JPS6148490B2 - - Google Patents

Info

Publication number
JPS6148490B2
JPS6148490B2 JP52116500A JP11650077A JPS6148490B2 JP S6148490 B2 JPS6148490 B2 JP S6148490B2 JP 52116500 A JP52116500 A JP 52116500A JP 11650077 A JP11650077 A JP 11650077A JP S6148490 B2 JPS6148490 B2 JP S6148490B2
Authority
JP
Japan
Prior art keywords
reaction
methyl
pinacolon
formaldehyde
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52116500A
Other languages
Japanese (ja)
Other versions
JPS5452022A (en
Inventor
Sunao Kyo
Hidetsugu Tanaka
Haruo Tsucha
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP11650077A priority Critical patent/JPS5452022A/en
Publication of JPS5452022A publication Critical patent/JPS5452022A/en
Publication of JPS6148490B2 publication Critical patent/JPS6148490B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は溶剤および合成中間体として有用なピ
ナコロンの製造方法に関する。 ピナコロン(第三級ブチルメチルケトン)がア
セトンを出発原料にピナコールを経て製造され得
ることは有機化学において“ピナコール−ピナコ
ロン転位反応”として古くから知られている(た
とえばOrg.Synth.、Coll、Vol.、 459〜463頁
参照)。すなわち塩化第二水銀の存在下にアセト
ンを金属マグネシウム(または金属アルミニウ
ム)と反応させてピナコールのマグネシウム(ま
たはアルミニウム)塩を生成せしめ、次にこれを
加水分解してピナコールを得たのち該ピナコール
を硫酸により脱水転位させるものであり、反応式
で示せば下記の如くである。 しかしながらこの方法は工業的大規模で実施す
ることが経済的にも社会環境的にも困難であると
いう大きな欠点を有する。すなわち出発原料とし
て用いられた高価な金属マグネシウムまたは金属
アルミニウムが無用な塩に変換すること、有毒な
塩化水銀が必要なうえそれが反応過程で大部分元
素状水銀に変換されるため完全な回収が困難なこ
と、大過剰のアセトンを用いる必要があるためそ
の回収・再利用に大量のエネルギーが消費される
ことおよび用いたアセトンが還元されて多量のイ
ソプロパノールを副生することなどである。特に
有害物質を使用しあるいは生成し、また多量の産
業廃棄物を生成することは昨今の環境問題とも関
連して工業的大規模での実施を困難ならしめる。 また別法として、2−メチル−2−ブテンとホ
ルムアルデヒドのプリンス反応により得られる
4・4・5−トリメチル−1・3−ジオキサンを
強酸の存在下に加水分解する方法も知られている
(ドイツ特許第714488号およびChem.Rev.51
514525(1952)参照)。この方法を反応式で示せ
ば次の如くである。 しかしながらこの方法も、ピナコロン収率が低
く、かつ多量の粘性副生物が生成し、さらにピナ
コロンと等モルのホルムアルデヒドが生成するた
めこのホルムアルデヒドをピナコロンから分離・
回収し再利用する必要が生じ、反応工程ならびに
製品純度の面で欠点となる。 本発明者等は、上記公知の方法が有する問題点
をもたない新規なピナコロンの製造方法について
鋭意研究を行なつた結果、本発明に至つた。 すなわち本発明によれば下記一般式() (但し、上記式中XはOH、ClまたはBrである)
で示される3−置換−2−メチルブタンとホルム
アルデヒドとを無機酸水溶液に添加することによ
つて反応させることにより、一段の反応で比較的
高い収率でピナコロンを得ることができる。本発
明方法は次式で示される。 (式中、Xは一般式()中のそれと同じ)。本発
明方法は、二重結合をもたずかつ反応条件下で比
較的に安定と考えられる上記一般式()で示さ
れる3−置換−2−メチルブタンおよびこれと等
モルのホルムアルデヒドから一段の反応によりピ
ナコロンを製造し得る点において公知の知見から
は予期されない。 本発明において原料として用いられる一般式
()で示される3−置換−2−メチルブタンは
具体的には、2−メチル−3−ヒドロキシブタ
ン、2−メチル−3−クロロブタンおよび2−メ
チル−3−ブロモブタンであり、好ましくは2−
メチル−3−ヒドロキシブタンおよび2−メチル
−3−クロロブタンである。これらの化合物は工
業的には、例えば2−メチル−3−ブテンに水、
塩化水素または臭化水素を付加させることによつ
て容易に得ることができる。 またホルムアルデヒドとしては工業的に入手可
能なすべてのものが本発明に適用でき、たとえば
安定剤としてメタノールを数%含んでいてもよい
5〜70重量%濃度の水溶液およびパラホルムアル
デヒドなどが用いられる。貯蔵および使用上の観
点からは特に15〜55重量%濃度の水溶液が好まし
い。 反応は水以外の本反応に不活性な希釈剤の存在
下で行うこともでき、かかる希釈剤としては飽和
炭化水素類、塩素化炭化水素類およびケトン類、
例えばメチルブタン、ヘキサン、シクロヘキサ
ン、塩化ブチル、1・1・1−トリクロルエタ
ン、1・1・1・2−テトラクロルエタン、四塩
化炭素、ピナコロンを挙げることができる。しか
し希釈剤の使用によつて特に利益がもたらされる
ことはない。 反応温度は50℃〜200℃、特に60℃〜150℃の範
囲が好ましい。また反応の後期において少くとも
80℃以上の温度で反応を仕上げる必要がある。反
応温度を保つうえで反応系を大気圧より高い圧力
に保つこともできる。従つて反応は好ましくは大
気圧ないし20Kg/cm2、より好適には大気圧ないし
10Kg/cm2の圧力下に実施される。 本発明の方法を実施する場合、3−置換−2−
メチルブタンに対するホルムアルデヒドの使用量
は通常0.5〜1.5倍モルであり、この範囲を越えて
も本発明は実施できるが反応速度の低下、反応の
選択性の低下およびピナコロンの品質低下等の不
利益をもたらす。特に上記使用割合を0.8〜1.1倍
モルにするのが好ましい。 使用され得る無機酸は、たとえば塩酸、臭化水
素酸、硫酸または燐酸であり、それらは二種以上
が混合使用されてもよい。特に塩酸が反応収率の
点で好ましい。反応混合物の水相中の酸濃度はホ
ルマリンによる希釈あるいは反応中における塩化
水素または臭化水素ガスの反応系外への逃散等に
より反応中に変化するが、塩酸または臭化水素酸
を用いる場合には該水相中の酸濃度を反応の全期
間中10〜35重量%、硫酸または燐酸を用いる場合
には該濃度を10〜60重量%に保つのが好ましい。 反応方法としては反応収率の面から無機酸水溶
液を撹拌しながら反応温度に保ち、これに一般式
()で示される3−置換−2−メチルブタンと
ホルムアルデヒドの混合物を徐々に添加しながら
反応させる方法が用いられる。本発明方法は連続
式、回分式の何れの方法によつても実施できる
が、不均一相の反応であるので激しい撹拌状態で
反応を行わねばならず、また同じ目的のため界面
活性剤の存在下で反応を行うこともできる。 また反応後の反応混合物よりピナコロンを取得
する方法として、(a)反応混合物をそのまま蒸留に
供する方法、(b)有機相を水相から分離したのち該
有機相をそのままあるいは必要に応じて中和した
のち蒸留に供する方法、(c)反応混合物を中和した
のち蒸留に供する方法等が用いられる。(a)、(b)の
操作を用いる場合は水相の全部または一部を反応
系に循環し再使用することも可能である。蒸留方
法としては水蒸気蒸留や通常の常圧または減圧蒸
留が用いられる。 次に本発明を実施例によつてさらに詳述する
が、本発明はこれらの実施例に限定されるもので
はない。 参考例 1 撹拌機、還流冷却管、滴下ロートおよび温度計
を装着した1の四頚フラスコに2−メチル−3
−ヒドロキシブタン88g(1.0モル)と30重量%
の塩酸400gを仕込み、撹拌しながら還流温度
(75〜76℃)に30分間保つたのち、市販の36重量
