JPS6410505B2 - - Google Patents

Info

Publication number
JPS6410505B2
JPS6410505B2 JP52145420A JP14542077A JPS6410505B2 JP S6410505 B2 JPS6410505 B2 JP S6410505B2 JP 52145420 A JP52145420 A JP 52145420A JP 14542077 A JP14542077 A JP 14542077A JP S6410505 B2 JPS6410505 B2 JP S6410505B2
Authority
JP
Japan
Prior art keywords
butene
methyl
reaction
acid
pinacolon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52145420A
Other languages
Japanese (ja)
Other versions
JPS5479217A (en
Inventor
Sunao Kyo
Hidetsugu Tanaka
Haruo Tsucha
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP14542077A priority Critical patent/JPS5479217A/en
Publication of JPS5479217A publication Critical patent/JPS5479217A/en
Publication of JPS6410505B2 publication Critical patent/JPS6410505B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 本発明はピナコロンの製法に関する。[Detailed description of the invention] The present invention relates to a method for producing pinacolon.

ピナコロン(第三級ブチルメチルケトン)をア
セトンからピナコールを経て製造し得ることは有
機化学において“ピナコール−ピナコロン転位反
応”として古くから知られている(たとえば
Org.Synth.、Coll.Vol.、 459〜463頁参照)。
これは塩化第二水銀の存在下にアセトンを金属マ
グネシウム(または金属アルミニウム)と反応さ
せてピナコールのマグネシウム(またはアルミニ
ウム)塩を生成せしめ、次にこれを加水分解して
ピナコールを得たのち該ピナコールを硫酸により
脱水転位させるものであり、反応式で示せば下記
の如くである。
The fact that pinacolone (tertiary butyl methyl ketone) can be produced from acetone via pinacol has long been known in organic chemistry as the "pinacol-pinacolone rearrangement reaction" (e.g.
Org.Synth., Coll.Vol., 1 pp. 459-463).
This involves reacting acetone with metallic magnesium (or metallic aluminum) in the presence of mercuric chloride to form a magnesium (or aluminum) salt of pinacol, which is then hydrolyzed to obtain pinacol. is dehydrated and rearranged with sulfuric acid, and the reaction formula is as follows.

しかしながらこの方法は出発原料として用いら
れた高価な金属マグネシウムまたは金属アルミニ
ウムが無用な塩に変換すること、有毒な塩化水銀
が必要なうえ、それが反応過程で大部分元素状水
銀に変換されるため完全な回収が困難なこと、大
過剰のアセトンを用いる必要があるためその回
収、再利用に大量のエネルギーが消費されること
および用いたアセトンが還元されて多量のイソプ
ロパノールを副生することなどの欠点を有する。
特に有害物質を使用しあるいは生成し、また多量
の産業廃棄物を生成することは昨今の環境問題と
も関連してこの方法の工業的規模での実施を困難
ならしめる。
However, this method converts the expensive metal magnesium or metal aluminum used as a starting material into useless salts, requires toxic mercury chloride, and most of it is converted to elemental mercury during the reaction process. Complete recovery is difficult, it is necessary to use a large excess of acetone, which consumes a large amount of energy for recovery and reuse, and the acetone used is reduced and a large amount of isopropanol is produced as a by-product. It has its drawbacks.
In particular, the use or production of hazardous substances and the production of large amounts of industrial waste are linked to recent environmental issues, making it difficult to implement this method on an industrial scale.

また別法として、2−メチル−2−ブテンとホ
ルムアルデヒドのプリンス反応により得られる
4,4,5−トリメチル−1,3−ジオキサンを
強酸の存在下に加水分解する方法も知られている
(ドイツ特許第714488号参照)。この方法を反応式
で示せば次の如くである。
Another known method is to hydrolyze 4,4,5-trimethyl-1,3-dioxane obtained by the Prins reaction of 2-methyl-2-butene and formaldehyde in the presence of a strong acid (Germany). (See Patent No. 714488). The reaction formula for this method is as follows.

