JPS61163209A - 引張強さ48Kgf/mm↑2以上75Kgf/mm↑2未満の溶接性のすぐれた厚鋼板の製造法 - Google Patents
引張強さ48Kgf/mm↑2以上75Kgf/mm↑2未満の溶接性のすぐれた厚鋼板の製造法Info
- Publication number
- JPS61163209A JPS61163209A JP411985A JP411985A JPS61163209A JP S61163209 A JPS61163209 A JP S61163209A JP 411985 A JP411985 A JP 411985A JP 411985 A JP411985 A JP 411985A JP S61163209 A JPS61163209 A JP S61163209A
- Authority
- JP
- Japan
- Prior art keywords
- steel
- temperature
- less
- rolling
- steel plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Heat Treatment Of Steel (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
め要約のデータは記録されません。
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、厚鋼板の製造法に係り、特に溶接性にすぐれ
た一般用途の引張強さ48 kgf/was”以上75
kgf 7m”未満の厚鋼板の製造法に関する。
た一般用途の引張強さ48 kgf/was”以上75
kgf 7m”未満の厚鋼板の製造法に関する。
(従来の技術及び問題点)
近年、鉄鋼構造物の大型化と高性能化が進み、高張力鋼
の使用比率が増加しているが、それらの溶接施工コスト
の上昇を防止する意味で軟鋼と同等に近い溶接管理で溶
接可能な高張力鋼が要求されている。
の使用比率が増加しているが、それらの溶接施工コスト
の上昇を防止する意味で軟鋼と同等に近い溶接管理で溶
接可能な高張力鋼が要求されている。
また、一方では、コンクリートその他の材料との競合か
ら、出来るだけ経済性が要求される。これらの要求に対
して、最近種々の新しい製造法の開発が行われ品質改善
が行われている。例えば特開昭59−83722号公報
に示されるようにNbを添加し、これを加熱して充分固
溶せしめた後、未再結晶域およびAr 3点以下のオー
ステナイトーフエライトニ相域間である一定値以上の圧
延を行い、次いで500℃未満の温度迄強制冷却を施こ
すことによって低炭素当量の高張力鋼板を得ようとする
もの、或いは特開昭57−131320号公報に示され
るようにNbその他を添加した連続鋳造鋼片を保温また
は加熱後、750〜1100℃から粗圧延を開始し、圧
延終了温度を二相域迄さげた後、400〜650°C間
の温度迄強制冷却を施こす方法、また特公昭57−15
69号公報に示されるようにC+ 81 、 Mn 、
Cr等の元素を0.5〜4%含む鋼をA3点以上に〃
n熱した後、熱間で塑性加工し、その俊速やかにその鋼
のM8点以上の温度迄冷却し、さらにその鋼のA1から
M8点九0温度で1分〜300分の時間保持する構造用
鋼の製造法など多くの方法が散見される。
ら、出来るだけ経済性が要求される。これらの要求に対
して、最近種々の新しい製造法の開発が行われ品質改善
が行われている。例えば特開昭59−83722号公報
に示されるようにNbを添加し、これを加熱して充分固
溶せしめた後、未再結晶域およびAr 3点以下のオー
ステナイトーフエライトニ相域間である一定値以上の圧
延を行い、次いで500℃未満の温度迄強制冷却を施こ
すことによって低炭素当量の高張力鋼板を得ようとする
もの、或いは特開昭57−131320号公報に示され
るようにNbその他を添加した連続鋳造鋼片を保温また
は加熱後、750〜1100℃から粗圧延を開始し、圧
延終了温度を二相域迄さげた後、400〜650°C間
の温度迄強制冷却を施こす方法、また特公昭57−15
69号公報に示されるようにC+ 81 、 Mn 、
Cr等の元素を0.5〜4%含む鋼をA3点以上に〃
n熱した後、熱間で塑性加工し、その俊速やかにその鋼
のM8点以上の温度迄冷却し、さらにその鋼のA1から
M8点九0温度で1分〜300分の時間保持する構造用
鋼の製造法など多くの方法が散見される。
しかるにこれらはそれぞれ高靭性、高浴接性を有する高
張力鋼を製造することは可能ではあるものの、いずれも
製造工程が煩雑である上、得られる鋼材が必ずしも軟鋼
と同等に近い溶接管理で溶接可能であるとは云い難い。
張力鋼を製造することは可能ではあるものの、いずれも
製造工程が煩雑である上、得られる鋼材が必ずしも軟鋼
と同等に近い溶接管理で溶接可能であるとは云い難い。
(問題点を解決するだめの手段)
そこで本発明者らは、上記の既存技術の問題点を考慮し
た結果、特に鋼片の加熱工程、および水冷後の再加熱に
よる焼戻しの省略やNbの変態時の析出による硬化等を
配慮した新規な製造手段によシ特性のすぐれた鋼板の製
造が可能であることを見出した。
