JPS6116254B2 - - Google Patents

Info

Publication number
JPS6116254B2
JPS6116254B2 JP10198578A JP10198578A JPS6116254B2 JP S6116254 B2 JPS6116254 B2 JP S6116254B2 JP 10198578 A JP10198578 A JP 10198578A JP 10198578 A JP10198578 A JP 10198578A JP S6116254 B2 JPS6116254 B2 JP S6116254B2
Authority
JP
Japan
Prior art keywords
reaction
acid
inorganic
pinacolon
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10198578A
Other languages
Japanese (ja)
Other versions
JPS5528941A (en
Inventor
Sunao Kyo
Haruo Tsucha
Hidetsugu Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP10198578A priority Critical patent/JPS5528941A/en
Priority to DE19792918521 priority patent/DE2918521C3/en
Priority to NL7903751A priority patent/NL185562C/en
Priority to US06/039,300 priority patent/US4224252A/en
Publication of JPS5528941A publication Critical patent/JPS5528941A/en
Publication of JPS6116254B2 publication Critical patent/JPS6116254B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 本発明はピナコロン(第三級ブチルメチルケト
ン)の製造方法に関する。 ピナコロンの製法としては、アセトンの二量化
によつて得られるピナコールの酸触媒による転位
反応(ピナコール−ピナコロン転位反応)が古く
から知られている(たとえばOrg.Synth.,Coll.
Vol., 459〜463頁参照)。この反応は、アセ
トンの二量化の段階で有毒な塩化第二水銀が必要
なうえそれが大部分元素状水銀に変換される、金
属マグネシウム(または金属アルミニウム)が少
くとも化学量論的に必要でかつそれが塩に変換さ
れる、大過剰のアセトンが必要なうえそれが還元
されてイソプロパノールを副生するなど工業的大
規模で反応を実施するに際し種々の問題を伴う。 また、別法として2−メチル−2−ブテンとホ
ルムアルデヒドのプリンス反応により得られる
4,4,5−トリメチル−1,3−ジオキサンを
強酸の存在下に加水分解する方法も知られている
(ドイツ特許第714488号およびアメリカ特許第
4059634号参照)。 しかしながら、この方法もピナコロン収率が低
く、かつ多量の粘性副生物が生成し反応工程の面
だけではなく製品純度の点でも欠点を有する。 本発明者等は上述した如き問題点を解消するた
めに鋭意検討した結果、下記 一般式() 〔式()においてWおよびYは水素原子であ
り、XおよびZは同一もしくは異なりそれぞれ
OH,Cl,BrもしくはRCOO(但しRは水素原子
もしくは炭素数1〜3個のアルキル基である)を
表わすか、あるいはWおよびYの一方が水素原子
であり他方はXと一緒になつた単結合を形成し、
ZはOH,Cl,Br,HSO4,H2PO4,ClO4もしく
はRCOO(但しRは上記と同じである)を表わ
す〕で示される化合物を無機強酸水溶液中で加熱
することによつてピナコロンが容易に得られるこ
とを見出し、本発明に至つた。さらにこの反応に
際し反応系に無機強酸の塩を共存させると、ピナ
コロン収率が一層向上すると共に、使用する無機
強酸の濃度および量を低減しうることが判明し
た。 本発明においてピナコロンの生成は前記一般式
()で表わされる化合物の分解転位によるもの
であり、たとえば一般式()においてWおよび
Yがともに水素原子、Xが塩素原子であり、Zが
CH3COO基である化合物のピナコロンへの転位
は次式で示される。 本発明で原料として用いられる一般式()で
表わされる化合物は2−メチルブテン−2または
3−メチルブテン−1とホルムアルテヒドとの反
応で得られる4,4,5−トリメチル−1,3−
ジオキサンを経由し、あるいは経由せずに容易に
入手し得るものである(たとえばChem.Rev.51
505(1952)、Zhur.Obshchei Khim.27 2806
(1957)、および工業化学雑誌72 1715(1969)、
特公昭59−14011号公報参照)。具体的には2,3
−ジメチルブタン−1,3−ジオール、2,3−
ジメチル−3−クロルブタン−1−オール、2,
3−ジメチル−3−ブロムブタン−1−オール、
2,3−ジメチルブテン−2−オール−1、2,
3−ジメチルブテン−3−オール−1およびそれ
らの炭素数1〜4個の脂肪族カルボン酸エステル
などである。 本発明に好ましく用いられる無機強酸水溶液
は、塩酸、臭化水素酸、硫酸、燐酸または過塩素
酸水溶液であり、それらは二種以上が混合使用さ
れてもよい。特に塩酸が価格、反応収率その他の
面から好ましい。反応混合物の水相中の酸濃度お
よび酸量は反応の進行により変化することがある
が、本発明では反応の全期間中にわたり反応系の
水相中における酸濃度が0.5モル/Kg以上好まし
くは1.0モル/Kg以上でかつ水相中の無機強酸の
量が反応系の原料に対して0.1倍モル以上好まし
くは0.5倍モル以上に保たれるならば、無機強酸
ならびに原料の種類に応じてそれぞれ満足できる
収率でピナコロンを得ることができる。 本発明において無機強酸と併用することのでき
る無機強酸の塩は反応系に少くとも部分的に可溶
であることが必要であるが、100℃における水に
対する溶解度が35以上のものが好ましい。中性
塩、酸性塩のいずれも使用可能であり、たとえば
リチウム、ナトリウム、カリウム、ルビジウム、
セシウム、銅()、マグネシウム、カルシウ
ム、ストロンチウム、バリウム、亜鉛、カドミウ
ム、アルミニウム、スカンジウム、ジルコニウ
ム、チタン()、錫()、マンガン()、
鉄、コバルト()、ニツケル等の塩化物及び臭
化物、アンモニウム、ナトリウム、ルビジウム、
セシウム、マグネシウム、カドミウム、亜鉛、ア
ルミニウム、コバルト()、銅()、ニツケル
()、マンガン()等の硫酸塩、カルシウム、
銀、ストロンチウム、ナトリウム、バリウム、マ
グネシウム等の過塩素酸塩、硫酸水素ナトリウ
ム、硫酸水素カリウム、リン酸二水素ナトリウム
等の酸性塩、さらには塩化硫酸マグネシウムカリ
ウム等の複合塩などを例示することができる。こ
の中でもモル溶解度が大きく、かつ反応条件下で
の水相中における安定性が高いものが好適であ
り、この点を考慮すると第二〜第四周期のアルカ
リ金属及びアルカリ土類金属の塩が最も好まし
い。反応に用いられる無機強酸の酸根と無機強酸
塩の酸根は必ずしも同一である必要はないが、反
応条件下で難溶性の塩を生成するような組合せは
避けねばならない。さらに無機強酸の塩は上記溶
解度が満たされる範囲内で二種以上を混合使用し
てもよいが、この場合も反応条件下で難溶性の塩
を生成する様な組合せは避けなければならない。 無機強酸の塩の使用量は反応条件下における水
相中の無機強酸の濃度に応じて該塩の溶解度の範
囲内で任意に選ぶことができ、たとえば無機強酸
の濃度が高い場合には少く、反対に該酸濃度が低
い場合には多くなるように変化させることができ
るが、無機強酸の酸根と無機強酸塩の酸根の和が
反応系の水相1Kgに対し少くとも2.5モル以上で
あるのが好ましい。換言すれば本発明の方法が無
機強酸水溶液の他に無機強酸塩を併用して行われ
る場合には無機強酸および無機強酸塩の両方に由
来する酸根の和の濃度は該水相1Kg当り少くとも
2.5モル以上であることが好ましい。無機強酸お
よび無機強酸塩に由来する酸根の濃度が反応系の
水相1Kgに対して2.5モル未満である場合は実用
的なピナコロン収率を得ることが困難であり、好
ましくない。 反応は水のほか反応に不活性な希釈剤の存在下
で行うこともでき、かかる希釈剤としては飽和炭
化水素類およびケトン類例えば、メチルブタン、