しかしながらこの方法も、ピナコロン収率が低
く、かつ多量の粘性副生物を生成し、さらにピナ
コロンと等モルのホルムアルデヒドが生成するた
めこのホルムアルデヒドをピナコロンから分離・
回収し再利用する必要が生じ、これらのことが反
応工程ならびに製品純度の面で欠点となる。
However, this method also has a low yield of pinacolon, produces a large amount of viscous byproducts, and also produces equimolar formaldehyde with pinacolon, so formaldehyde must be separated from pinacolon.
This creates a need for recovery and reuse, which presents drawbacks in terms of reaction process and product purity.

本発明者等は前記の公知方法が有する上述のよ
うな問題点を解決すべく鋭意検討した結果、本発
明に到達した。すなわち本発明者等は3−メチル
−1−ブテンを無機酸水溶液の存在下に80℃以上
の温度でホルムアルデヒドと反応させることによ
り容易にかつ収率よくピナコロンが得られること
を見出した。
The inventors of the present invention have arrived at the present invention as a result of intensive studies aimed at solving the above-mentioned problems of the known methods. That is, the present inventors have discovered that pinacolon can be easily obtained in good yield by reacting 3-methyl-1-butene with formaldehyde in the presence of an inorganic acid aqueous solution at a temperature of 80 DEG C. or higher.

本発明方法の原料である3−メチル−1−ブテ
ンはイソアミルアルコールの脱水反応により、あ
るいはイソプレンの部分水素化などの方法により
容易に得られる。また3−メチル−1−ブテンを
他のメチルブテン類、すなわち2−メチル−1−
ブテン、2−メチル−2−ブテンと共に反応系に
供してもよく、さらにはメチルブタンや少量のイ
ソプレンと共に反応系に供してもよい。特に2−
メチル−1−ブテンおよび2−メチル−2−ブテ
ンは、3−メチル−1−ブテンを製造する際に併
産されやすく、しかもこれらを無機酸水溶液中で
ホルムアルデヒドと反応させるとその反応条件に
よりピナコロンが得られることが知られている
(特開昭51−82212号公報参照)。本発明方法の反
応条件下では2−メチル−1−ブテンおよび2−
メチル−2−ブテンは3−メチル−1−ブテンと
同様にピナコロンに変る。従つて2−メチル−1
−ブテンおよび/または2−メチル−2−ブテン
と3−メチル−1−ブテンとの混合液より、2−
メチル−1−ブテンおよび/または2−メチル−
2−ブテンを分離除去する必要は全くない。
3-Methyl-1-butene, which is a raw material for the method of the present invention, can be easily obtained by dehydration of isoamyl alcohol or by partial hydrogenation of isoprene. Also, 3-methyl-1-butene can be converted into other methylbutenes, namely 2-methyl-1-butene.
It may be used in the reaction system together with butene and 2-methyl-2-butene, or it may be used together with methylbutane or a small amount of isoprene. Especially 2-
Methyl-1-butene and 2-methyl-2-butene are likely to be co-produced when producing 3-methyl-1-butene, and when they are reacted with formaldehyde in an aqueous inorganic acid solution, pinacolone is produced depending on the reaction conditions. It is known that the following can be obtained (see Japanese Patent Application Laid-open No. 82212/1983). Under the reaction conditions of the process of the invention, 2-methyl-1-butene and 2-
Methyl-2-butene, like 3-methyl-1-butene, is converted to pinacolon. Therefore 2-methyl-1
-butene and/or a mixture of 2-methyl-2-butene and 3-methyl-1-butene, 2-
Methyl-1-butene and/or 2-methyl-
There is no need to separate out the 2-butene.

