JPS6139932B2 - - Google Patents

Info

Publication number
JPS6139932B2
JPS6139932B2 JP7353978A JP7353978A JPS6139932B2 JP S6139932 B2 JPS6139932 B2 JP S6139932B2 JP 7353978 A JP7353978 A JP 7353978A JP 7353978 A JP7353978 A JP 7353978A JP S6139932 B2 JPS6139932 B2 JP S6139932B2
Authority
JP
Japan
Prior art keywords
reaction
acid
dioxane
pinacolon
trimethyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7353978A
Other languages
Japanese (ja)
Other versions
JPS54163510A (en
Inventor
Sunao Kyo
Haruo Tsucha
Hidetsugu Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP7353978A priority Critical patent/JPS54163510A/en
Priority to DE19792918521 priority patent/DE2918521C3/en
Priority to NL7903751A priority patent/NL185562C/en
Priority to US06/039,300 priority patent/US4224252A/en
Publication of JPS54163510A publication Critical patent/JPS54163510A/en
Publication of JPS6139932B2 publication Critical patent/JPS6139932B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳现な説明】 本発明は・・−トリメチル−・−ゞ
オキサンからピナコロンを補造する方法に関す
る。 −メチルブテン−ずホルムアルデヒドずの
プリンス反応により合成される・・−トリ
メチル−・−ゞオキサンを無機匷酞氎溶液の
存圚䞋に分解しおピナコロンを補造する方法は叀
くから知られおいるたずえばドむツ特蚱第
714488号。たたこの方法の改良法ずしお、反応
系に−メチルブテン−を共存させれば反応過
皋で副生するホルムアルデヒドが反応的に捕捉さ
れピナコロンの収率が高められるず同時にホルム
アルデヒドの回収ならびにピナコロンの粟補が容
易ずなるこずが米囜特蚱第4059634号に開瀺され
おいる。 䞀方・・−トリメチル−・−ゞオキ
サンを無機匷酞氎溶液の存圚䞋に分解しおピナコ
ロンを補造する際の酞氎溶液の濃床がピナコロン
の収率に倧きな圱響を䞎えるこずもよく知られお
いる。たずえばChemical Abstract 78 71330d
1973によれば2.5濃床の塩酞を甚いた堎合の
ピナコロンの収率はわずか2.3であり、20濃
床の塩酞を甚いた堎合でもピナコロンの収率はせ
いぜい34に過ぎないこずが報告されおいる。こ
のこずは・・−トリメチル−・−ゞオ
キサンからピナコロンを満足な反応収率で埗るた
めには無機匷酞氎溶液を少くずも20重量以䞊の
高濃床で甚いる必芁があるこずを意味する。しか
し同報告はたた、・・−トリメチル−・
−ゞオキサンの酞加氎分解によるピナコロンの
生成が䞀次生成物である・−ゞメチルブタン
−・−ゞオヌルの脱氎反応を経由しお起こる
