度T1を600℃に固定し、 原料ガ
ス混合部3の温度T。全350〜600℃の範囲で設定
した。輸送ガスとしてN、とHlの混合ガスを総流量9
 Q l /rni nで流した。H(J流量は80α
し′min NHs流ill O,61/mj n 、
!: L7’c。合成された膜についてX線回折と電子
線回折によるFF価を行す、C軸に配向成長し、+AΔ
Nであることを確認した。また膜の表面isEMで観察
したところ、原料ガス混合部3の温度が低くなるに従っ
て表面の凹凸が小さくなるのが明らかであった。
The temperature T1 of the substrate installation part 4 is fixed at 600°C, and the temperature T of the raw material gas mixing part 3 is set at 600°C. The temperature was set within a total range of 350 to 600°C. A mixed gas of N and Hl is used as a transport gas at a total flow rate of 9.
It was run at Ql/rni. H (J flow rate is 80α
Shi'min NHs flow ill O,61/mj n,
! : L7'c. The synthesized film is subjected to FF value by X-ray diffraction and electron beam diffraction.
I confirmed that it was N. Furthermore, when the surface of the film was observed using isEM, it was clear that as the temperature of the source gas mixing section 3 became lower, the irregularities on the surface became smaller.

表面の凹凸が激しい試料では肉眼で粉末が確認できる。Powder can be seen with the naked eye in samples with highly uneven surfaces.

表面の凹凸の度合と粉末の量は対応してお夕、表面の凸
11!7は微粒子結晶が膜成長の過程で表面に堆積した
ものである。光干渉法で膜厚を測定し成長速度全算出し
た結果を第1表に示す。第1表から明らかなように原料
混合部3の温度が400℃以下で成長速度はほぼ一定と
なっており、原料混合部3におけるAlN合成による基
板付近での混合原料ガスの濃度低下が抑えられている。
The degree of unevenness on the surface and the amount of powder correspond to each other, and the protrusions 11 to 7 on the surface are caused by fine particle crystals deposited on the surface during the process of film growth. Table 1 shows the results of measuring the film thickness by optical interferometry and calculating the total growth rate. As is clear from Table 1, the growth rate is almost constant when the temperature of the raw material mixing section 3 is below 400°C, and the decrease in the concentration of the mixed raw material gas near the substrate due to AlN synthesis in the raw material mixing section 3 is suppressed. ing.

更に成長速度を上げたい場合はHCIガスの流量を増や
せば良い。
If it is desired to further increase the growth rate, the flow rate of HCI gas may be increased.

第  1  表 (実施例2) 実施例1と同じガス流量条件において、原料ガス混合部
の温度Toを400℃と固定し、基板設置M部の温度T
、を350〜800℃の範囲で設定し、AlNl金膜成
した。それぞれの試料についてX−ray回折、電子線
回折による結晶評価を行い、第2表に示す結果を得た。
Table 1 (Example 2) Under the same gas flow conditions as in Example 1, the temperature To of the raw material gas mixing part was fixed at 400°C, and the temperature T of the substrate installation part M was
was set in the range of 350 to 800°C to form an AlNl gold film. Crystal evaluation was performed on each sample by X-ray diffraction and electron beam diffraction, and the results shown in Table 2 were obtained.

第   2   表 但し、T1が420℃の場合の合成膜は非晶質でX線回
折、電子線回折によるA7Nの同定はできなかったが、
H,ガス雰囲気中で800℃で2時間アニールしたとこ
ろ、上記評価によ、り AIIN多結晶の回折ピークが
現われ、合成膜がINであることが確かめられた。
Table 2 However, the synthesized film when T1 was 420°C was amorphous and A7N could not be identified by X-ray diffraction or electron diffraction.
When the film was annealed at 800° C. for 2 hours in an H. gas atmosphere, the above evaluation showed that a diffraction peak of polycrystalline AIIN appeared, and it was confirmed that the synthesized film was IN.

従来、CVD法によシ400℃の低温でAIN k合成
した例はない。
Conventionally, there has been no example of AIN k synthesis using the CVD method at a low temperature of 400°C.

この理由は明らかではないが、本発明において。Although the reason for this is not clear, in the present invention.

原料ガス混合部のIMを35 No 0℃にすること特
徴とする成長室嶋度分布を与えることにより基板設置部
の原料ガスの状態、即ち原料ガスの混合状態や濃度及び
層流状態が極めて理想的であり、低いエネルギーでA7
Nの合成が可能となった。
By setting the IM of the raw material gas mixing part to 35°C to 0°C and giving the growth chamber a characteristic temperature distribution, the state of the raw material gas in the substrate installation part, that is, the mixed state, concentration, and laminar flow state of the raw material gas is extremely ideal. A7 with low energy
It became possible to synthesize N.