またホルムアルデヒドとしては工業的に入手可
能なすべてのものが本発明に適用でき、たとえば
安定剤としてメタノールを数%含んでいてもよい
5〜70重量%濃度の水溶液およびパラホルムアル
デヒドなどが用いられる。貯蔵および使用上の観
点からは特に15〜55重量%濃度の水溶液が好まし
い。
Further, as formaldehyde, all commercially available formaldehyde can be applied to the present invention, and for example, an aqueous solution having a concentration of 5 to 70% by weight, which may contain several percent of methanol as a stabilizer, and paraformaldehyde are used. From the viewpoint of storage and use, an aqueous solution having a concentration of 15 to 55% by weight is particularly preferred.

3−メチル−1−ブテンに対するホルムアルデ
ヒドの使用量は通常0.5〜1.5倍モルであり、この
範囲を越えても本発明は実施できるが、3−メチ
ル−1−ブテンおよびホルムアルデヒドの損失な
らびに製品ピナコロンの品質低下等の不利益をも
たらす。特に上記使用割合を0.8〜1.1倍モルにす
るのが好ましい。2−メチル−1−ブテンおよ
び/または2−メチル−2−ブテンを含む3−メ
チル−1−ブテンが用いられる場合には、2−メ
チル−1−ブテンおよび2−メチル−2−ブテン
の含有量に応じてホルムアルデヒドの量をふやす
必要がある。
The amount of formaldehyde used is usually 0.5 to 1.5 times the molar amount relative to 3-methyl-1-butene, and although the present invention can be carried out even if the amount exceeds this range, the loss of 3-methyl-1-butene and formaldehyde and the product pinacolone may be reduced. This results in disadvantages such as quality deterioration. In particular, it is preferable that the above-mentioned usage ratio is 0.8 to 1.1 times the mole. When 2-methyl-1-butene and/or 3-methyl-1-butene containing 2-methyl-2-butene is used, the content of 2-methyl-1-butene and 2-methyl-2-butene It is necessary to increase the amount of formaldehyde depending on the amount.

本発明に用いられる無機酸は塩酸、臭化水素
酸、硫酸、燐酸または過塩素酸であり、それらは
二種以上が混合使用されてもよい。特に塩酸およ
び硫酸が好ましい。反応混合物の水相中の酸濃度
はホルムアルデヒド水溶液による希釈、あるいは
反応中における塩化水素ガスまたは臭化水素ガス
の反応系外への逃散等により反応期間中に変化す
るが、塩酸または臭化水素酸が用いられる場合に
は反応混合物の水相中の酸濃度が反応の全期間中
5重量%以上に、硫酸、燐酸または酸塩素酸が用
いられる場合には上記濃度が10重量%以上に保た
れているならば、それぞれの無機酸の種類に応じ
て満足できるピナコロン収率を得ることができ
る。またこれら無機酸水溶液の酸濃度は該酸が塩
酸または臭化水素酸の場合には35重量%以下、硫
酸、燐酸または過塩素酸の場合には60重量%以下
が好ましい。3−メチル−1−ブテンに対する酸
の使用量は1〜10倍モル、特に2〜5倍モルが好
適である。2−メチル−1−ブテンおよび/また
は2−メチル−2−ブテンを含む3−メチル−1
−ブテンが用いられる場合は、2−メチル−1−
ブテンおよび2−メチル−2−ブテンの含有量に
応じて酸の使用量をふやす方が好ましい。用いら
れた酸は反応後有機層から分離され、必要に応じ
て濃縮その他の方法で前記濃度範囲に調整され循
環再使用される。
The inorganic acid used in the present invention is hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid or perchloric acid, and two or more of them may be used in combination. Particularly preferred are hydrochloric acid and sulfuric acid. The acid concentration in the aqueous phase of the reaction mixture changes during the reaction period due to dilution with an aqueous formaldehyde solution or escape of hydrogen chloride gas or hydrogen bromide gas to the outside of the reaction system during the reaction, but hydrochloric acid or hydrobromic acid When sulfuric acid, phosphoric acid or acid-chloric acid is used, the acid concentration in the aqueous phase of the reaction mixture is maintained at 5% by weight or more during the entire reaction period, and when sulfuric acid, phosphoric acid or acid-chloric acid is used, the above concentration is maintained at 10% by weight or more. If it is, a satisfactory yield of pinacolon can be obtained depending on the type of each inorganic acid. The acid concentration of these inorganic acid aqueous solutions is preferably 35% by weight or less when the acid is hydrochloric acid or hydrobromic acid, and 60% by weight or less when the acid is sulfuric acid, phosphoric acid or perchloric acid. The amount of acid to be used is preferably 1 to 10 times, particularly 2 to 5 times, by mole relative to 3-methyl-1-butene. 2-methyl-1-butene and/or 3-methyl-1 containing 2-methyl-2-butene
- if butene is used, 2-methyl-1-
It is preferable to increase the amount of acid used depending on the content of butene and 2-methyl-2-butene. The used acid is separated from the organic layer after the reaction, adjusted to the above concentration range by concentration or other methods as necessary, and recycled and reused.