た結果、特に鋼片の加熱工程、および水冷後の再加熱に
よる焼戻しの省略やNbの変態時の析出による硬化等を
配慮した新規な製造手段によシ特性のすぐれた鋼板の製
造が可能であることを見出した。
即ち、鋼中のNbは、常温ではフェライト中に固溶され
た極〈一部のNbと窒素、炭素に結びついたNbの炭・
窒化物として存在するが、鋳造後或いは減厚圧延、分塊
圧延後の高温状態ではその全てが地鉄中に固溶している
。
た極〈一部のNbと窒素、炭素に結びついたNbの炭・
窒化物として存在するが、鋳造後或いは減厚圧延、分塊
圧延後の高温状態ではその全てが地鉄中に固溶している
。
この固溶Nbは、圧延の際未再結晶域の上限温度を上昇
させ、7エライトを第二相組織(/41−ライトおよび
ベイナイト)の細粒化を促進するだめの制御圧延を容易
にする効果がある。したがって、従来の如く鋼片を一旦
常温迄冷却させた場合鋼片中のNbはその殆んどが炭・
窒化物として析出してしまっているため、再度加熱して
圧延する場合、このNbの炭・窒化物を再び地鉄中に溶
解する必要があり、このため実際には圧延に先立ち11
00〜1320℃と云う高温での鋼片の再加熱を必要と
する。
させ、7エライトを第二相組織(/41−ライトおよび
ベイナイト)の細粒化を促進するだめの制御圧延を容易
にする効果がある。したがって、従来の如く鋼片を一旦
常温迄冷却させた場合鋼片中のNbはその殆んどが炭・
窒化物として析出してしまっているため、再度加熱して
圧延する場合、このNbの炭・窒化物を再び地鉄中に溶
解する必要があり、このため実際には圧延に先立ち11
00〜1320℃と云う高温での鋼片の再加熱を必要と
する。
そこで、本発明者らは、鋳造後の固溶Nbを直接利用す
ることにより鋼片の高温再加熱と云う工程を省略するこ
とを試みた。
ることにより鋼片の高温再加熱と云う工程を省略するこ
とを試みた。
即ち、鋼片を冷却する際、それらの冷却は表面からの抜
熱によって行われるから当然、鋼片の表面から内部にか
けて温度勾配が生じる。そこで鋼片の表面温度が500
℃以下にならない間にガス・々−ナー使用の連続式加熱
炉或いは高周波コイルによる誘導加熱などの手段によf
i 1000〜1200℃の間に加熱すると云う工程を
採用した結果、高温の鋼片中に固溶されたNbが少くと
も鋼片全体にわたってNbの炭・窒化物として析出する
以前に、圧延に困難を生じることを防止する意味および
製品厚板内での材質変動を防止する意味で鋼片を均熱さ
せ、その後の圧延の際、固溶したNbの前述の未再結晶
域拡大効果と変態核生成効果による細粒化の促進を充分
に利用することによって靭性な向上させ得ること、また
更にその後の工程である水冷後500〜650℃の温度
における保定によシNbの炭・窒化物としての析出によ
る強化が可能となることなどの全く新規な知見を得て本
発明をなしたものである。
熱によって行われるから当然、鋼片の表面から内部にか
けて温度勾配が生じる。そこで鋼片の表面温度が500
℃以下にならない間にガス・々−ナー使用の連続式加熱
炉或いは高周波コイルによる誘導加熱などの手段によf
i 1000〜1200℃の間に加熱すると云う工程を
採用した結果、高温の鋼片中に固溶されたNbが少くと
も鋼片全体にわたってNbの炭・窒化物として析出する
以前に、圧延に困難を生じることを防止する意味および
製品厚板内での材質変動を防止する意味で鋼片を均熱さ
せ、その後の圧延の際、固溶したNbの前述の未再結晶
域拡大効果と変態核生成効果による細粒化の促進を充分
に利用することによって靭性な向上させ得ること、また
更にその後の工程である水冷後500〜650℃の温度
における保定によシNbの炭・窒化物としての析出によ
る強化が可能となることなどの全く新規な知見を得て本
発明をなしたものである。
即ち本発明は、以上の知見に基いてなされたものでアっ
て、その要旨とするところは重量%でC0.03〜0.
23 %、Mn 0.3〜1.5 %、Nb0.005
〜0.04%、Total AL 0.0896以下、
Total N0.001〜0.005%を含み、さら
に必要にjJIBO50005〜0.001596 X
Ti 0.005〜0.04 %、V0.01〜0.0
01、Cu 0.5%以下、Nl 0.5%以下、Mo
0.3 %以下、Ca 0.002〜0.01 ’1
6のいずれか1a!以上を含有し、残部Feおよび不可
避的不純物より成p1且つ炭素当量Ceqが鋼板の引張
強さが48kgf/1m”以上58 kgf 7m”未
満の鋼では0.36 %以下、引張強さが58 kgf
/■2以上75k以上75k未f7鋼では0.40%以
下の連続鋳造鋼片を鋳造後、鋳造まま、或いは減厚圧延
後鋼片の表面が500℃以下にならない間に1000〜
1200℃の温度に加熱・均熱した後、920℃以下水
冷開始迄の温度で少くとも20%の圧下量を伴う圧延を
ほどこし、圧延後可及的早い時点で水冷をほどこし、水
冷停止温度が鋼板の表面温度で350〜600℃になる
ように水冷を停止し、直ちに500〜650℃の温度で
5分〜60分の保定を行うことを特徴とする引張強さ4
8kgレー以上75 kgf 7m”未満の溶接性のす
ぐれた厚鋼板の製造法にある。
て、その要旨とするところは重量%でC0.03〜0.