ヘキサン、シクロヘキサン、塩化ブチル、1,
1,1−トリクロルエタン、1,1,1,2−テ
トラクロルエタン、四塩化炭素、ピナコロン等の
疎水性の化合物を挙げることができる。しかし希
釈剤の使用によつて特に利益がもたらされること
はない。 反応温度は40〜200℃、特に60〜150℃の範囲が
好ましく、さらに反応の後期において少なくとも
80℃以上の温度で反応を仕上げる必要がある。反
応は通常大気圧以上30Kg/cm2以下の圧力で行われ
るが、この圧力は限定的なものではなく上記温度
条件が維持できればこの範囲を越えた圧力下でも
反応を行うことができる。反応が反応混合物の沸
点以上の温度で行なわれる場合反応圧力は該反応
温度に於ける該反応混合物の自在が適当であり、
不活性ガスによる加圧は特に必要でない。 反応方法としては、(1)無機強酸水溶液または無
機強酸および無機強酸塩を含む水溶液を撹拌しな
がら所定の反応温度に保ち、これに一般式()
で表わされる化合物の一種または二種以上の混合
物を連続的または断続的に添加しながら反応させ
る方法、(2)無機強酸水溶液または無機強酸および
無機強酸塩を含む水溶液に一般式()で表わさ
れる化合物の一種または二種以上を混合し、撹拌
しながら所定の温度に保ち反応させる方法等が用
いられる。一般には(1)の方法がより高いピナコロ
ン収率を与えるので好ましい。本発明の方法は連
続式、回分式の何れの方法によつても実施でき
る。反応時間は原料の使用量、無機強酸水溶液ま
たは無機強酸と無機強酸塩を含む水溶液の濃度な
らびに量、反応温度その他によつても当然変化す
るが、通常1〜20時間である。反応後の反応混合
物よりピナコロンを取得する方法としては、(a)有
機相を水相から分離したのち該有機相をそのま
ま、あるいは必要に応じて中和したのち蒸留に供
する方法、(b)反応混合物を中和した後そのまま、
あるいは有機相を水相から分離して蒸留に供する
方法、(c)反応混合物をそのまま蒸留に供する方法
等が用いられる。(a)または(c)の方法を用いるなら
ば水相の全部または一部を反応系に循環し再使用
することが可能であるが、ピナコロンの効率的な
分離・取得の面および操作上の観点からは(a)の方
法が最も好ましい。蒸留方法としては水蒸気蒸留
や通常の常圧または減圧蒸留が用いられる。 本発明において無機強酸塩を併用することは反
応収率を高め、あるいは反応収率を維持するうえ
で必要な無機強酸の濃度および量を低減させる効
果があるばかりでなく、反応混合物を有機相と水
相に分離する際に水相中に分配する有機物の量を
減少させるうえで有利である。 本発明で得られるピナコロンは溶剤として、ま
た農薬やゴム薬品等の合成中間体として工業上有
用である。 次に本発明を実施例によりさらに詳しく説明す
るが、本発明はこれらの実施例に限定されるもの
ではない。なお実施例中の収率は特にことわりが
ない限り反応系に供給された出発原料に対する生
成ピナコロンのモル%を意味する。 実施例 1 撹拌機、還流冷却管、温度計および滴下ロート
を備えた300ml容の四頚フラスコに10重量%の塩
酸109.5g(塩化水素0.300モル)および塩化リチ
ウム22.6g(0.533モル)を仕込み、撹拌しなが
ら加熱した。液温が100℃になつた時点で純度
90.2%の2,3−ジメチルブタン−1,3−ジオ
ール(他は3−メチルペンタン−1,3−ジオー
ル)40.5g(0.310モル)を滴下ロートから4時
間にわたつて導入した。原料の導入に従つて反応
混合物は還流し、原料導入終了時の還流温度は
90.0℃であつた。反応は更に2時間還流させて仕
上げた。この時の還流温度(以下反応終了時温度
と呼ぶ)は90.5℃であつた。反応混合物を氷水浴
で冷却下撹拌しながら当量の水酸化ナトリウムを
徐々に添加して中和した。次に反応混合物から有
機相を分液しガスクロマトグラフイーにより分析
してピナコロン収率を求めた。結果を表1に示
す。 実施例2および3 塩化リチウムを共存させず塩酸の使用量を表1
のようにした以外は実施例1と同様に反応させ、
処理分析して表1の結果を得た。 【表】 実施例 4 実施例1と同じ装置に不純物として3−メチル
ペンタン−1,3−ジオール7.7%を含む純度
92.3%の2,3−ジメチルブタン−1.3−ジオー
ル39.6g(0.310モル)および濃度21.4wt%の塩
酸167.0g(塩化水素0.979モル)を仕込み撹拌し
ながら4時間加熱還流させた。この時の還流温度
は87.5〜95.0℃であつた。反応混合物を実施例1
と同様に処理、分析したところピナコロン収率は
52.5%であつた。 実施例5及び6 出発原料として2,3−ジメチル−3−ヒドロ
キシブチルアセテートを用いて塩酸量(HCl/原
料モル比)を1.50にした以外はそれぞれ実施例1
及び2と同様に反応させ処理分析して表2の結果
を得た。 【表】 【表】 仕込み水溶液基準の値
実施例7〜8 出発原料としてそれぞれ2,3−ジメチル−3
−クロルブチルアセテートおよび2,3−ジメチ
ル−2−ブテニルアセテートを用いて塩化マグネ
シウムの共存下に反応を行う以外実施例1と同様
に反応させ、処理分析して表3の結果を得た。 【表】 * 表2の場合と同じことを意味する
実施例9及び10 出発原料として2,3−ジメチルブタン−1,
3−ジオールジアセテート86.7モル%と2,3−
ジメチル−3−ヒドロキシブチルアセテート13.3
モル%からなる混合物を使用する以外はそれぞれ
実施例1および4と同様に反応させ処理分析して
表4の結果を得た。 【表】 実施例11〜12 無機強酸として硫酸および無機強酸塩として硫
酸水素ナトリウムを用いる以外は実施例1と同様
に反応させ処理分析して表5の結果を得た。 参考例1〜2 実施例11に於いて硫酸ナトリウムを併用せず、
無機強酸として濃度がそれぞれ10.0wt%および
20.5wt%硫酸水溶液を用いて実施例11と同様に反
応させ処理分析した。結果を表5に併記する。 【表】 【表】 実施例13〜21 撹拌機、還流冷却管、温度計および滴下ロート
を備えた300ml容の四頚フラスコに塩酸および場
合によつて更に無機強酸の塩としてLiClまたは
MgCl2を仕込み、撹拌しながら加熱した。液温が
100℃なつた時点で出発原料として一般式()
で示される化合物0.310モルを滴下ロートから4
時間にわたつて導入した。原料の導入に従つて反
応混合物は還流した。出発原料導入終了後、更に
2時間還流させて反応を仕上げた(この時の還流
温度を反応終了時温度を称する)。得られた反応
混合物を氷水浴で冷却下撹拌しながら当量の水酸
化ナトリウムを徐々に添加して中和した。次に反
応混合物から有機相を分液しガスクロマトグラフ
イーにより分析してピナコロン収率を求めた。結
果を表6に示す。 【表】 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing pinacolone (tertiary butyl methyl ketone). As a method for producing pinacolone, an acid-catalyzed rearrangement reaction of pinacol obtained by dimerization of acetone (pinacol-pinacolone rearrangement reaction) has been known for a long time (for example, Org.Synth., Coll.
Vol., 1, pp. 459-463). This reaction requires at least a stoichiometric amount of metallic magnesium (or metallic aluminum), which requires toxic mercuric chloride during the acetone dimerization step, which is mostly converted to elemental mercury. Moreover, carrying out the reaction on an industrial scale involves various problems, such as the need for a large excess of acetone, which is converted into a salt, and the reduction of the acetone to produce isopropanol as a by-product. Another known method is to hydrolyze 4,4,5-trimethyl-1,3-dioxane obtained by the Prins reaction of 2-methyl-2-butene and formaldehyde in the presence of a strong acid (Germany). Patent No. 714488 and U.S. Patent No.