反応は水以外の本反応に不活性な希釈剤の存在
下で行うこともでき、かかる希釈剤としては飽和
炭化水素類、塩素化炭化水素類およびケトン類、
例えばメチルブタン、ヘキサン、シクロヘキサ
ン、塩化ブチル、1,1,1−トリクロルエタ
ン、1,1,1,2−テトラクロルエタン、四塩
化炭素、ピナコロン等の疎水性の化合物を挙げる
ことができる。しかし希釈剤の使用によつて特に
利益がもたらされることはない。
The reaction can also be carried out in the presence of a diluent other than water that is inert to the reaction, and such diluents include saturated hydrocarbons, chlorinated hydrocarbons, ketones,
Examples include hydrophobic compounds such as methyl butane, hexane, cyclohexane, butyl chloride, 1,1,1-trichloroethane, 1,1,1,2-tetrachloroethane, carbon tetrachloride, pinacolon, and the like. However, no particular benefit is provided by the use of diluents.

反応温度は80〜200℃であることが必要であり、
特に90〜150℃の範囲が好ましい。反応温度が80
℃に達しない場合はピナコロンは殆んど得られ
ず、200℃を越える場合には副反応が顕著となる。
反応は大気圧以上の圧力、通常大気圧〜30Kg/cm2
の間の圧力下で行われる。反応混合物の沸点以上
の反応温度を用いる場合、反応圧力は該反応温度
に於ける該反応混合物の自圧が適当であり、不活
性ガスによる加圧は特に必要でない。
The reaction temperature needs to be 80-200℃,
Particularly preferred is a temperature range of 90 to 150°C. reaction temperature is 80
If the temperature is lower than 200°C, hardly any pinacolon will be obtained, and if the temperature exceeds 200°C, side reactions will become noticeable.
The reaction takes place at a pressure above atmospheric pressure, usually atmospheric pressure ~ 30Kg/cm 2
It is carried out under pressure between . When a reaction temperature higher than the boiling point of the reaction mixture is used, the appropriate reaction pressure is the autogenous pressure of the reaction mixture at the reaction temperature, and pressurization with an inert gas is not particularly necessary.