こずを蚘茉しおいる。このこずは同反応条件がプ
リンス反応の条件でもあるこずから、該反応の䞭
間䜓が反応系で生成したホルムアルデヒドず反応
しお高沞点化合物に倉化する可胜性のあるこずを
瀺唆しBull.Soc.Chim.France、1964(4)800〜
811、・・−トリメチル−・−ゞオキ
サンを単に酞で加氎分解するだけでは、たずえ高
濃床の酞氎溶液を甚いおも工業的に十分満足でき
る反応収率でピナコロンを埗るこずは困難である
こずを意味する。 前蚘米囜特蚱第4059634号の発明はこの様な事
実を考慮しおなされたものであり、たずえば36重
量濃床の塩酞のほかに−メチルブテン−を
共存させお反応系で副生するホルムアルデヒドず
反応させピナコロンを生成せしめるこずによ぀お
ピナコロン収率を・・−トリメチル−・
−ゞオキサンに察する理論収率の69にたで改
善できるこずを瀺しおいる。しかし、この堎合で
すらピナコロン収率は、該ゞオキサンから生成す
るホルムアルデヒドを考慮した収率に換算した堎
合には理論収率に察しお僅か35にしか過ぎず、
この方法を工業的芏暡で実斜する堎合には薬品原
単䜍の面のみならず補品ピナコロンの分離、粟補
ならびに反応に甚いた高濃床塩酞の埪環再利甚の
面で少なからぬ䞍利益を䌎う。 本発明者らは䞊述した劂き問題点を解消するた
めに鋭意怜蚎した結果、・・−トリメチル
−・−ゞオキサンを䞀般匏 匏においお、およびは氎玠原子であ
り、およびのいずれか䞀方がOH、Clもしく
はBrであり他方が氎玠原子を衚わすか、あるい
は、、およびのうちの隣合う二぀が単結
合を圢成し残りの二぀は氎玠原子を衚わすで瀺
されるブテン類もしくはその誘導䜓の共存䞋たた
は䞍共存䞋に無機匷酞氎溶液の存圚䞋で加熱分解
するに際し、反応系に少くずも郚分的に可溶な無
機匷酞の塩を共存させるこずにより無機匷酞の濃
床および量を䜎枛するこずができるずずもに䞊述
の問題点が軜枛されるばかりでなくピナコロンの
収率も改善されるこず、特に前蚘䞀般匏で
衚わされる化合物を共存させた堎合には反応䞭に
副生するホルムアルデヒドの再䜿甚が効率的に行
われおピナコロンの収率が飛躍的に増倧するこず
を芋出し、本発明に至぀た。 本発明に奜たしく甚いられる無機匷酞は硫酞、
塩酞、臭化氎玠酞、燐酞たたは過塩玠酞であり、
それらは二皮以䞊が混合䜿甚されおもよい。反応
系に無機匷酞の塩を共存させる本発明の方法によ
れば䞊蚘のいずれの酞を甚いる堎合であ぀おも前
述の埓来公知の方法が必芁ずする濃床および量よ
りもはるかに䜎い濃床および少い量で収率よく反
応を行うこずができる。ただし反応系の氎盞䞭の
酞濃床は0.5モルKg氎盞以䞊に、たた無機
匷酞の䜿甚量は・・−トリメチル−・
−ゞオキサンに察しお0.1倍モル以䞊、奜たしく
は0.3倍モル以䞊に保たれるのがよい。 本発明においお無機匷酞ず䜵甚すべき無機匷酞
の塩は反応系に少なくずも郚分的に可溶であるこ
ずが必芁であるが、100℃における、氎に察する
溶解床が35以䞊のものが奜たしい。䞭性塩、酞性
塩のいずれも䜿甚可胜であり、たずえばリチり
ム、ナトリりム、カリりム、ルビゞりム、セシり
ム、銅、マグネシりム、カルシりム、スト
ロンチりム、バリりム、、亜鉛、カドミりム、ア
ルミニりム、スカンゞりム、ゞルコニりム、チタ
ン、錫、マンガン、鉄、コバル
ト、ニツケル等の塩化物及び臭化物、アン
モニりム、ナトリりム、ルビゞりム、セシりム、
マグネシりム、カドミりム、亜鉛、アルミニり
ム、コバルト、銅、ニツケル、
マンガン等の硫酞塩、カルシりム、銀、ス
トロンチりム、ナトリりム、バリりム、マグネシ
りム等の過塩玠酞塩、硫酞氎玠ナトリりム、硫酞
氎玠カリりム、リン酞二氎玠アンモニりム、リン
酞二氎玠ナトリりム等の酞性塩、さらには塩化硫
酞マグネシりムカリりム等の耇合塩などを䟋瀺す