23 %、Mn 0.3〜1.5 %、Nb0.005
〜0.04%、Total AL 0.0896以下、
Total N0.001〜0.005%を含み、さら
に必要にjJIBO50005〜0.001596 X
Ti 0.005〜0.04 %、V0.01〜0.0
01、Cu 0.5%以下、Nl 0.5%以下、Mo
0.3 %以下、Ca 0.002〜0.01 ’1
6のいずれか1a!以上を含有し、残部Feおよび不可
避的不純物より成p1且つ炭素当量Ceqが鋼板の引張
強さが48kgf/1m”以上58 kgf 7m”未
満の鋼では0.36 %以下、引張強さが58 kgf
/■2以上75k以上75k未f7鋼では0.40%以
下の連続鋳造鋼片を鋳造後、鋳造まま、或いは減厚圧延
後鋼片の表面が500℃以下にならない間に1000〜
1200℃の温度に加熱・均熱した後、920℃以下水
冷開始迄の温度で少くとも20%の圧下量を伴う圧延を
ほどこし、圧延後可及的早い時点で水冷をほどこし、水
冷停止温度が鋼板の表面温度で350〜600℃になる
ように水冷を停止し、直ちに500〜650℃の温度で
5分〜60分の保定を行うことを特徴とする引張強さ4
8kgレー以上75 kgf 7m”未満の溶接性のす
ぐれた厚鋼板の製造法にある。
但し、炭素当量
Ceq = C+ Mn/6 + S i/24 +
N1/40 + Mo/4 +V/14である。
N1/40 + Mo/4 +V/14である。
以下に本発明の詳細な説明する。
まず最初に、本発明においては引張強さ48kgf /
鴫2以上75 kgf 7m”未満の鋼を対象とするも
のであるが、そのように限定したのは引張強さが48
kgf /now”未満のいわゆる軟鋼は、溶接性の点
では特に改良を加える必要がない程すぐれたもので、又
通常圧延ままで充分良好なものが製造できるものであり
、一方75 kgf/mg2以上の高張力鋼はたとえ低
水素系溶接棒を使用しても予熱なしに溶接施工を行うの
はかな9の困難を伴う上、板厚方向での冷却加熱サイク
ルの異なるような厚板製造工程で、板厚方向の機械的性
質の均一性を維持するのは極めて困難が予想されるため
本発明の対象外としたものである。
鴫2以上75 kgf 7m”未満の鋼を対象とするも
のであるが、そのように限定したのは引張強さが48
kgf /now”未満のいわゆる軟鋼は、溶接性の点
では特に改良を加える必要がない程すぐれたもので、又
通常圧延ままで充分良好なものが製造できるものであり
、一方75 kgf/mg2以上の高張力鋼はたとえ低
水素系溶接棒を使用しても予熱なしに溶接施工を行うの
はかな9の困難を伴う上、板厚方向での冷却加熱サイク
ルの異なるような厚板製造工程で、板厚方向の機械的性
質の均一性を維持するのは極めて困難が予想されるため
本発明の対象外としたものである。
また、本発明においては厚鋼板を対象とするものである
が、その理由は、本発明鋼の対象強度は48 kgf
7m”以上75kgf/1m”未満であって、これに相
当する一般用途鋼としては厚鋼板が主であり、他品種に
ついてはその製造工程上、本発明が適用されることは殆
んど考えられないことがら対象を厚鋼板のみに絞った。
が、その理由は、本発明鋼の対象強度は48 kgf
7m”以上75kgf/1m”未満であって、これに相
当する一般用途鋼としては厚鋼板が主であり、他品種に
ついてはその製造工程上、本発明が適用されることは殆
んど考えられないことがら対象を厚鋼板のみに絞った。
また厚みについては特に限定するものはないが本発明の
工程によシ温度管理上および強度確保上比較的容易な厚
み範囲でしかも使用上の対象厚みから考えてほぼ12震
以上60mm迄程度の厚鋼板が対象となる。
工程によシ温度管理上および強度確保上比較的容易な厚
み範囲でしかも使用上の対象厚みから考えてほぼ12震
以上60mm迄程度の厚鋼板が対象となる。
次に本発明の対象とする鋼を構成する化学成分の限定理
由を説明する。
由を説明する。
最初にCは強度確保上必要な元素であるが0.03チ未
満の低い含有量では厚みが比較的小さい場合でも本発明
の対象とする厚鋼板の強度の確保が出来ない。0.23
%を超える含有量では耐溶接割れ性の劣化、靭性の劣
化、溶接熱影響部の硬化が著るしく、又、耐応力腐食割
れ性等の用途上必要な特性の劣化を招くことがある。し
たがって0.03〜0.23%とする。
満の低い含有量では厚みが比較的小さい場合でも本発明
の対象とする厚鋼板の強度の確保が出来ない。0.23
%を超える含有量では耐溶接割れ性の劣化、靭性の劣
化、溶接熱影響部の硬化が著るしく、又、耐応力腐食割
れ性等の用途上必要な特性の劣化を招くことがある。し
たがって0.03〜0.23%とする。
次にMnは、変態点を下げ、本発明の工程において細粒
化効果をもたらし、強度の確保、靭性の向上に有効であ
るが、1.5%を超えると溶接時低温割れの発生を助長
する。
化効果をもたらし、強度の確保、靭性の向上に有効であ
るが、1.5%を超えると溶接時低温割れの発生を助長
する。
また0、396未満では前述の強度、靭性の確保に必要
な効果が発揮出来ない。したがって0.3〜1.5%と
する。
な効果が発揮出来ない。したがって0.3〜1.5%と
する。
さらにNbは前述の通9本発明の工程との関連で圧延に
際しての細粒化効果と水冷後の放冷および保温中の析出
硬化の主要元素として重要な役割りを果すが、0.00
5%未満の少量では前記の効果が少く、本発明の主旨に
そわない。また0、 04 %を超えても上記効果に対
する割合いは飽和し、反面溶接熱影響部や溶着鋼の切欠
靭性を低下゛させる要因となる。従って限定量は0.0
05〜0.04 %である。
際しての細粒化効果と水冷後の放冷および保温中の析出
硬化の主要元素として重要な役割りを果すが、0.00
5%未満の少量では前記の効果が少く、本発明の主旨に
そわない。また0、 04 %を超えても上記効果に対
する割合いは飽和し、反面溶接熱影響部や溶着鋼の切欠
靭性を低下゛させる要因となる。従って限定量は0.0
05〜0.04 %である。
、またAtは鋼中の酸素と結びついて精錬、脱酸時A/
!、20.として酸素を除去する他鋼中のNと結びつい
てAANとし組織の微細化に寄与するが添加量がTot
al Atとして0.08 %を超えると反って粒の粗
大化と鋼中のAl2O3等の介在物の量の増大を招き靭
性な阻害する。
!、20.として酸素を除去する他鋼中のNと結びつい
てAANとし組織の微細化に寄与するが添加量がTot
al Atとして0.08 %を超えると反って粒の粗
大化と鋼中のAl2O3等の介在物の量の増大を招き靭
性な阻害する。
一方Nは溶接熱影響部の切欠靭性を確保し、がつBを添
加した場合のBの焼入性を充分に発揮せしめるために上
限を0.005チとし、また、Nbと結合して析出硬化
を助長し、At−?Tlと結合して巧やTINとし溶接
熱影響部の粒の粗大化を防止する意味で効果があるがい
ずれもその効果を発揮する下限は0.001%である。
加した場合のBの焼入性を充分に発揮せしめるために上
限を0.005チとし、また、Nbと結合して析出硬化
を助長し、At−?Tlと結合して巧やTINとし溶接
熱影響部の粒の粗大化を防止する意味で効果があるがい
ずれもその効果を発揮する下限は0.001%である。
すなわちそれぞれの限定量を外れれば前述の各々の効果
は少なくなる。
は少なくなる。
以上が基本的元素であるが、さらに本発明においては、
前記以外の元素としてB、Ti+V+Cu+Nl l
Mo l Caのいずれか1種以上を添加することによ
シ、鋼材の断面厚みに応じて焼入性を確保して強度、靭
性を−そう向上せしめることができる。
前記以外の元素としてB、Ti+V+Cu+Nl l
Mo l Caのいずれか1種以上を添加することによ
シ、鋼材の断面厚みに応じて焼入性を確保して強度、靭
性を−そう向上せしめることができる。
これらのうち先ずBは高温での変態を抑制するために、
ベイナイト領域での変態を行わしめる際にきわめて有用
な元素であるが、0.0005fi未満ではその効果が
少く、0.0015%超では溶接熱影響部等の靭性を著
るしく劣化させる。0.0005〜0.0015%の適
量ではNbとの共存で相乗効果を発揮し靭性劣化を伴な
わない焼入性向上効果を発揮する。
ベイナイト領域での変態を行わしめる際にきわめて有用
な元素であるが、0.0005fi未満ではその効果が
少く、0.0015%超では溶接熱影響部等の靭性を著
るしく劣化させる。0.0005〜0.0015%の適
量ではNbとの共存で相乗効果を発揮し靭性劣化を伴な
わない焼入性向上効果を発揮する。
TiはNを固定しBを有効化させるためB添加と併用し
て添加したり、TiNとして溶接熱影響部の粒粗大化を
防止し靭性の劣化を防ぐため添加することがあるが0.