%ホルマリンから調製した30重量%濃度のホルマ
リン100gを6.5時間にわたつて滴下した。還流温
度はこの間に76℃から89.2℃にまで上昇した。滴
下終了後さらに3時間撹拌下に還流させたところ
反応混合物の温度は89.8℃になつた。反応混合物
を水酸化カルシウムで中和したのち、そのまま共
沸蒸留を行ない生成ピナコロンを水とともに液温
が107℃になるまで留出させた。この時の留出は
全体で107.7gであつた。留出液を水相と有機相
とに分液し得られた有機相78.7gをガスクロマト
グラフイーにて分析したところ、未反応の2−メ
チル−3−ヒドロキシブタンは残存せず反応率は
100%であり、ピナコロンの収率は62.2%であつ
た。 実施例 1 2−メチル−3−ヒドロキシブタン88gをあら
かじめ四頚フラスコ内に入れずに、30重量%濃度
のホルマリン100gに混合してホルマリンととも
に滴下した以外は参考例1と同様に反応を行なつ
た。なお滴下し始めた時の液温が94.5℃であり、
6.5時間後の滴下終了時の還流温度は88.0℃であ
つた。また滴下終了後3時間行なつた還流の還流
温度は88.0℃であつた。得られた反応液を参考例
1と同様に処理し、分析した結果ピナコロンの収
率は73.0%であつた。 参考例 2および3 撹拌機、還流冷却管、滴下ロートおよび温度計
を装着した1の四頚フラスコに2−メチル−3
−クロロブタンまたは2−メチル−3−ブロモブ
タンの1.0モルと30重量%の塩酸400gを仕込ん
だ。この混合液を撹拌しながら還流温度に30分間
保つたのち、30重量%濃度のホルマリン100gを
6.5時間にわたつて滴下し、滴下終了後もさらに
3時間撹拌下に加熱還流を続けた。得られた反応
混合物を水酸化カルシウムで中和したのち、その
まま共沸蒸留を行ない生成したピナコロンを水と
ともに留出させた。留出液を水相と有機相とに分
液し、得られた有機相をガスクロマトグラフイー
にて分析した結果を第1表に示す。
The present invention relates to a method for producing pinacolon, which is useful as a solvent and a synthetic intermediate. The fact that pinacolone (tertiary butyl methyl ketone) can be produced from acetone as a starting material through pinacol has long been known in organic chemistry as the "pinacol-pinacolone rearrangement reaction" (for example, Org.Synth., Coll., Vol. ., 1 pp. 459-463). That is, acetone is reacted with metallic magnesium (or metallic aluminum) in the presence of mercuric chloride to produce a magnesium (or aluminum) salt of pinacol, which is then hydrolyzed to obtain pinacol. The dehydration rearrangement is carried out using sulfuric acid, and the reaction formula is as follows. However, this method has a major drawback in that it is economically and socially difficult to implement on a large scale. In other words, the expensive metal magnesium or metal aluminum used as a starting material is converted into useless salts, and toxic mercury chloride is required, and most of it is converted to elemental mercury during the reaction process, so complete recovery is impossible. There are several difficulties, such as the need to use a large excess of acetone, which consumes a large amount of energy for recovery and reuse, and the acetone used is reduced to produce a large amount of isopropanol as a by-product. In particular, the use or production of hazardous substances and the production of large amounts of industrial waste are related to recent environmental problems, making it difficult to implement on an industrial scale. Another known method is to hydrolyze 4,4,5-trimethyl-1,3-dioxane obtained by the Prins reaction of 2-methyl-2-butene and formaldehyde in the presence of a strong acid (Germany). Patent No. 714488 and Chem.Rev. 51
514525 (1952)). The reaction formula for this method is as follows. However, this method also has a low yield of pinacolon, produces a large amount of viscous byproducts, and also produces equimolar formaldehyde with pinacolon, so formaldehyde must be separated from pinacolon.
This necessitates recovery and reuse, which is a drawback in terms of the reaction process and product purity. The present inventors have conducted intensive research on a new method for producing pinacolon that does not have the problems of the above-mentioned known methods, and have arrived at the present invention. That is, according to the present invention, the following general formula () (However, in the above formula, X is OH, Cl or Br)