るこずができる。この䞭でもモル溶解床が倧き
く、か぀反応条件䞋での氎盞䞭における安定性が
高いものが奜適であり、この点を考慮するずアル
カリ金属及びアルカリ土類金属の塩が最も奜たし
い。反応に甚いられる無機匷酞の酞根ず無機匷酞
塩の酞根は必ずしも同䞀である必芁はないが、反
応条件䞋で難溶性の塩を生成するような組合せは
避けなければならない。さらに無機匷酞の塩は䞊
蚘溶解床が満たされる範囲内で二皮以䞊を混合䜿
甚しおもよいが、この堎合も反応条件䞋で難溶性
の塩を生成するような組合せは避けなければなら
ない。 無機匷酞の塩の䜿甚量はかかる無機匷酞塩ず共
に甚いられる無機匷酞の濃床に応じお、反応条件
䞋における氎盞䞭の無機匷酞濃床が高い堎合には
少く、反察に該酞濃床が䜎い堎合には倚くなるよ
うにコントロヌルするが、反応条件䞋における無
機匷酞氎溶液に察する飜和溶解量の1/10以䞊にな
るように甚いられる。 本発明で反応系に共存させる前蚘䞀般匏
で瀺されるブテン類は具䜓的には−メチルブテ
ン−・−メチルブテン−、−メチルブテ
ン−であり、たたブテン誘導䜓は−メチル−
−クロルブタン、−メチル−−ブロムブタ
ン、−メチル−−クロルブタン、−メチル
−−ブロムブタン、−メチルブタノヌル−
および−メチルブタノヌル−である。このう
ちブテン類はたずえばむ゜プレンの郚分氎玠化に
より工業的に容易に入手するこずができる。たた
ブテン誘導䜓は工業的にはたずえば前蚘ブテン類
に塩化氎玠、臭化氎玠たたは氎を付加させるこず
によ぀お埗るこずができる。そしおこれらのブテ
ン類およびその誘導䜓は必ずしも玔粋である必芁
はなく、たずえばむ゜プレン、メチルブタンある
いは無機、有機の酞類を含んでいおもよい。 前蚘䞀般匏で瀺されるブテン類もしくは
その誘導䜓が原料ゞオキサンずずもに甚いられ、
か぀それが無機匷酞根を含有するものであれば、
䞊蚘酞量の範囲で盞察的により少ない量の酞が甚
いられる。 反応は氎のほか反応に䞍掻性な垌釈剀の存圚䞋
で行うこずもでき、かかる垌釈剀ずしおは飜和炭
化氎玠類、塩玠化炭化氎玠類およびケトン類、䟋
えばメチルブタン、ヘキサン、シクロヘキサン、
塩化ブチル、・・−トリクロル゚タン、
・・・−テトラクロル゚タン、四塩化炭
玠、ピナコロン等の疎氎性の化合物を挙げるこず
ができる。しかし垌釈剀の䜿甚によ぀お特に利益
がもたらされるこずはない。 反応枩床は70〜200℃、特に90〜150℃の範囲が
奜たしい。たた反応は倧気圧以䞊の圧力、通垞倧
気圧〜30Kg/cm2の間の圧力䞋で行われる。反応混
合物の沞点以䞊の枩床で反応を行う堎合、反応圧
力は該反応枩床に斌ける該反応混合物の自圧が適
圓であり、窒玠その他の䞍掻性ガスによる加圧は
特に必芁でない。 反応方法ずしおは、(1)無機匷酞および無機匷酞
塩を含む氎溶液を撹拌しながら所定の枩床に保
ち、これに・・−トリメチル−・−ゞ
オキサンあるいは・・−トリメチル−・
−ゞオキサンず前蚘䞀般匏で衚わされる
ブテン類もしくはその誘導䜓を連続的たたは断続
的に添加しながら反応させる、(2)無機匷酞および
無機匷酞塩を含む氎溶液ず・・−トリメチ
ル−・−ゞオキサンを所定枩床で混合撹拌し
お反応させる、(3)(2)の方法においお反応䞭に前蚘
䞀般匏で衚わされるブテン類もしくはその
誘導䜓を連続的たたは断続的に添加する、(4)無機
匷酞および無機匷酞塩を含む氎溶液ず・・
−トリメチル−・−ゞオキサンならびに前蚘
䞀般匏で衚わされるブテン類もしくはその
誘導䜓を同時に混合撹拌しお反応させるなどの方
法が甚いられるが、䞀般には(1)の方法が奜たし
い。 本発明方法は連続匏、回分匏の䜕れの方法によ
぀おも実斜できるが、䞍均䞀盞の反応であるので
激しい撹拌状態で反応を行わねばならず、たた同
じ目的のため界面掻性剀の存圚䞋で反応を行うこ
ずもできる。反応時間は出発原料の䜿甚量、無機