本発明の反応を実施する方法としては、連続式
または回分式のいずれも可能であるが、反応に用
いられるホルムアルデヒドは単独でまたは3−メ
チル−1−ブテンの一部とともに、無機強酸水溶
液と3−メチル−1−ブテンの全部または一部と
の混合液に激しい撹拌下80〜200℃の温度におい
て徐々に添加されることが好ましい。換言すれ
ば、反応系内のホルムアルデヒド量が他の反応剤
に対して相対的に乏しい条件下で反応させるのが
好ましい。また本発明方法における反応は不均一
相の反応であるので激しい撹拌状態で反応を行わ
ねばならず、また同じ目的のため界面活性剤の存
在下で反応を行うこともできる。反応時間は通常
1〜20時間である。
The reaction of the present invention can be carried out either continuously or batchwise, but the formaldehyde used in the reaction is used alone or together with a part of 3-methyl-1-butene in an aqueous solution of a strong inorganic acid. - It is preferably added slowly to the mixture with all or part of methyl-1-butene at a temperature of 80 to 200° C. under vigorous stirring. In other words, it is preferable to carry out the reaction under conditions where the amount of formaldehyde in the reaction system is relatively poor compared to other reactants. Furthermore, since the reaction in the method of the present invention is a heterogeneous phase reaction, the reaction must be carried out under vigorous stirring, and the reaction can also be carried out in the presence of a surfactant for the same purpose. The reaction time is usually 1 to 20 hours.

反応後の反応混合物よりピナコロンを取得する
方法としては、(1)有機相を水相から分離したのち
該有機相をそのまま、あるいは必要に応じて中和
したのち、蒸留に供する方法、(2)反応混合物を中
和したのちそのまま、あるいは有機相のみを蒸留
に供する方法、(3)反応混合物をそのまま蒸留に供
する方法等が用いられる。生成ピナコロンを効率
よく取得するためには、(1)、(2)の方法が好まし
い。蒸留方法としては水蒸気蒸留や通常の常圧ま
たは減圧蒸留が用いられる。
Methods for obtaining pinacolon from the reaction mixture after the reaction include (1) a method in which the organic phase is separated from the aqueous phase and the organic phase is subjected to distillation as is or after neutralization if necessary; (2) A method in which the reaction mixture is neutralized and then subjected to distillation as it is or only the organic phase is subjected to distillation, and (3) a method in which the reaction mixture is subjected to distillation as it is are used. In order to efficiently obtain produced pinacolon, methods (1) and (2) are preferred. As the distillation method, steam distillation, normal pressure distillation, or vacuum distillation is used.

本発明により得られるピナコロンは溶剤とし
て、また農薬やゴム薬品等の合成中間体として工
業上有用である。
Pinacolon obtained by the present invention is industrially useful as a solvent and as a synthetic intermediate for agricultural chemicals, rubber chemicals, etc.

次に本発明を実施例によりさらに詳しく説明す
るが、本発明はこれらの実施例に限定されるもの
ではない。なお実施例中、%は特にことわりがな
い限り重量%を意味する。
EXAMPLES Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples. In the examples, % means weight % unless otherwise specified.

実施例 1 窒素ガスで置換したガラスライニング耐圧反応
器に、3−メチル−1−ブテン93.0%、2−メチ
ル−1−ブテン4.7%、イソプレン0.2%およびメ
チルブタン2.1%からなるメチルブテン類108gと
34%の塩酸500gを仕込み、撹拌しながら加熱し
た。内温が100℃に到達してから30分後に34.6%
濃度のホルマリン135gを耐圧フイードポンプに
より4時間にわたつて導入した。この間に反応器
内の圧力は5Kg/cm2Gから3Kg/cm2Gとなつた。
さらに1時間撹拌したのち放冷し、水酸化カルシ
ウムにより中和した。有機相を分離し、ガスクロ
マトグラフイーにより分析したところ、ピナコロ
ンの収率は3−メチル−1−ブテンと2−メチル
−1−ブテンの合計に対し70.5モル%であつた。
Example 1 108 g of methylbutenes consisting of 93.0% 3-methyl-1-butene, 4.7% 2-methyl-1-butene, 0.2% isoprene, and 2.1% methylbutane were placed in a glass-lined pressure reactor purged with nitrogen gas.
500 g of 34% hydrochloric acid was charged and heated while stirring. 34.6% 30 minutes after the internal temperature reaches 100℃
135 g of concentrated formalin was introduced over a period of 4 hours using a pressure-resistant feed pump. During this time, the pressure inside the reactor went from 5Kg/cm 2 G to 3Kg/cm 2 G.
After further stirring for 1 hour, the mixture was allowed to cool and neutralized with calcium hydroxide. The organic phase was separated and analyzed by gas chromatography, and the yield of pinacolon was 70.5 mol% based on the total of 3-methyl-1-butene and 2-methyl-1-butene.