実施例1,2でHCIの代わりにHBr、 もしくは両
者の混合ガスを用いても同様な結果を得た。
Similar results were obtained in Examples 1 and 2 when HBr or a mixed gas of both was used instead of HCI.

(発明の効果) 実施例で詳細に説明した如く、本発明によれば膜の成長
過程で粉末状結晶の堆積を伴わない緻密なAIN薄膜を
速い成長速度で合成でき、しかも従来のCVD法に比べ
AINの合成温度が低く、その工業的価値は大きい。
(Effects of the Invention) As explained in detail in the Examples, according to the present invention, a dense AIN thin film that does not involve the deposition of powder crystals during the film growth process can be synthesized at a high growth rate, and moreover, it is possible to synthesize a dense AIN thin film at a high growth rate. In comparison, the synthesis temperature of AIN is low, and its industrial value is great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例に用いたCVD装置の概略図。 FIG. 1 is a schematic diagram of a CVD apparatus used in Examples.

Claims (1)

【特許請求の範囲】[Claims] (1)アルミニウムのハロゲン化合物とアンモニアの反
応系において、アルミニウムのハロゲン化合物ガスとア
ンモニアガスをそれぞれ別経路で成長室に導入し、成長
室の温度分布をアルミニウムのハロゲン化合物ガスとア
ンモニアガスを混合する部分の温度を350〜400℃
とし、かつ基板設置部の温度を420℃以上となるよう
に設定することを特徴とするAlN薄膜の合成法。
(1) In the reaction system of aluminum halide compound and ammonia, the aluminum halide gas and ammonia gas are introduced into the growth chamber through separate routes, and the temperature distribution in the growth chamber is adjusted to mix the aluminum halide compound gas and ammonia gas. The temperature of the part is 350-400℃
A method for synthesizing an AlN thin film, characterized in that the temperature of the substrate installation part is set to 420° C. or higher.
JP275185A 1985-01-11 1985-01-11 Synthesizing method of aln thin film Pending JPS61163277A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP275185A JPS61163277A (en) 1985-01-11 1985-01-11 Synthesizing method of aln thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP275185A JPS61163277A (en) 1985-01-11 1985-01-11 Synthesizing method of aln thin film

Publications (1)

Publication Number Publication Date
JPS61163277A true JPS61163277A (en) 1986-07-23

Family

ID=11538048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP275185A Pending JPS61163277A (en) 1985-01-11 1985-01-11 Synthesizing method of aln thin film

Country Status (1)

Country Link
JP (1) JPS61163277A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010228965A (en) * 2009-03-27 2010-10-14 Shin-Etsu Chemical Co Ltd Corrosion resistant member

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010228965A (en) * 2009-03-27 2010-10-14 Shin-Etsu Chemical Co Ltd Corrosion resistant member

Similar Documents

Publication Publication Date Title
US4421592A (en) Plasma enhanced deposition of semiconductors
US5591483A (en) Process for the preparation of metal nitride coatings from single source precursors
US4632849A (en) Method for making a fine powder of a metal compound having ceramic coatings thereon
JPS643948B2 (en)
US5356608A (en) Preparation of a high purity aluminum nitride antenna window by organometallic pyrolysis
JPS61158877A (en) Manufacture of ceramic porous membrane
JPS61163277A (en) Synthesizing method of aln thin film
US4170667A (en) Process for manufacturing pure polycrystalline silicon
JPH02217473A (en) Forming method of aluminum nitride film
JPH0194613A (en) Vapor growth method
JPS6375000A (en) Production of aluminum nitride whisker
JP2619888B2 (en) Manufacturing method of aluminum nitride
JPH07300398A (en) Synthesis of group iiib-vb compound
RU2738328C2 (en) Method of producing submicron crystals of aluminium nitride
JP2568224B2 (en) Gas-phase chemical reaction material supply method
JPS6115150B2 (en)
JPS63176393A (en) Production of aluminum nitride thin film
JPS6360102A (en) Production of high-purity aluminum nitride powder
JPH0566919B2 (en)
JPS6057507B2 (en) Manufacturing equipment and method for manufacturing ultra-hard high-purity silicon nitride
JPH0535222B2 (en)
JPS60255699A (en) Member for producing semiconductor si single crystal and production thereof
JPS6373617A (en) Method for vapor growth of compound semiconductor
JPS60194531A (en) Crystal growth method of mgo-al2o3 film
JPH0826460B2 (en) Film forming apparatus and method