By reacting 3-substituted-2-methylbutane represented by the formula with formaldehyde by adding it to an aqueous inorganic acid solution, pinacolon can be obtained in a relatively high yield in a single reaction. The method of the present invention is expressed by the following formula. (In the formula, X is the same as that in the general formula ()). The method of the present invention involves a one-step reaction using 3-substituted-2-methylbutane represented by the above general formula (), which does not have a double bond and is considered to be relatively stable under the reaction conditions, and formaldehyde in an equimolar amount. It is unexpected from known knowledge that pinacolon can be produced by Specifically, the 3-substituted-2-methylbutane represented by the general formula () used as a raw material in the present invention includes 2-methyl-3-hydroxybutane, 2-methyl-3-chlorobutane and 2-methyl-3- Bromobutane, preferably 2-
Methyl-3-hydroxybutane and 2-methyl-3-chlorobutane. These compounds are industrially produced, for example, by mixing 2-methyl-3-butene with water,
It can be easily obtained by adding hydrogen chloride or hydrogen bromide. Further, as formaldehyde, all commercially available formaldehyde can be applied to the present invention, and for example, an aqueous solution having a concentration of 5 to 70% by weight, which may contain several percent of methanol as a stabilizer, and paraformaldehyde are used. From the viewpoint of storage and use, an aqueous solution having a concentration of 15 to 55% by weight is particularly preferred. The reaction can also be carried out in the presence of a diluent other than water that is inert to the reaction, and such diluents include saturated hydrocarbons, chlorinated hydrocarbons, ketones,
Examples include methyl butane, hexane, cyclohexane, butyl chloride, 1,1,1-trichloroethane, 1,1,1,2-tetrachloroethane, carbon tetrachloride, and pinacolon. However, no particular benefit is provided by the use of diluents. The reaction temperature is preferably in the range of 50°C to 200°C, particularly 60°C to 150°C. Also, in the later stages of the reaction, at least
It is necessary to complete the reaction at a temperature of 80°C or higher. In order to maintain the reaction temperature, the reaction system can also be maintained at a pressure higher than atmospheric pressure. Therefore, the reaction is preferably carried out at atmospheric pressure to 20 Kg/cm 2 , more preferably at atmospheric pressure to 20 Kg/cm 2 .
Performed under a pressure of 10Kg/cm 2 . When carrying out the method of the invention, 3-substituted-2-
The amount of formaldehyde used is usually 0.5 to 1.5 times the molar amount of methylbutane, and although the present invention can be carried out even if the amount exceeds this range, disadvantages such as a decrease in reaction rate, a decrease in reaction selectivity, and a decrease in the quality of pinacolon occur. . In particular, it is preferable that the above-mentioned usage ratio is 0.8 to 1.1 times the mole. Inorganic acids that can be used are, for example, hydrochloric acid, hydrobromic acid, sulfuric acid or phosphoric acid, and two or more of them may be used in combination. Hydrochloric acid is particularly preferred in terms of reaction yield. The acid concentration in the aqueous phase of the reaction mixture changes during the reaction due to dilution with formalin or escape of hydrogen chloride or hydrogen bromide gas to the outside of the reaction system during the reaction, but when using hydrochloric acid or hydrobromic acid, The acid concentration in the aqueous phase is preferably maintained at 10 to 35% by weight during the entire reaction period, and when sulfuric acid or phosphoric acid is used, the concentration is preferably maintained at 10 to 60% by weight. In terms of reaction yield, the reaction method is to keep the inorganic acid aqueous solution at the reaction temperature while stirring, and to react while gradually adding a mixture of 3-substituted-2-methylbutane and formaldehyde represented by the general formula (). method is used. The method of the present invention can be carried out by either a continuous method or a batch method, but since it is a heterogeneous