匷酞および無機匷酞の塩の氎溶液の濃床ならびに
量、反応枩床その他によ぀おも圓然倉化するが通
垞〜20時間である。 反応埌の反応混合物よりピナコロンを取埗する
方法ずしおは、(a)有機盞を氎盞から分離したのち
該有機盞をそのたた、あるいは必芁に応じお䞭和
したのち蒞留に䟛する方法、(b)反応混合物を䞭和
したのちそのたた、あるいは有機盞のみを蒞留に
䟛する方法、(c)反応混合物をそのたた蒞留に䟛す
る方等が甚いられる。(a)たたは(c)の方法を甚いる
ならば氎盞の党郚たたは䞀郚を反応系に埪環し再
䜿甚するこずが可胜であるが、ピナコロンの効率
的な分離・取埗の面からは(a)の方法が奜たしい。
蒞留方法ずしおは氎蒞気蒞留や通垞の垞圧たたは
枛圧蒞留が甚いられる。 本発明においお無機匷酞の塩を甚いるこずは反
応混合物を有機盞ず氎盞に分離する際に氎盞䞭に
分配する有機物の量を枛少させるうえで有利であ
る。そのため有機盞から分離された氎盞の党郚た
たは䞀郚は必芁に応じお氎を濃瞮陀去した埌、そ
のたたたたは垌薄な埪環氎盞ず混合しお反応系に
再䟛絊するこずができる。たた、反応混合物の有
機盞を蒞留した際に埗られるピナコロンよりも沞
点の䜎い成分は䞻ずしお、−メチルブテン類、
・−ゞメチルブタゞ゚ンその他の反応原料な
いしは、ピナコロンの前駆䜓であるので混合物の
たた反応系に埪環再䜿甚するこずができる。 本発明の方法は反応混合物から有機盞を分離し
おピナコロンを取埗するず同時に無機匷酞氎溶液
を回収、埪環しお再䜿甚する䞊述の操䜜に察しお
も、たた有機盞ず氎盞ずの分離性や氎盞ぞの有機
物の分配抑制溶存有機物の枛少の面でも著効
が認められ有利である。 本発明により埗られるピナコロンは溶剀ずしお
たたは蟲薬やゎム薬品等の合成䞭間䜓ずしお工業
䞊有甚である。 次に本発明を実斜䟋によりさらに詳しく説明す
る。 比范䟋  撹拌機、還流冷华噚および枩床蚈を備えた100
mlの䞉぀口フラスコに、−メチル−−゚チル
−・−ゞオキサンを7.8含有する玔床91.9
の・・−トリメチル−・−ゞオキサ
ン13.0ず濃床10重量の塩酞36.5を仕蟌み、
撹拌しながら還流状態で時間反応させた。反応
䞭還流枩床は92.8℃から86.5℃にたで䞋が぀た埌
91.5℃にな぀た。反応混合物を氷氎济で冷华しな
がら氎酞化カルシりムで䞭和埌、ゞむ゜プロピル
゚ヌテルの50mlずずもに分液挏斗に移しおよく振
ずうしおから分液した。有機盞をガスクロマトグ
ラフむヌにより分析したずころ、原料のゞオキサ
ンは残存せず生成ピナコロン量は3.16であ぀
た。これは仕蟌み・・−トリメチル−・
−ゞオキサンに察する理論収率の34.4に盞圓
する。なおピナコロン以倖の生成物ずしおは・
−ゞメチル−・−ゞヒドロ−2H−ピラン
および・−ゞメチル−・−ブタゞ゚ンが
それぞれ8.0および1.7定量された。 実斜䟋  反応系に塩化リチりム7.5を加えた以倖は比
范䟋ず党く同様に反応および凊理分析を行぀た
ずころ、還流枩床は95.2℃から91.0℃に䞋が぀た
埌96.0℃になり、ピナコロン収率は44.1であ぀
た。・−ゞメチル−・−ゞヒドロ−2H
−ピランおよび・−ゞメチル−・−ブタ
ゞ゚ンの生成量はそれぞれ1.0および0.2であ
぀た。 実斜䟋  内容積300mlの耐圧ガラス補電磁撹拌匏反応噚
に比范䟋で甚いたず同じ組成の原料ゞオキサン
18.5、−メチルブタノヌル−213.7、濃床
10重量の塩酞52.0および塩化リチりム10.7
を仕蟌んで激しく撹拌しながら100℃に時間保
぀た。反応埌、混合物を氷氎济で冷华した埌キシ
レン70mlを加えお再び撹拌しお分液挏斗により有
機盞を分離した。有機盞を濃床10の炭酞ナトリ
りム氎溶液30mlで䞀回さらに30mlの氎で二回掗浄
した埌ガスクロマトグラフむヌで分析した結果䜿