実施例 2 メチルブテン類として、3−メチル−1−ブテ
ン47.8%、2−メチル−1−ブテン43.8%、2−
メチル−2−ブテン1.7%、メチルブタン3.2%お
よびイソプレン3.4%の組成物113gを用い、34.6
%濃度のホルマリン143gを使用した以外は実施
例1と全く同様にして反応を行つた結果、ピナコ
ロン収率は使用した3−メチル−1−ブテン、2
−メチル−1−ブテンおよび2−メチル−2−ブ
テンの合計に対し、71.0モル%であつた。
Example 2 As methylbutenes, 47.8% of 3-methyl-1-butene, 43.8% of 2-methyl-1-butene, 2-
Using 113 g of a composition of 1.7% methyl-2-butene, 3.2% methylbutane and 3.4% isoprene, 34.6
The reaction was carried out in exactly the same manner as in Example 1 except that 143 g of formalin with a concentration of
The amount was 71.0 mol% based on the total of -methyl-1-butene and 2-methyl-2-butene.

実施例 3 実施例2と同じ原料を用い、反応温度を150℃、
ホルマリン導入時間を2時間、導入終了後30分撹
拌した以外は実施例1と同様にして反応を行つた
結果、ピナコロン収率は70.0モル%であつた。
Example 3 Using the same raw materials as in Example 2, the reaction temperature was 150°C.
The reaction was carried out in the same manner as in Example 1, except that formalin was introduced for 2 hours and stirred for 30 minutes after completion of the introduction. As a result, the yield of pinacolon was 70.0 mol%.

実施例 4 内容積1のガラスライニング耐圧反応器に40
重量%の硫酸670gを仕込み、撹拌下140℃に保つ
て3−メチル−1−ブテン25.3%、2−メチル−
1−ブテン28.3%、2−メチル−2−ブテン44.3
%、メチルブタン2.1%からなる混合アミレン
71.5gと濃度33.2%のホルマリン94.8gを同時に
それぞれのフイードラインから耐圧定量ポンプに
よつて6.5時間にわたつて連続的にフイードし反
応させた。フイード終了後さらに1時間この温度
に保つた。反応中の最高圧力は5.8Kg/cm2Gであ
つたが、反応終了時の圧力は5.3Kg/cm2Gであつ
た。反応混合物を冷却後、有機層と水層とに分液
すると同時に水層に溶存するピナコロンを水との
共沸で回収し、前記有機層と合せて分析した結
果、ピナコロンの収率はアミレン基準で74.8%で
あつた。
Example 4 A glass lined pressure reactor with an internal volume of 40
Charge 670g of sulfuric acid (wt%) and keep it at 140℃ with stirring to obtain 25.3% of 3-methyl-1-butene and 2-methyl-1-butene.
1-butene 28.3%, 2-methyl-2-butene 44.3%
%, mixed amylene consisting of 2.1% methylbutane
71.5 g and 94.8 g of formalin with a concentration of 33.2% were simultaneously fed continuously from each feed line using a pressure-resistant metering pump for 6.5 hours to react. After the end of the feed, the temperature was maintained for an additional hour. The maximum pressure during the reaction was 5.8 Kg/cm 2 G, and the pressure at the end of the reaction was 5.3 Kg/cm 2 G. After cooling the reaction mixture, the reaction mixture was separated into an organic layer and an aqueous layer, and at the same time, the pinacolon dissolved in the aqueous layer was recovered by azeotropy with water, and analyzed together with the organic layer. As a result, the yield of pinacolon was found to be based on amylene. It was 74.8%.