phase reaction, the reaction must be carried out under vigorous stirring, and for the same purpose, a surfactant is present. The reaction can also be carried out below. In addition, methods for obtaining pinacolon from the reaction mixture after the reaction include (a) a method in which the reaction mixture is subjected to distillation as it is, and (b) a method in which the organic phase is separated from the aqueous phase and then the organic phase is left as is or neutralized as necessary. (c) A method in which the reaction mixture is neutralized and then subjected to distillation, etc. are used. When using operations (a) and (b), it is also possible to circulate all or part of the aqueous phase to the reaction system and reuse it. As the distillation method, steam distillation, normal pressure distillation, or vacuum distillation is used. Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples. Reference Example 1 2-Methyl-3 was placed in a four-necked flask equipped with a stirrer, reflux condenser, dropping funnel, and thermometer.
- 88 g (1.0 mol) of hydroxybutane and 30% by weight
After 400 g of hydrochloric acid was charged and kept at reflux temperature (75 to 76° C.) for 30 minutes with stirring, 100 g of 30% by weight formalin prepared from commercially available 36% by weight formalin was added dropwise over 6.5 hours. The reflux temperature increased from 76°C to 89.2°C during this time. After the dropwise addition was completed, the reaction mixture was refluxed for another 3 hours with stirring, and the temperature of the reaction mixture reached 89.8°C. After the reaction mixture was neutralized with calcium hydroxide, azeotropic distillation was directly carried out to distill out the produced pinacolone together with water until the liquid temperature reached 107°C. The total amount of distillate at this time was 107.7 g. When the distillate was separated into an aqueous phase and an organic phase and 78.7 g of the resulting organic phase was analyzed by gas chromatography, it was found that no unreacted 2-methyl-3-hydroxybutane remained and the reaction rate was low.
The yield of pinacolon was 62.2%. Example 1 The reaction was carried out in the same manner as in Reference Example 1, except that 88 g of 2-methyl-3-hydroxybutane was not placed in a four-necked flask in advance, but was mixed with 100 g of formalin at a concentration of 30% by weight and added dropwise together with formalin. Ta. The temperature of the liquid when it started dropping was 94.5℃,
The reflux temperature at the end of the dropwise addition after 6.5 hours was 88.0°C. Further, the reflux temperature during reflux for 3 hours after the completion of the dropwise addition was 88.0°C. The resulting reaction solution was treated in the same manner as in Reference Example 1, and as a result of analysis, the yield of pinacolon was 73.0%. Reference Examples 2 and 3 2-Methyl-3 was placed in a four-necked flask equipped with a stirrer, reflux condenser, dropping funnel, and thermometer.
-1.0 mol of chlorobutane or 2-methyl-3-bromobutane and 400 g of 30% by weight hydrochloric acid were charged. After stirring this mixture and keeping it at reflux temperature for 30 minutes, 100 g of formalin with a concentration of 30% by weight was added.
The mixture was added dropwise over 6.5 hours, and even after the dropwise addition was completed, heating and refluxing was continued with stirring for an additional 3 hours. The resulting reaction mixture was neutralized with calcium hydroxide, and then subjected to azeotropic distillation to distill out the produced pinacolone together with water. The distillate was separated into an aqueous phase and an organic phase, and the resulting organic phase was analyzed by gas chromatography. The results are shown in Table 1.