005 %未満ではそれらの効果はなくなfi、0.0
4%を超えると本発明の対象とする強度の鋼でも母材靭
性を劣化させるので0.005〜0.04チに限定した
。
て添加したり、TiNとして溶接熱影響部の粒粗大化を
防止し靭性の劣化を防ぐため添加することがあるが0.
005 %未満ではそれらの効果はなくなfi、0.0
4%を超えると本発明の対象とする強度の鋼でも母材靭
性を劣化させるので0.005〜0.04チに限定した
。
Vはその析出硬化作用のためNbと同様に本発明では水
冷後の保温の際の強化が期待できるものであって同一量
のNbよりはその効果は小さいが最低0、01 %から
その効果が認められる。しかし0105チを超えると母
材および溶接熱影響部の靭性を劣化させ併せて耐溶接割
れ性をも劣化させる。したがって0.01〜0.05
%をその限定量とした。
冷後の保温の際の強化が期待できるものであって同一量
のNbよりはその効果は小さいが最低0、01 %から
その効果が認められる。しかし0105チを超えると母
材および溶接熱影響部の靭性を劣化させ併せて耐溶接割
れ性をも劣化させる。したがって0.01〜0.05
%をその限定量とした。
Cuは固溶硬化と二次硬化があル、0.5 %未満の範
囲では靭性を劣化させずに鋼を強化させる。しかしなが
ら0.5%を超えると溶接部に熱間割れを生ずる恐れが
ある。
囲では靭性を劣化させずに鋼を強化させる。しかしなが
ら0.5%を超えると溶接部に熱間割れを生ずる恐れが
ある。
8口ま、その地鉄中への固溶によシ母材や溶接熱影響部
の靭性な向上させるのに有効であシ、特に板厚の大きい
厚板の板厚中央部の強度、靭性を確保する上で有効であ
る。しかしながらNiを多量に添加しても本発明の意図
する一般用途鋼としては効果が飽和するので上限を0.
5 %にとどめた。
の靭性な向上させるのに有効であシ、特に板厚の大きい
厚板の板厚中央部の強度、靭性を確保する上で有効であ
る。しかしながらNiを多量に添加しても本発明の意図
する一般用途鋼としては効果が飽和するので上限を0.
5 %にとどめた。
Moは強度を確保し、また焼戻脆化を防止するために添
加することがあるが本発明の対象とする強度の鋼では0
.3%以下の添加量で充分であシ、逆にそれを超える添
加量では、溶接性を劣化させることがある。
加することがあるが本発明の対象とする強度の鋼では0
.3%以下の添加量で充分であシ、逆にそれを超える添
加量では、溶接性を劣化させることがある。
Caは硫化物の形態制御を行い、圧延方向と直角な方向
の切欠靭性を向上させる目的で添加することがあるが、
その場合0.002 ’16未満ではその効果が充分で
ない場合があシ、また0、 01 %を超えると表面お
よび内部の介在物が増加し、UST検査の不良原因とな
ることがある。したがって限定量は0.002〜0.0
1チとした。
の切欠靭性を向上させる目的で添加することがあるが、
その場合0.002 ’16未満ではその効果が充分で
ない場合があシ、また0、 01 %を超えると表面お
よび内部の介在物が増加し、UST検査の不良原因とな
ることがある。したがって限定量は0.002〜0.0
1チとした。
なお、本発明においてはS1含有量は特に規定するもの
ではないが脱酸成分としては通常用いられるもので6D
、溶接性を特に損わず強度を上昇する安価な元素として
ほぼ0.5 q6以下程度は含まれる。
ではないが脱酸成分としては通常用いられるもので6D
、溶接性を特に損わず強度を上昇する安価な元素として
ほぼ0.5 q6以下程度は含まれる。
また、本発明においては、対象とする鋼の連続鋳造鋼片
の炭素当量 Ceq = C+MV6+8し’24 十Nl/40
+Mo/4 +V/14で与えられるCeqが鋼板の引
張強さが48 kgf/m”以上58kgf/+−未満
の鋼では0.36チ以下、引張強サカ58 kgf 7
1m” 以上75 kgf/m” 未H(Dint合は
0.409b以下と規定するものであるがこのように規
定したのはまず、引張強さ48kgf/ym”以上58
kgf/ltm”未満の厚鋼板については溶接施工に
際し水素量が若干高く、しかも作業性のすぐれた中水素
糸溶接棒を使用することが最近特に望まれる傾向が現れ
ておシ、この溶接棒を使用する限りCeqは0.36
%以下にすることが必要であるからである。また、引張
強さが58 kgf /wax”〜75kgf/w”の
鋼板については低水素系溶接棒を使用し全く予熱を行わ
ないで施工可能なものが要求されてお〕、このためには
Ceqは0.40%以下が必要であるからである。
の炭素当量 Ceq = C+MV6+8し’24 十Nl/40
+Mo/4 +V/14で与えられるCeqが鋼板の引
張強さが48 kgf/m”以上58kgf/+−未満
の鋼では0.36チ以下、引張強サカ58 kgf 7
1m” 以上75 kgf/m” 未H(Dint合は
0.409b以下と規定するものであるがこのように規
定したのはまず、引張強さ48kgf/ym”以上58
kgf/ltm”未満の厚鋼板については溶接施工に
際し水素量が若干高く、しかも作業性のすぐれた中水素
糸溶接棒を使用することが最近特に望まれる傾向が現れ
ておシ、この溶接棒を使用する限りCeqは0.36
%以下にすることが必要であるからである。また、引張
強さが58 kgf /wax”〜75kgf/w”の
鋼板については低水素系溶接棒を使用し全く予熱を行わ
ないで施工可能なものが要求されてお〕、このためには
Ceqは0.40%以下が必要であるからである。
以上のような理由によシ、本発明においては引張強さに
応じてCeqの範囲を定めたものである。
応じてCeqの範囲を定めたものである。
なお、上記のC@qの式はJI8およびWESによって
規定された慣用的な炭素尚量式であり、各元素はいずれ