(See No. 4059634). However, this method also has drawbacks in that the yield of pinacolon is low and a large amount of viscous by-products are produced, not only in terms of the reaction process but also in terms of product purity. As a result of intensive studies to solve the above-mentioned problems, the inventors found the following general formula () [In formula (), W and Y are hydrogen atoms, and X and Z are the same or different, respectively.
OH, Cl, Br or RCOO (where R is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms), or one of W and Y is a hydrogen atom and the other is a single form a bond,
Pinacolon is produced by heating a compound represented by the following formula (Z represents OH, Cl, Br, HSO 4 , H 2 PO 4 , ClO 4 or RCOO (where R is the same as above) in an aqueous solution of a strong inorganic acid. The present inventors have discovered that this can be easily obtained, leading to the present invention. Furthermore, it has been found that by allowing a salt of a strong inorganic acid to coexist in the reaction system during this reaction, the yield of pinacolon can be further improved and the concentration and amount of the strong inorganic acid used can be reduced. In the present invention, pinacolon is produced by decomposition rearrangement of the compound represented by the general formula (). For example, in the general formula (), W and Y are both hydrogen atoms, X is a chlorine atom, and Z is
The rearrangement of a compound with a CH 3 COO group to pinacolone is shown by the following formula. The compound represented by the general formula () used as a raw material in the present invention is 4,4,5-trimethyl-1,3- obtained by the reaction of 2-methylbutene-2 or 3-methylbutene-1 with formaldehyde.
It is readily available with or without dioxane (e.g. Chem.Rev. 51
505 (1952), Zhur. Obshchei Khim. 27 2806
(1957), and Journal of Industrial Chemistry 72 1715 (1969),
(See Special Publication No. 59-14011). Specifically 2,3
-dimethylbutane-1,3-diol, 2,3-
dimethyl-3-chlorobutan-1-ol, 2,
3-dimethyl-3-bromobutan-1-ol,
2,3-dimethylbuten-2-ol-1,2,
These include 3-dimethylbuten-3-ol-1 and their aliphatic carboxylic acid esters having 1 to 4 carbon atoms. The inorganic strong acid aqueous solution preferably used in the present invention is an aqueous solution of hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid or perchloric acid, and two or more of them may be used in combination. Hydrochloric acid is particularly preferred from the viewpoint of price, reaction yield, and other aspects. Although the acid concentration and acid amount in the aqueous phase of the reaction mixture may change as the reaction progresses, in the present invention, the acid concentration in the aqueous phase of the reaction system is preferably 0.5 mol/Kg or more during the entire reaction period. 1.0 mol/Kg or more and the amount of the inorganic strong acid in the aqueous phase is maintained at 0.1 times the mole or more, preferably 0.5 times the mole or more relative to the raw materials in the reaction system, depending on the type of the inorganic strong acid and the raw materials. Pinacolone can be obtained in a satisfactory yield. In the present invention, the salt of the inorganic strong acid that can be used in combination with the inorganic strong acid needs to be at least partially soluble in the reaction system, and preferably has a solubility in water of 35 or more at 100°C. Both neutral and acidic salts can be used, such as lithium, sodium, potassium, rubidium,