甚した・・−トリメチル−・−ゞオキ
サンに察する生成ピナコロンの収率は112.3モル
であ぀た。 実斜䟋  実斜䟋ず同じ装眮に濃床10重量の塩酞52.0
ず塩化リチりム10.7を仕蟌み撹拌しながら
100℃に保぀た。これに実斜䟋で甚いたず同じ
組成の原料ゞオキサン18.5ず−メチルブタノ
ヌル− 13.7の混合液を埮量定量ポンプを甚
いお時間にわた぀お導入反応させた。導入終了
埌さらに時間同じ枩床で撹拌した埌実斜䟋ず
同様に凊理分析したずころ、ピナコロンの収率は
仕蟌み・・−トリメチル−・−ゞオキ
サンに察しお146.4モルであ぀た。 比范䟋  濃床10重量の塩酞52.0にかえお28重量濃
床の塩酞100を甚い、塩化リチりムの添加を省
略した以倖は実斜䟋ず党く同様に反応させ、凊
理分析したずころピナコロンの収率は仕蟌み・
・−トリメチル−・−ゞオキサンに察し
お87.1モルであ぀た。 実斜䟋  実斜䟋で甚いたものず同じ反応装眮に濃床が
重量の塩酞80.30.11モルず塩化マグネ
シりム43.2を仕蟌んで撹拌しながら400℃たで
昇枩させた。次にこの状態で・・−トリメ
チル−・−ゞオキサン組成・・−
トリメチル−・−ゞオキサン98.06、−
メチル−−゚チル−・−ゞオキサン1.55
14.30.11モルず−メチルブタノヌル
− 10.5の混合液を埮量定量ポンプにより
時間で䟛絊し、さらに時間同じ状態に保぀お反
応させた。反応混合物を実斜䟋ず同様に凊理し
分析したずころ次の結果が埗られた。 ピナコロン収率 130.1モル ・−ゞメチルブタゞ゚ン収率 0.9モル 䜆し、仕蟌み・・−トリメチル−・
−ゞオキサン基準のモル 実斜䟋  塩酞および塩化マグネシりムのかわりに濃床10
重量の硫酞1080.11モルおよび硫酞氎玠
ナトリりム71.9を甚いた以倖は実斜䟋ず党く
同様に反応させ分析したずころ次の結果が埗られ
た。 ピナコロン収率 102.2モル ・−ゞメチルブタゞ゚ン収率 5.5モル 䜆し、仕蟌み・・−トリメチル−・
−ゞオキサン基準のモル 実斜䟋 〜14 内容積300mlの耐圧ガラス補電磁撹拌匏反応噚
に濃床10重量の塩酞52.0ず塩化リチりム10.7
を仕蟌み撹拌しながら100℃に保぀た。これに
−メチル−−゚チル−・−ゞオキサンを
7.8含有する玔床91.9の・・−トリメ
チル−・−ゞオキサン18.50.131モル
ず第衚に蚘茉された䞀般匏で瀺されるブ
テン類たたはその誘導䜓0.156モルずの混合液を
埮量定量ポンプを甚いお時間にわた぀お導入し
反応させた。導入終了埌さらに時間同じ枩床で
撹拌した。反応埌、混合物を氷氎济で冷华した埌
キシレン70mlを加えお再び撹拌しお分液挏斗によ
り有機盞を分離した。有機盞を濃床10の炭酞ナ
トリりム氎溶液30mlで䞀回さらに30mlの氎で二回
掗浄した埌ガスクロマトグラフむヌで分析した。
䜿甚した・・−トリメチル−・−ゞオ
キサンに察する生成ピナコロンの収率を第衚に
瀺す。 【衚】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing pinacolon from 4,4,5-trimethyl-1,3-dioxane. The method of producing pinacolon by decomposing 4,4,5-trimethyl-1,3-dioxane, which is synthesized by the Prins reaction between 2-methylbutene-2 and formaldehyde, in the presence of a strong inorganic acid aqueous solution has been known for a long time. (for example, German patent no.