もその重量%を示すものである。
規定された慣用的な炭素尚量式であり、各元素はいずれ
もその重量%を示すものである。
次に本発明における製造条件の限定についてその理由を
説明する。
説明する。
先ず本発明においては前述の如き化学成分およびCeq
を有する連続鋳造鋼片を、鋳造まま、あるいは偏析を拡
散する目的または断面厚みの減少等を目的として減厚圧
延をほどこした後、高温のままで搬送されるものである
が、その際空冷または鋼片の積み重ねによる空冷よシも
小さい冷却速度による冷却或いは水冷、衝風等による急
冷など種種の冷却速度の冷却が行われる。しかしていず
れの場合においても鋼片の表面附近の温度は当然の裏年
ら鋼片の内部よりも著るしく低下する。この場合、本発
明では表面の温度が500℃以下にならない内に加熱、
均熱を行うものであるがその理由は表面附近のNbが一
部Nbの炭・窒化物として析出しても鋼片内部は朱だN
bが固溶状態にあるから充分に本発明の効果が得られる
ためである。
を有する連続鋳造鋼片を、鋳造まま、あるいは偏析を拡
散する目的または断面厚みの減少等を目的として減厚圧
延をほどこした後、高温のままで搬送されるものである
が、その際空冷または鋼片の積み重ねによる空冷よシも
小さい冷却速度による冷却或いは水冷、衝風等による急
冷など種種の冷却速度の冷却が行われる。しかしていず
れの場合においても鋼片の表面附近の温度は当然の裏年
ら鋼片の内部よりも著るしく低下する。この場合、本発
明では表面の温度が500℃以下にならない内に加熱、
均熱を行うものであるがその理由は表面附近のNbが一
部Nbの炭・窒化物として析出しても鋼片内部は朱だN
bが固溶状態にあるから充分に本発明の効果が得られる
ためである。
勿論熱経済的には搬送時の温度降下を出来るだけ抑制し
て圧延作業に入る前の鋼片の均熱を行うことが望ましい
。
て圧延作業に入る前の鋼片の均熱を行うことが望ましい
。
次に鋼片の加熱、均熱の温度は、その後の圧延の行われ
る920℃以下水冷開始迄の温度域に到達するまでの圧
下スケジュールよりみて、鋼片の厚みと圧延仕上げ厚み
の関係より、圧延・ぐス回数と温度降下式を想定し決め
たものである。即ち上限の1200℃は制御圧延を行う
際、温度降下の待ち時間を殆んど必要としない能率の大
きな圧延を行う場合の最高温度でアシ、下限の1000
℃は920℃以下で指定した圧下率の圧延を行うに必要
な最低温度である。さらに下限の1000℃はNbの炭
・窒化物の析出ノーズを避け、均熱中にNbの析出が起
らないための最低温度でもある。このような理由によシ
鋼片の加熱、均熱温度範囲を1000〜1200℃と定
めた。
る920℃以下水冷開始迄の温度域に到達するまでの圧
下スケジュールよりみて、鋼片の厚みと圧延仕上げ厚み
の関係より、圧延・ぐス回数と温度降下式を想定し決め
たものである。即ち上限の1200℃は制御圧延を行う
際、温度降下の待ち時間を殆んど必要としない能率の大
きな圧延を行う場合の最高温度でアシ、下限の1000
℃は920℃以下で指定した圧下率の圧延を行うに必要
な最低温度である。さらに下限の1000℃はNbの炭
・窒化物の析出ノーズを避け、均熱中にNbの析出が起
らないための最低温度でもある。このような理由によシ
鋼片の加熱、均熱温度範囲を1000〜1200℃と定
めた。
また、制御圧延の条件を920℃以下水冷開始迄の温度
域における圧下量を少くとも20チとしたのは、Nb含
有鋼の未再結晶域での圧下を行って鋳造−!ま或いは減
厚圧延後の鋼片の粗大オーステナイト粒度を細かくする
ことを可能とするためで、20チ未満の圧下量では本発
明法によシ得られる汎用的構造用鋼としての必要靭性を
確保することは困難である。
域における圧下量を少くとも20チとしたのは、Nb含
有鋼の未再結晶域での圧下を行って鋳造−!ま或いは減
厚圧延後の鋼片の粗大オーステナイト粒度を細かくする
ことを可能とするためで、20チ未満の圧下量では本発
明法によシ得られる汎用的構造用鋼としての必要靭性を
確保することは困難である。
この場合、温度域を920℃以下水冷開始迄としたのは
本発明に規定する化学成分の鋼の未再結晶域を含む有効
制御圧延温度域の上限が920℃であるからで、また水
冷開始温度迄としたのは本発明では圧延後直ちに水冷を
行うことが望ましいためで水冷開始温度は化学成分や圧
下量等によって異なるため本発明では規定しないが通常
はぼ700℃〜850℃の範囲である。
本発明に規定する化学成分の鋼の未再結晶域を含む有効
制御圧延温度域の上限が920℃であるからで、また水
冷開始温度迄としたのは本発明では圧延後直ちに水冷を
行うことが望ましいためで水冷開始温度は化学成分や圧
下量等によって異なるため本発明では規定しないが通常
はぼ700℃〜850℃の範囲である。
圧延はこの水冷開始温度迄前迄行うのが望ましいが実際
は圧延機と水冷装置の間に距離があり若干の時間がかか
る。しかしながら少くとも圧延終了後60秒以内には水
冷を開始することが望ましくこれが本発明に云う可及的
早い時点での水冷開始を意味する。
は圧延機と水冷装置の間に距離があり若干の時間がかか
る。しかしながら少くとも圧延終了後60秒以内には水
冷を開始することが望ましくこれが本発明に云う可及的
早い時点での水冷開始を意味する。
次に、圧延後急速な冷却をするのは、強冷後に続く温度
保定において変態ならびに析出を充分行わしめるように
それ以上の温度で変態、析出が開始、進行するのを出来
るだけ防止するためでsb、水冷の停止温度を350〜
600℃としたのは水冷停止後、恒温変態と同時にNb
炭・窒化物の析出による強化を行わしめる最も適当な温
度、つまシ本発明の規定する500〜650℃の保定温
度に移行するのに最も妥当な温度であるからである。
保定において変態ならびに析出を充分行わしめるように