Claims (1)

【特許請求の範囲】 1 3−メチル−1−ブテンを無機酸水溶液の存
在下に80℃以上の温度でホルムアルデヒドと反応
させることを特徴とするピナコロンの製法。 2 2−メチル−1−ブテンまたは/および2−
メチル−2−ブテンを3−メチル−1−ブテンと
共に反応系に供する特許請求の範囲第1項記載の
製法。
[Claims] 1. A method for producing pinacolon, which comprises reacting 3-methyl-1-butene with formaldehyde in the presence of an aqueous inorganic acid solution at a temperature of 80°C or higher. 2 2-methyl-1-butene or/and 2-
The method according to claim 1, wherein methyl-2-butene is subjected to a reaction system together with 3-methyl-1-butene.
JP14542077A 1977-12-02 1977-12-02 Preparation of pinacolone Granted JPS5479217A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14542077A JPS5479217A (en) 1977-12-02 1977-12-02 Preparation of pinacolone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14542077A JPS5479217A (en) 1977-12-02 1977-12-02 Preparation of pinacolone

Publications (2)

Publication Number Publication Date
JPS5479217A JPS5479217A (en) 1979-06-25
JPS6410505B2 true JPS6410505B2 (en) 1989-02-22

Family

ID=15384828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14542077A Granted JPS5479217A (en) 1977-12-02 1977-12-02 Preparation of pinacolone

Country Status (1)

Country Link
JP (1) JPS5479217A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106397150A (en) * 2016-08-26 2017-02-15 张家港市振方化工有限公司 Preparation method of pinacolone
CN109809972B (en) * 2019-01-11 2022-01-21 栎安化学(上海)有限公司 Green preparation method of pinacolone
CN114507125A (en) * 2022-02-24 2022-05-17 南通利奥化工科技有限公司 Preparation method of pinacolone

Also Published As

Publication number Publication date
JPS5479217A (en) 1979-06-25

Similar Documents

Publication Publication Date Title
WO2015151116A2 (en) Process for producing 2-fluoro-6-(trifluoromethyl)pyridine compounds
JPH0686397B2 (en) Method for producing chlorodiphenyl ether
HU185896B (en) New process for producing 7-hydroxy-2,2-dimethyl-2,3-dihydro-bracket-benzo-furane-bracket closed
GB2219292A (en) Process of preparing 1,2,2,2-tetrafluoroethyl-difluoromethyl ether
JPS6410505B2 (en)
US4224252A (en) Production of pinacolone
US5633413A (en) Continuous process for the production of vinylidene chloride telomers
KR100648778B1 (en) Method of producing di- and tri-substituted benzaldehydes
Petrov Chemistry of N-substituted 2, 2-difluoro-3, 3-bis (trifluoromethyl) aziridines
US4157333A (en) Process for preparing piperonal
JPH0560817B2 (en)
KR100332160B1 (en) Improved preparation of cycloalkyl and haloalkyl O-aminophenyl ketones
JPS6148490B2 (en)
JPS6115853B2 (en)
JP3014417B2 (en) Method for producing 4-methylenetetrahydropyran
US7019166B2 (en) Method for the production of 2,4,5-trimethylphenyl acetic acid
US6127577A (en) Method of making 3,5-difluoroaniline from 1,3,5-trichlorobenzene
EP0054274B1 (en) Process for preparing fluorobenzene
US3072730A (en) Process for preparing perfluoroethyl iodide
EP0735997B1 (en) Production of difluoromethane
JPS6116254B2 (en)
WO2008015714A2 (en) Process for the preparation of 1,1-dichloro-2-alkylethylene
EP1238963A1 (en) Process for producing fluorinated alkylamine compound
EP0307106B1 (en) P- or m-tert butoxyphenethyl alcohol and process for preparing the same
EP0032733B1 (en) Process for preparing polymethylene polyphenyl polycarbamates