No. 714488). In addition, as an improvement to this method, by coexisting 2-methylbutene-2 in the reaction system, formaldehyde produced as a by-product in the reaction process is reactively captured, increasing the yield of pinacolon, and at the same time recovering formaldehyde and purifying pinacolon. It is disclosed in US Pat. No. 4,059,634 that this can be facilitated. On the other hand, it is well known that the concentration of the acid aqueous solution when producing pinacolon by decomposing 4,4,5-trimethyl-1,3-dioxane in the presence of an inorganic strong acid aqueous solution has a large effect on the yield of pinacolon. ing. For example, Chemical Abstract 78 71330d
(1973), the yield of pinacolon is only 2.3% when using 2.5% hydrochloric acid, and even when using 20% hydrochloric acid, the yield of pinacolon is only 34% at most. It has been reported. This means that in order to obtain pinacolon from 4,4,5-trimethyl-1,3-dioxane with a satisfactory reaction yield, it is necessary to use a strong inorganic acid aqueous solution at a high concentration of at least 20% by weight. do. However, the same report also states that 4,4,5-trimethyl-1.
It is described that the production of pinacolon by acid hydrolysis of 3-dioxane occurs via the dehydration reaction of the primary product, 2,3-dimethylbutane-1,3-diol. This suggests that since the same reaction conditions are also the conditions for the Prince reaction, there is a possibility that the intermediate of the reaction may react with the formaldehyde produced in the reaction system and change into a high-boiling point compound (Bull.Soc .Chim.France, 1964 (4)800
811), by simply hydrolyzing 4,4,5-trimethyl-1,3-dioxane with acid, pinacolon cannot be obtained with a reaction yield that is industrially satisfactory even if a highly concentrated acid aqueous solution is used. means difficult. The invention of U.S. Pat. No. 4,059,634 was made in consideration of this fact. For example, in addition to hydrochloric acid at a concentration of 36% by weight, 2-methylbutene-2 is allowed to coexist to eliminate formaldehyde produced as a by-product in the reaction system. By reacting to produce pinacolon, the pinacolon yield was increased by 4.4.5-trimethyl-1.
This shows that the yield can be improved to 69% of the theoretical yield based on 3-dioxane. However, even in this case, the pinacolone yield is only 35% of the theoretical yield when converted to a yield that takes into account formaldehyde generated from the dioxane.
When this method is carried out on an industrial scale, there are considerable disadvantages not only in terms of the chemical consumption rate but also in terms of the separation and purification of the product pinacolon and the recycling and reuse of the highly concentrated hydrochloric acid used in the reaction. As a result of intensive studies to solve the above-mentioned problems, the inventors of the present invention found that 4,4,5-trimethyl-1,3-dioxane with the general formula () (In formula (), W and Z are hydrogen atoms, and either one of X and Y is OH, Cl or Br and the other is a hydrogen atom, or the adjacent one of W, X, Y and Z When thermal decomposition is carried out in the presence of a strong inorganic acid aqueous solution in the presence or absence of butenes or their derivatives (where two that match form a single bond and the remaining two represent hydrogen atoms), a small amount is added to the reaction system. By coexisting a salt of a strong inorganic acid that is partially soluble in both, the concentration and amount of the strong inorganic acid can be reduced, and the above-mentioned problems are not only alleviated, but also the yield of pinacolon is improved; In particular, it has been found that when the compound represented by the general formula () is coexisting, the formaldehyde by-produced during the reaction can be reused efficiently, and the yield of pinacolon can be dramatically increased. It came to this. Inorganic strong acids preferably used in the present invention include sulfuric acid,
hydrochloric acid, hydrobromic acid, phosphoric acid or perchloric acid;
Two or more of them may be used in combination. According to the method of the present invention, in which a salt of a strong inorganic acid is coexisting in the reaction system, even when using any of the above-mentioned acids, the concentration and amount are much lower than those required by the conventionally known methods described above. The reaction can be carried out in a high yield with a small amount. However, the acid concentration in the aqueous phase of the reaction system should be 0.5 mol/Kg (aqueous phase) or more, and the amount of inorganic strong acid used should be 4,4,5-trimethyl-1,3