それ以上の温度で変態、析出が開始、進行するのを出来
るだけ防止するためでsb、水冷の停止温度を350〜
600℃としたのは水冷停止後、恒温変態と同時にNb
炭・窒化物の析出による強化を行わしめる最も適当な温
度、つまシ本発明の規定する500〜650℃の保定温
度に移行するのに最も妥当な温度であるからである。
即ち最低温度を350℃に決めた理由は本発明に規定す
る化学成分の鋼では、M1点は400℃前後であるが、
通常の工業的手段による水冷では鋼板の冷却速度はむし
ろ鋼板の板厚方向の殆んどの部分がマルテンサイトでは
なくベイナイト或いはベイナイトとフェライトの混合組
織を生成せしめるものでMl1点を通過するマルテンサ
イトの生成は板厚が20+a+程度またはそれ以下の場
合が板表面の極く一部にすぎない。この場合これらの組
織は、その後の500〜650℃の温度での保定で焼鈍
され、板厚中央部の一部ペイナイトまたはフェライト変
態の終った部分や、その後の500〜650℃の保定温
度で変態の生じる部分等とほぼ同等の機械的性質を示す
。従って、部分的にはM3点を切った温度つまり銅板表
面が350℃迄の水冷は本発明の許容される温度範囲と
なる。
る化学成分の鋼では、M1点は400℃前後であるが、
通常の工業的手段による水冷では鋼板の冷却速度はむし
ろ鋼板の板厚方向の殆んどの部分がマルテンサイトでは
なくベイナイト或いはベイナイトとフェライトの混合組
織を生成せしめるものでMl1点を通過するマルテンサ
イトの生成は板厚が20+a+程度またはそれ以下の場
合が板表面の極く一部にすぎない。この場合これらの組
織は、その後の500〜650℃の温度での保定で焼鈍
され、板厚中央部の一部ペイナイトまたはフェライト変
態の終った部分や、その後の500〜650℃の保定温
度で変態の生じる部分等とほぼ同等の機械的性質を示す
。従って、部分的にはM3点を切った温度つまり銅板表
面が350℃迄の水冷は本発明の許容される温度範囲と
なる。
一方水冷停止の上限温度は、鋼板が保定温度に達する迄
はそれより高い温度では変態が開始進行するが、その割
合を出来るだけ小さくするために保定温度又はそれに近
い温度以上での水冷停止は避けることが望ましい。即ち
、圧延時から圧延後冷却時にかけてのNbの炭・窒化物
の析出はオーステナイト域温度において一部起るが、そ
の後本発明では水冷を行うから水冷停止温度迄の析出は
殆んどなく大部分が水冷を終了してから析出する。
はそれより高い温度では変態が開始進行するが、その割
合を出来るだけ小さくするために保定温度又はそれに近
い温度以上での水冷停止は避けることが望ましい。即ち
、圧延時から圧延後冷却時にかけてのNbの炭・窒化物
の析出はオーステナイト域温度において一部起るが、そ
の後本発明では水冷を行うから水冷停止温度迄の析出は
殆んどなく大部分が水冷を終了してから析出する。
この析出の度合いは水冷停止温度が高い程太きい。
しかるに、特に本発明の場合はその後の温度保定時の析
出を目的としているために水冷停止時から温度保定に達
する時間での析出を抑制する意味では水冷停止温度は低
い方が望ましい。特に厚鋼板の場合冷却時板厚方向に温
度勾配がつき、鋼板表面よりも鋼板中心部の温度が高い
から鋼板厚手方向の材質差を考えて若干の余裕をとる必
要がある。
出を目的としているために水冷停止時から温度保定に達
する時間での析出を抑制する意味では水冷停止温度は低
い方が望ましい。特に厚鋼板の場合冷却時板厚方向に温
度勾配がつき、鋼板表面よりも鋼板中心部の温度が高い
から鋼板厚手方向の材質差を考えて若干の余裕をとる必
要がある。
水冷停止上限温度600℃はこのような理由で決めた。
つま9この温度よシ水冷停止温度が高いと鋼板の板厚方
向を通してその後の温度保定迄にNb炭・窒化物の析出
が相当貴行われてしまうので本発明の意図する効果が得
られなくなるためであ・る。
向を通してその後の温度保定迄にNb炭・窒化物の析出
が相当貴行われてしまうので本発明の意図する効果が得
られなくなるためであ・る。
次に本発明の如く厚鋼板、特に20IImを超える厚手
の場合は特定の温度、時間で保定を行って恒温変態を完
了させることが重要な点の一つであシ、望ましい変態生
成組織としては微細フェライトとパーライト組織または
ベイナイト組織であるため保定温度はその鋼材のA1点
、通常700〜550℃からM8点の間である必要があ
る。
の場合は特定の温度、時間で保定を行って恒温変態を完
了させることが重要な点の一つであシ、望ましい変態生
成組織としては微細フェライトとパーライト組織または
ベイナイト組織であるため保定温度はその鋼材のA1点
、通常700〜550℃からM8点の間である必要があ
る。
この間の温度で本発明によって得られる鋼板の特性を確
保し、しかも工業的に最も能率化出来るのは500〜6
50℃の間である。この温度が650℃超では通常の連
続冷却処理に比し特性上の利点が失われる。また500
℃未満では変態を完全に終了させる迄に時間がかがシ工
業的な価値を逸する。
保し、しかも工業的に最も能率化出来るのは500〜6
50℃の間である。この温度が650℃超では通常の連
続冷却処理に比し特性上の利点が失われる。また500
℃未満では変態を完全に終了させる迄に時間がかがシ工
業的な価値を逸する。
次に保定時間は原則として変態がほぼ完了する迄の時間
以上の時間が必要であシ、合金元素量および変態温度に
より広範囲に異なるが、合金元素量が少く保定温度がA
1点直下ならば1分根度で変態が終了し、また合金元素
量が多く、保定温度が低いと数時間以上を要することが
おる。しかし工業的にみた場合短時間の変態完了の場合
でも若干の管理上の余裕をみる必要があるのと一方では
あまシ長時間の保定は行いにくくまた成分と保定温度の