Cesium, copper (), magnesium, calcium, strontium, barium, zinc, cadmium, aluminum, scandium, zirconium, titanium (), tin (), manganese (),
Iron, cobalt (), chlorides and bromides of nickel, ammonium, sodium, rubidium,
Sulfates of cesium, magnesium, cadmium, zinc, aluminum, cobalt (), copper (), nickel (), manganese (), calcium,
Examples include perchlorates of silver, strontium, sodium, barium, magnesium, etc., acid salts such as sodium hydrogen sulfate, potassium hydrogen sulfate, sodium dihydrogen phosphate, and complex salts such as potassium magnesium chloride sulfate. can. Among these, salts with high molar solubility and high stability in the aqueous phase under the reaction conditions are preferable. Considering this point, salts of alkali metals and alkaline earth metals in the second to fourth periods are the most suitable. preferable. Although the acid radicals of the inorganic strong acid and the acid radical of the inorganic strong acid salt used in the reaction do not necessarily have to be the same, combinations that would produce poorly soluble salts under the reaction conditions must be avoided. Furthermore, two or more salts of inorganic strong acids may be used in combination within the range that satisfies the above-mentioned solubility, but in this case as well, combinations that would produce poorly soluble salts under the reaction conditions must be avoided. The amount of the inorganic strong acid salt to be used can be arbitrarily selected depending on the concentration of the inorganic strong acid in the aqueous phase under the reaction conditions and within the range of the solubility of the salt. On the other hand, if the acid concentration is low, it can be increased, but the sum of the acid radicals of the inorganic strong acid and the acid radicals of the inorganic strong acid salt should be at least 2.5 mol or more per 1 kg of the aqueous phase of the reaction system. is preferred. In other words, when the method of the present invention is carried out using a strong inorganic acid salt in addition to an aqueous solution of an inorganic strong acid, the concentration of the sum of acid groups derived from both the strong inorganic acid and the strong inorganic acid salt is at least 1 kg per 1 kg of the aqueous phase.
It is preferably 2.5 mol or more. If the concentration of the acid radicals derived from the strong inorganic acid and the strong inorganic acid salt is less than 2.5 mol per kg of the aqueous phase of the reaction system, it is difficult to obtain a practical yield of pinacolon, which is not preferred. In addition to water, the reaction can also be carried out in the presence of a diluent inert to the reaction, such as saturated hydrocarbons and ketones, such as methylbutane,
hexane, cyclohexane, butyl chloride, 1,
Examples include hydrophobic compounds such as 1,1-trichloroethane, 1,1,1,2-tetrachloroethane, carbon tetrachloride, and pinacolon. However, no particular benefit is provided by the use of diluents. The reaction temperature is preferably in the range of 40 to 200°C, particularly 60 to 150°C, and furthermore, in the latter stage of the reaction, at least
It is necessary to complete the reaction at a temperature of 80°C or higher. The reaction is usually carried out at a pressure of at least atmospheric pressure and not more than 30 kg/cm 2 , but this pressure is not critical, and the reaction can be carried out even under pressures exceeding this range if the above temperature conditions can be maintained. When the reaction is carried out at a temperature higher than the boiling point of the reaction mixture, it is appropriate that the reaction pressure is freely adjustable for the reaction mixture at the reaction temperature;