- The amount is preferably maintained at 0.1 times or more, preferably 0.3 times or more by mole relative to dioxane. In the present invention, the salt of the inorganic strong acid to be used in combination with the inorganic strong acid must be at least partially soluble in the reaction system, and preferably has a solubility in water of 35 or more at 100°C. Both neutral and acid salts can be used, such as lithium, sodium, potassium, rubidium, cesium, copper (), magnesium, calcium, strontium, barium, zinc, cadmium, aluminum, scandium, zirconium, titanium ( ), tin (), manganese (), iron, cobalt (), chlorides and bromides such as nickel, ammonium, sodium, rubidium, cesium,
Magnesium, cadmium, zinc, aluminum, cobalt (), copper (), nickel (),
Sulfates such as manganese (), perchlorates such as calcium, silver, strontium, sodium, barium, magnesium, acid salts such as sodium hydrogen sulfate, potassium hydrogen sulfate, ammonium dihydrogen phosphate, sodium dihydrogen phosphate, Further examples include complex salts such as magnesium potassium chloride and sulfate. Among these, those having high molar solubility and high stability in the aqueous phase under reaction conditions are preferred, and in consideration of this point, salts of alkali metals and alkaline earth metals are most preferred. Although the acid group of the inorganic strong acid and the acid group of the inorganic strong acid salt used in the reaction do not necessarily have to be the same, combinations that would produce a poorly soluble salt under the reaction conditions must be avoided. Furthermore, two or more salts of inorganic strong acids may be used in combination within the range that satisfies the above-mentioned solubility, but in this case as well, combinations that would produce poorly soluble salts under the reaction conditions must be avoided. The amount of the inorganic strong acid salt to be used will depend on the concentration of the inorganic strong acid used together with the inorganic strong acid salt, and will be smaller if the inorganic strong acid concentration in the aqueous phase under the reaction conditions is high, and conversely if the acid concentration is low. It is controlled so that it is large, but it is used so that it is 1/10 or more of the saturated dissolution amount in the inorganic strong acid aqueous solution under the reaction conditions. The above general formula () coexisting in the reaction system in the present invention
Specifically, the butenes represented by are 2-methylbutene-1,2-methylbutene-2,3-methylbutene-1, and the butene derivative is 2-methylbutene-1.2-methylbutene-2,3-methylbutene-1.
2-chlorobutane, 2-methyl-2-bromobutane, 2-methyl-3-chlorobutane, 2-methyl-3-bromobutane, 2-methylbutanol-2
and 3-methylbutanol-2. Among these, butenes can be easily obtained industrially, for example, by partial hydrogenation of isoprene. Further, butene derivatives can be obtained industrially, for example, by adding hydrogen chloride, hydrogen bromide or water to the above-mentioned butenes. These butenes and their derivatives do not necessarily have to be pure, and may contain, for example, isoprene, methylbutane, or inorganic or organic acids. Butenes represented by the general formula () or derivatives thereof are used together with the raw material dioxane,
And if it contains a strong inorganic acid group,
Within the above acid amount ranges, relatively smaller amounts of acid are used. In addition to water, the reaction can also be carried out in the presence of a diluent inert to the reaction, such as saturated hydrocarbons, chlorinated hydrocarbons and ketones, such as methylbutane, hexane, cyclohexane,
Butyl chloride, 1,1,1-trichloroethane,
Hydrophobic compounds such as 1,1,1,2-tetrachloroethane, carbon tetrachloride, and pinacolone can be mentioned. However, no particular benefit is provided by the use of diluents. The reaction temperature is preferably in the range of 70 to 200°C, particularly 90 to 150°C. The reaction is also carried out at a pressure above atmospheric pressure, usually between atmospheric pressure and 30 kg/cm 2 . When the reaction is carried out at a temperature higher than the boiling point of the reaction mixture, the appropriate reaction pressure is the autogenous pressure of the reaction mixture at the reaction temperature, and pressurization with nitrogen or other inert gas is not particularly necessary. The reaction method is as follows: (1) An aqueous solution containing a strong inorganic acid and a strong inorganic acid salt is kept at a predetermined temperature while stirring, and 4,4,5-trimethyl-1,3-dioxane or 4,4,5-trimethyl -1・