選択により短時間に変態を完了させることも可能である
ので保定は5分から60分に限定した。
以上の時間が必要であシ、合金元素量および変態温度に
より広範囲に異なるが、合金元素量が少く保定温度がA
1点直下ならば1分根度で変態が終了し、また合金元素
量が多く、保定温度が低いと数時間以上を要することが
おる。しかし工業的にみた場合短時間の変態完了の場合
でも若干の管理上の余裕をみる必要があるのと一方では
あまシ長時間の保定は行いにくくまた成分と保定温度の
選択により短時間に変態を完了させることも可能である
ので保定は5分から60分に限定した。
なお工業的には30分以内程度で完了するよう成分元素
を調節し温度範囲をそれぞれ選ぶことが望ましい。
を調節し温度範囲をそれぞれ選ぶことが望ましい。
次に本発明の効果を実施例によp更に具体的に説明する
。
。
(実施例)
本発明の対象とする鋼および従来材をいずれも連続鋳造
により厚み240鱈および300mの鋼片に鋳造し、一
部鋼片断面厚みを薄くするためと中心偏析部の拡散を目
的として減厚圧延を行い、後本発明による製造条件およ
びそれを逸脱する製造条件で製造を行った。
により厚み240鱈および300mの鋼片に鋳造し、一
部鋼片断面厚みを薄くするためと中心偏析部の拡散を目
的として減厚圧延を行い、後本発明による製造条件およ
びそれを逸脱する製造条件で製造を行った。
第1表はそれらの化学成分と炭素当量を示し、第2表は
製造条件、板厚、および製造を終えた厚鋼板の機械的性
質を厚みの1/4の位置から採取した試験片によシ検査
した結果を示す。
製造条件、板厚、および製造を終えた厚鋼板の機械的性
質を厚みの1/4の位置から採取した試験片によシ検査
した結果を示す。
第2表において屋1〜22は本発明に規定された化学成
分と製造条件とを共に満足する本発明例でその引張強さ
はいずれも本発明において規定された炭素当量の範囲に
対応する強度のものが得られており、また靭性も構造用
鋼として充分な値を示していることがわかる。
分と製造条件とを共に満足する本発明例でその引張強さ
はいずれも本発明において規定された炭素当量の範囲に
対応する強度のものが得られており、また靭性も構造用
鋼として充分な値を示していることがわかる。
一方第2表の比較例A26,27.29は使用鋼種のC
、Nb或いはNにおいて本発明に規定される化学成分範
囲を外れておF)R造条件は規定する範囲内に入ってい
るにも拘らず機械的性質は所期の目的に合致せず、いず
れも不満足な結果に終っている。又比較例A28は使用
鋼種にNbを含まず、製造条件も一部規定の範囲を外れ
ており、機械的性質は本発明の目的とする鋼の範囲にほ
ぼ入っているものの炭素当量が高く溶接性のすぐれた鋼
を得ると云う本発明の主旨にそったものではない。
、Nb或いはNにおいて本発明に規定される化学成分範
囲を外れておF)R造条件は規定する範囲内に入ってい
るにも拘らず機械的性質は所期の目的に合致せず、いず
れも不満足な結果に終っている。又比較例A28は使用
鋼種にNbを含まず、製造条件も一部規定の範囲を外れ
ており、機械的性質は本発明の目的とする鋼の範囲にほ
ぼ入っているものの炭素当量が高く溶接性のすぐれた鋼
を得ると云う本発明の主旨にそったものではない。
又、比較何屋30〜36は化学成分は本発明の規定する
範囲に入っているが製造条件が規定の範囲を外れている
ため機械的性質が本発明の意図する良好なものになって
いない。即ち430 、31゜32.34.35.36
は強度が不足しておシ、A32,35.36は同時に靭
性も構造用鋼としては不足である。また扁33は強度は
本発明の目的とする強度を確保し、炭素当量も充分でお
るが靭性が大巾に不足している。
範囲に入っているが製造条件が規定の範囲を外れている
ため機械的性質が本発明の意図する良好なものになって
いない。即ち430 、31゜32.34.35.36
は強度が不足しておシ、A32,35.36は同時に靭
性も構造用鋼としては不足である。また扁33は強度は
本発明の目的とする強度を確保し、炭素当量も充分でお
るが靭性が大巾に不足している。
このように本発明の如く化学成分を規定すると共に制御
圧延後の水冷で特定の条件のもとに冷却を一旦中止し、
直ちに一定の温度範囲に保定して製造することによって
のみ所期の目的を達成する構造用鋼を得ることが可能で
ある。
圧延後の水冷で特定の条件のもとに冷却を一旦中止し、
直ちに一定の温度範囲に保定して製造することによって
のみ所期の目的を達成する構造用鋼を得ることが可能で
ある。
(発明の効果)
以上の実施例からも明らかな如く、本発明によれば従来
再加熱焼入焼戻し、直接焼入焼戻し等の煩雑な熱処理を
行って初めて製造が可能であった溶接性高張力鋼を連続
鋳造またはこれを更に減厚圧延後簡単な手段で製造する
ことが可能となシ産業上の効果は極めて顕著なものがあ
る。
再加熱焼入焼戻し、直接焼入焼戻し等の煩雑な熱処理を
行って初めて製造が可能であった溶接性高張力鋼を連続
鋳造またはこれを更に減厚圧延後簡単な手段で製造する
ことが可能となシ産業上の効果は極めて顕著なものがあ
る。
特開昭G1−163209(9)
■
一 −
Claims (1)
- 【特許請求の範囲】 重量%でC0.03〜0.23%、Mn0.3〜1.5
%、Nb0.005〜0.04%、Total Al0
.08%以下、Total N0.001〜0.005
%を含み、さらに必要により、B0.0005〜0.0
015%、Ti0.005〜0.04%、V0.01〜
0.05%、Cu0.5%以下、Ni0.5%以下、M
o0.3%以下、Ca0.002〜0.01%のいずれ
か1種以上を含有し、残部がFeおよび不可避的不純物
よりなり且つ炭素当量Ceqが鋼板の引張強さが48k
gf/mm^2以上58kgf/mm^2未満の鋼では