Pressurization with inert gas is not particularly necessary. The reaction method is as follows: (1) A strong inorganic acid aqueous solution or an aqueous solution containing an inorganic strong acid and an inorganic strong acid salt is maintained at a predetermined reaction temperature while stirring, and the general formula ()
A method of reacting while continuously or intermittently adding one or more compounds represented by the formula (2) to an aqueous solution of an inorganic strong acid or an aqueous solution containing a strong inorganic acid and a strong inorganic acid salt represented by the general formula () A method is used in which one or more compounds are mixed, kept at a predetermined temperature with stirring, and allowed to react. Generally, method (1) is preferred because it provides a higher yield of pinacolon. The method of the present invention can be carried out either continuously or batchwise. The reaction time naturally varies depending on the amount of raw materials used, the concentration and amount of the inorganic strong acid aqueous solution or the aqueous solution containing an inorganic strong acid and an inorganic strong acid salt, the reaction temperature, etc., but is usually 1 to 20 hours. Methods for obtaining pinacolon from the reaction mixture after the reaction include (a) separating the organic phase from the aqueous phase and then subjecting the organic phase to distillation as it is or after neutralizing if necessary; (b) reaction. After neutralizing the mixture,
Alternatively, a method may be used in which the organic phase is separated from the aqueous phase and subjected to distillation, or (c) a method in which the reaction mixture is directly subjected to distillation. If method (a) or (c) is used, it is possible to recycle all or part of the aqueous phase to the reaction system and reuse it, but it is difficult to efficiently separate and obtain pinacolon and operationally. From this point of view, method (a) is the most preferable. As the distillation method, steam distillation, normal pressure distillation, or vacuum distillation is used. In the present invention, the combined use of a strong inorganic acid salt not only has the effect of increasing the reaction yield or reducing the concentration and amount of the strong inorganic acid necessary to maintain the reaction yield, but also has the effect of separating the reaction mixture from the organic phase. This is advantageous in reducing the amount of organic matter that partitions into the aqueous phase during separation into the aqueous phase. Pinacolon obtained by the present invention is industrially useful as a solvent and as a synthetic intermediate for agricultural chemicals, rubber chemicals, etc. EXAMPLES Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples. In addition, the yield in the examples means the mol% of the produced pinacolon based on the starting material supplied to the reaction system, unless otherwise specified. Example 1 A 300 ml four-necked flask equipped with a stirrer, a reflux condenser, a thermometer, and a dropping funnel was charged with 109.5 g of 10% by weight hydrochloric acid (0.300 mol of hydrogen chloride) and 22.6 g (0.533 mol) of lithium chloride. Heat with stirring. Purity is determined when the liquid temperature reaches 100℃
40.5 g (0.310 mol) of 90.2% 2,3-dimethylbutane-1,3-diol (the rest being 3-methylpentane-1,3-diol) were introduced via the dropping funnel over a period of 4 hours. The reaction mixture refluxes as the raw materials are introduced, and the reflux temperature at the end of the raw material introduction is