【表】 実施例 2および3 撹拌機、還流冷却管、滴下ロートおよび温度計
を装着した1の四頚フラスコに30重量%の塩酸
400gを仕込んだ。この塩酸を撹拌下に加熱還流
しながら、2−メチル−3−クロロブタンまたは
2−メチル−3−ブロモブタンの1.0モルと30重
量%濃度のホルマリン100gとの混合液を6.5時間
にわたつて滴下し、滴下終了後もさらに3時間撹
拌下に加熱還流を続けた。得られた反応混合物を
水酸化カルシウムで中和したのち、そのまま共沸
蒸留を行ない生成したピナコロンを水とともに留
出させた。留出液を水相と有機相とに分液し、得
られた有機相をガスクロマトグラフイーにて分析
した結果を第2表に示す。
[Table] Examples 2 and 3 30% by weight hydrochloric acid was placed in a four-necked flask equipped with a stirrer, reflux condenser, dropping funnel, and thermometer.
I prepared 400g. While stirring and heating the hydrochloric acid to reflux, a mixture of 1.0 mol of 2-methyl-3-chlorobutane or 2-methyl-3-bromobutane and 100 g of formalin at a concentration of 30% by weight was added dropwise over 6.5 hours. After the dropwise addition was completed, heating and refluxing was continued with stirring for another 3 hours. The resulting reaction mixture was neutralized with calcium hydroxide and then subjected to azeotropic distillation to distill out the produced pinacolon together with water. The distillate was separated into an aqueous phase and an organic phase, and the resulting organic phase was analyzed by gas chromatography. The results are shown in Table 2.