0.36%以下、引張強さが58kgf/mm^2以上
75kgf/mm^2未満の鋼では0.40%以下の連
続鋳造鋼片を鋳造後、鋳造まま、或いは減厚圧延後鋼片
の表面が500℃以下にならない間に1000〜120
0℃の温度に加熱均熱した後、920℃以下水冷開始迄
の温度で少くとも20%の圧下量を伴う圧延をほどこし
、圧延後可及的早い時点で水冷をほどこし、水冷停止温
度が鋼板の表面温度で350〜600℃になるように水
冷を停止し、直ちに500〜650℃の温度で5分〜6
0分の保定を行うことを特徴とする引張強さ48kgf
/mm^2以上75kgf/mm^2未満の溶接性のす
ぐれた厚鋼板の製造法。 但し炭素当量 Ceq=C+Mn/6+Si/24+Ni/40+Mo
/4+V/14
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP411985A JPS61163209A (ja) | 1985-01-16 | 1985-01-16 | 引張強さ48Kgf/mm↑2以上75Kgf/mm↑2未満の溶接性のすぐれた厚鋼板の製造法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP411985A JPS61163209A (ja) | 1985-01-16 | 1985-01-16 | 引張強さ48Kgf/mm↑2以上75Kgf/mm↑2未満の溶接性のすぐれた厚鋼板の製造法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61163209A true JPS61163209A (ja) | 1986-07-23 |
Family
ID=11575895
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP411985A Pending JPS61163209A (ja) | 1985-01-16 | 1985-01-16 | 引張強さ48Kgf/mm↑2以上75Kgf/mm↑2未満の溶接性のすぐれた厚鋼板の製造法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61163209A (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103320692A (zh) * | 2013-06-19 | 2013-09-25 | 宝山钢铁股份有限公司 | 超高韧性、优良焊接性ht550钢板及其制造方法 |
-
1985
- 1985-01-16 JP JP411985A patent/JPS61163209A/ja active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103320692A (zh) * | 2013-06-19 | 2013-09-25 | 宝山钢铁股份有限公司 | 超高韧性、优良焊接性ht550钢板及其制造方法 |
CN103320692B (zh) * | 2013-06-19 | 2016-07-06 | 宝山钢铁股份有限公司 | 超高韧性、优良焊接性ht550钢板及其制造方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10301700B2 (en) | Method for producing a steel component | |
JP2001115233A (ja) | 溶接性と耐応力腐食割れ性に優れた高強度鋼板およびその製造方法 | |
JPH028349A (ja) | 冷間加工性および溶接性に優れた引張り強さが55Kgf/mm↑2以上の高張力熱延鋼帯 | |
JP2652539B2 (ja) | 張出し成形性及び疲労特性にすぐれる複合組織高強度冷延鋼板の製造方法 | |
JPH01184226A (ja) | 高延性高強度複合組織鋼板の製造法 | |
JPH0213013B2 (ja) | ||
JP2002363685A (ja) | 低降伏比高強度冷延鋼板 | |
JP3543200B2 (ja) | メタルソー基板用鋼板の製造方法 | |
JPS63210234A (ja) | 加工性に優れ溶接軟化のない高強度ステンレス鋼材の製造方法 | |
JPS61163209A (ja) | 引張強さ48Kgf/mm↑2以上75Kgf/mm↑2未満の溶接性のすぐれた厚鋼板の製造法 | |
JPS623214B2 (ja) | ||
JPS6320414A (ja) | 高靭性高張力鋼板の製造法 | |
JPH0583607B2 (ja) | ||
JPS6338518A (ja) | 耐水素誘起割れ性に優れた鋼板の製造方法 | |
JPS63145711A (ja) | 低温靭性にすぐれる高張力鋼板の製造方法 | |
JPH04103719A (ja) | 超高強度電縫鋼管の製造方法 | |
JPS63210242A (ja) | 加工性に優れ溶接軟化のない高強度ステンレス鋼材の製造方法 | |
JPS59113120A (ja) | 溶接性と低温靭性の優れた低炭素当量高張力鋼の製造方法 | |
JPH0517286B2 (ja) | ||
JPS6350424A (ja) | 低温靭性と溶接性に優れた厚手高張力鋼板の製造方法 | |
JPH0369967B2 (ja) | ||
JPH0545652B2 (ja) | ||
JPS61127814A (ja) | 低温靭性の優れた高張力鋼板の製造法 | |
JPH04308032A (ja) | 板厚方向の機械的特性差の小さい厚鋼板の製造方法 | |
JPH02194146A (ja) | 冷間加工性および表面品質の優れた高強度熱延鋼板およびその製造方法 |