It was 90.0℃. The reaction was worked up by refluxing for an additional 2 hours. The reflux temperature at this time (hereinafter referred to as the temperature at the end of the reaction) was 90.5°C. The reaction mixture was neutralized by gradually adding an equivalent amount of sodium hydroxide while stirring while cooling in an ice-water bath. Next, the organic phase was separated from the reaction mixture and analyzed by gas chromatography to determine the pinacolon yield. The results are shown in Table 1. Examples 2 and 3 Table 1 shows the amount of hydrochloric acid used without coexisting lithium chloride.
The reaction was carried out in the same manner as in Example 1 except that
The results in Table 1 were obtained by processing analysis. [Table] Example 4 Purity containing 7.7% of 3-methylpentane-1,3-diol as an impurity in the same equipment as Example 1
39.6 g (0.310 moles) of 92.3% 2,3-dimethylbutane-1,3-diol and 167.0 g (0.979 moles of hydrogen chloride) of 21.4 wt% hydrochloric acid were charged and heated under reflux for 4 hours with stirring. The reflux temperature at this time was 87.5-95.0°C. The reaction mixture was prepared in Example 1.
When processed and analyzed in the same manner as above, the yield of pinacolon was
It was 52.5%. Examples 5 and 6 Example 1 except that 2,3-dimethyl-3-hydroxybutyl acetate was used as the starting material and the amount of hydrochloric acid (HCl/raw material molar ratio) was 1.50.
The reaction and processing analysis was carried out in the same manner as in 2 and 2, and the results shown in Table 2 were obtained. [Table] [Table] Values based on the charged aqueous solution Examples 7 to 8 2,3-dimethyl-3 as the starting material
The reaction was carried out in the same manner as in Example 1 except that -chlorobutyl acetate and 2,3-dimethyl-2-butenyl acetate were used in the presence of magnesium chloride, and the results shown in Table 3 were obtained by treatment analysis. [Table] *Means the same as in Table 2 Examples 9 and 10 2,3-dimethylbutane-1,
86.7 mol% 3-diol diacetate and 2,3-
Dimethyl-3-hydroxybutyl acetate 13.3
The reactions were carried out in the same manner as in Examples 1 and 4, except that a mixture consisting of mol % was used, and the results shown in Table 4 were obtained. [Table] Examples 11-12 The reaction was carried out in the same manner as in Example 1 except that sulfuric acid was used as the inorganic strong acid and sodium hydrogen sulfate was used as the inorganic strong salt. The results shown in Table 5 were obtained. Reference Examples 1-2 In Example 11, sodium sulfate was not used together,
As an inorganic strong acid, the concentration is 10.0wt% and
A reaction was performed in the same manner as in Example 11 using a 20.5 wt % sulfuric acid aqueous solution, and the treatment and analysis were conducted. The results are also listed in Table 5. [Table] [Table] Examples 13 to 21 In a 300 ml four-necked flask equipped with a stirrer, reflux condenser, thermometer and dropping funnel, hydrochloric acid and optionally LiCl or LiCl as a salt of a strong inorganic acid were added.
Charged with MgCl 2 and heated with stirring. The liquid temperature
When the temperature reaches 100℃, the general formula () is used as the starting material.
0.310 mol of the compound shown is added from the dropping funnel to 4
introduced over time. The reaction mixture refluxed as the raw materials were introduced. After the introduction of the starting materials was completed, the reaction was completed by further refluxing for 2 hours (the reflux temperature at this time is referred to as the temperature at the end of the reaction). The resulting reaction mixture was neutralized by gradually adding an equivalent amount of sodium hydroxide while stirring while cooling in an ice-water bath. Next, the organic phase was separated from the reaction mixture and analyzed by gas chromatography to determine the pinacolon yield. The results are shown in Table 6. [Table] [Table]