【表】【table】

Claims (1)

【特許請求の範囲】 1 一般式 (但し、XはOH、ClまたはBrである)で示され
る3−置換−2−メチルブタンとホルムアルデヒ
ドとを無機酸水溶液に添加することによつて反応
させることを特徴とするピナコロンの製造方法。
[Claims] 1. General formula A method for producing pinacolon, which comprises reacting 3-substituted-2-methylbutane represented by (X is OH, Cl or Br) with formaldehyde by adding it to an aqueous inorganic acid solution.
JP11650077A 1977-09-27 1977-09-27 Preparation of pinacolone Granted JPS5452022A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11650077A JPS5452022A (en) 1977-09-27 1977-09-27 Preparation of pinacolone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11650077A JPS5452022A (en) 1977-09-27 1977-09-27 Preparation of pinacolone

Publications (2)

Publication Number Publication Date
JPS5452022A JPS5452022A (en) 1979-04-24
JPS6148490B2 true JPS6148490B2 (en) 1986-10-24

Family

ID=14688661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11650077A Granted JPS5452022A (en) 1977-09-27 1977-09-27 Preparation of pinacolone

Country Status (1)

Country Link
JP (1) JPS5452022A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2557354Y2 (en) * 1991-02-28 1997-12-10 ティーディーケイ株式会社 Storage case for tape cassette

Also Published As

Publication number Publication date
JPS5452022A (en) 1979-04-24

Similar Documents

Publication Publication Date Title
US7737296B2 (en) Method for producing 2-hydroxyester compound
JPH05112586A (en) Production of n-acylaminomethylphosphonic acid
EP0563033A1 (en) Process for preparing 3-trifluoromethyl benzyl chloride.
US4224252A (en) Production of pinacolone
US5633413A (en) Continuous process for the production of vinylidene chloride telomers
JPS6148490B2 (en)
JPS5833847B2 (en) Pina Colon no Seihou
JP4102188B2 (en) Method for producing fluoromethylhexafluoroisopropyl ether
JPS6312048B2 (en)
JP6643735B2 (en) Practical method for producing fluorine-containing α-ketocarboxylic acid esters
JPS6410505B2 (en)
US6296788B1 (en) Process for the preparation of Grignard reagents and novel Grignard reagents
US4059634A (en) Production of pinacolone
US4152530A (en) Process for preparing allylic alcohols from allylic halides
JPH0560817B2 (en)
US3492356A (en) Method of recovering aldehydes and ketones
JP2001322955A (en) Method for producing 2-bromo-3,3,3-trifluoropropene
JPS6116254B2 (en)
JPS6115853B2 (en)
US4199527A (en) Removal of ketene impurities in the preparation of alpha-cyano-aryloxybenzyl alcohols
EP0417720B1 (en) Process for preparing 2-chloro-4-fluorophenol
JPS6115854B2 (en)
US6720456B2 (en) Process for the preparation of 2,3-pentanedione
JPH0723332B2 (en) Process for producing 1,3-dichloro-2-propanol
JPH0228583B2 (en)