Claims (1)

【特許請求の範囲】 1 下記一般式() 〔式()において、WおよびYは水素原子で
あり、XおよびZは同一もしくは異なりそれぞれ
OH,Cl,BrもしくはRCOO(但しRは水素原子
もしくは炭素数1〜3個のアルキル基である)を
表わすか、あるいはWおよびYの一方が水素原子
であり他方はXと一緒になつた単結合を形成し、
ZはOH,Cl,BrもしくはRCOO(但しRは上記
と同じである)を表わす〕で示される化合物を無
機強酸水溶液中で加熱することを特徴とするピナ
コロンの製造法。 2 反応系に少くとも部分的に可溶な無機強酸の
塩を共存させる特許請求の範囲第1項記載のピナ
コロンの製造法。 3 反応系に存在させる無機強酸および無機強酸
の量がそれらの酸根の合計である反応混合物1Kg
当り少くとも2.5モル以上である特許請求の範囲
第1項または第2項記載のピナコロンの製造法。
[Claims] 1. The following general formula () [In formula (), W and Y are hydrogen atoms, and X and Z are the same or different, respectively.
OH, Cl, Br or RCOO (where R is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms), or one of W and Y is a hydrogen atom and the other is a single form a bond,
A method for producing pinacolon, which comprises heating a compound represented by the following formula: Z represents OH, Cl, Br, or RCOO (wherein R is the same as above) in an aqueous inorganic acid solution. 2. The method for producing pinacolon according to claim 1, wherein at least a partially soluble salt of an inorganic strong acid is present in the reaction system. 3. 1 kg of a reaction mixture in which the amount of inorganic strong acid and the amount of inorganic strong acid present in the reaction system is the sum of their acid groups.
The method for producing pinacolon according to claim 1 or 2, wherein the amount is at least 2.5 moles or more.
JP10198578A 1978-05-15 1978-08-21 Preparation of pinacolone Granted JPS5528941A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP10198578A JPS5528941A (en) 1978-08-21 1978-08-21 Preparation of pinacolone
DE19792918521 DE2918521C3 (en) 1978-05-15 1979-05-08 Process for the production of pinacolone
NL7903751A NL185562C (en) 1978-05-15 1979-05-12 PROCESS FOR PREPARING PINACOLON.
US06/039,300 US4224252A (en) 1978-05-15 1979-05-15 Production of pinacolone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10198578A JPS5528941A (en) 1978-08-21 1978-08-21 Preparation of pinacolone

Publications (2)

Publication Number Publication Date
JPS5528941A JPS5528941A (en) 1980-02-29
JPS6116254B2 true JPS6116254B2 (en) 1986-04-28

Family

ID=14315129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10198578A Granted JPS5528941A (en) 1978-05-15 1978-08-21 Preparation of pinacolone

Country Status (1)

Country Link
JP (1) JPS5528941A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61274850A (en) * 1985-05-28 1986-12-05 Hitachi Ltd Method and device for setting original point of machining in machine tool
JPS6438241U (en) * 1987-06-09 1989-03-07

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61274850A (en) * 1985-05-28 1986-12-05 Hitachi Ltd Method and device for setting original point of machining in machine tool
JPS6438241U (en) * 1987-06-09 1989-03-07

Also Published As

Publication number Publication date
JPS5528941A (en) 1980-02-29

Similar Documents

Publication Publication Date Title
US4224252A (en) Production of pinacolone
JPS6116254B2 (en)
DD210055A5 (en) PROCESS FOR PREPARING N-PHOSPHONOMETHYLGLYCIN
DE60100106T2 (en) Process for the preparation of cyclopropenes
EP0147472A1 (en) 4-chloro-4-methyl-5-methylene-1,3-dioxolan-2-one
JPS5833847B2 (en) Pina Colon no Seihou
CA2766277C (en) Polyfluoroalkylphosphonic acid ester and process for producing the same
US4059634A (en) Production of pinacolone
EP0044558B1 (en) Method for the preparation of alkyne-1 compounds
JP2001322955A (en) Method for producing 2-bromo-3,3,3-trifluoropropene
US7772440B2 (en) Process for preparing phosponates having alcoholic hydroxyl group
EP0015577B1 (en) Process for producing 1,1,3,3-tetrafluoro-1,3-dihydro-isobenzofuran
JP3412246B2 (en) Method for producing 2-halogeno-1-alkene derivative
JPS6148490B2 (en)
JPS6410505B2 (en)
EP0081666A1 (en) Process for the preparation of pentafluorobenzyl alcohol
JP2763210B2 (en) Method for producing aliphatic carboxylic acid chloride
JPH0228583B2 (en)
JPS62223141A (en) Production of allyl ether
JPS6139932B2 (en)
JPH0723332B2 (en) Process for producing 1,3-dichloro-2-propanol
EP1310476B1 (en) Process for the synthesis of 2,3-Pentandione
JP2659667B2 (en) Method for producing cystamine
JPS6115854B2 (en)
JPH1112204A (en) 9,10-dichloroanthracene compounds and production of 9,10-dihaloanthracene compounds