3-dioxane and the butenes represented by the above general formula () or their derivatives are reacted while continuously or intermittently added; (2) an aqueous solution containing a strong inorganic acid and a strong inorganic acid salt and 4,4,5-trimethyl; - In the method of (3) and (2), in which 1,3-dioxane is reacted by mixing and stirring at a predetermined temperature, the butenes represented by the above general formula () or its derivatives are added continuously or intermittently during the reaction. (4) an aqueous solution containing a strong inorganic acid and a strong inorganic acid salt, and 4.4.5
A method may be used in which -trimethyl-1,3-dioxane and the butenes represented by the general formula () or a derivative thereof are simultaneously mixed and stirred to react, but method (1) is generally preferred. The method of the present invention can be carried out by either a continuous method or a batch method, but since it is a heterogeneous phase reaction, the reaction must be carried out under vigorous stirring, and for the same purpose, a surfactant is present. The reaction can also be carried out below. The reaction time naturally varies depending on the amount of starting materials used, the concentration and amount of the aqueous solution of the inorganic strong acid and the salt of the inorganic strong acid, the reaction temperature, and other factors, but is usually 1 to 20 hours. Methods for obtaining pinacolon from the reaction mixture after the reaction include (a) separating the organic phase from the aqueous phase and then subjecting the organic phase to distillation as it is or after neutralizing if necessary; (b) reaction. Methods such as neutralizing the mixture and then subjecting it to distillation as it is or only the organic phase, and (c) subjecting the reaction mixture to distillation as it is, are used. If method (a) or (c) is used, it is possible to circulate all or part of the aqueous phase to the reaction system and reuse it, but from the standpoint of efficient separation and acquisition of pinacolon, (a) ) is preferred.
As the distillation method, steam distillation, normal pressure distillation, or vacuum distillation is used. The use of a salt of a strong inorganic acid in the present invention is advantageous in reducing the amount of organic matter partitioned into the aqueous phase when the reaction mixture is separated into an organic phase and an aqueous phase. Therefore, all or part of the aqueous phase separated from the organic phase can be re-supplied to the reaction system as it is or after being mixed with a dilute circulating aqueous phase, after concentrating and removing water if necessary. In addition, components with boiling points lower than pinacolone obtained when the organic phase of the reaction mixture is distilled are mainly 2-methylbutenes,
Since it is a precursor of 2,3-dimethylbutadiene and other reaction raw materials or pinacolon, it can be recycled to the reaction system as a mixture. The method of the present invention is applicable to the above-mentioned operation in which the organic phase is separated from the reaction mixture to obtain pinacolon, and at the same time, the inorganic strong acid aqueous solution is recovered, recycled, and reused. It is also advantageous because it is effective in suppressing the distribution of organic matter into the aqueous phase (reducing dissolved organic matter). Pinacolon obtained by the present invention is industrially useful as a solvent or as a synthetic intermediate for agricultural chemicals, rubber chemicals, etc. Next, the present invention will be explained in more detail with reference to Examples. Comparative Example 1 100 with stirrer, reflux condenser and thermometer
Purity 91.9 containing 7.8% 4-methyl-4-ethyl-1,3-dioxane in a ml three-necked flask.
% 4,4,5-trimethyl-1,3-dioxane and 36.5 g of hydrochloric acid with a concentration of 10% by weight.
The reaction was carried out under reflux for 3 hours while stirring. During the reaction, the reflux temperature decreased from 92.8℃ to 86.5℃.
The temperature reached 91.5℃. The reaction mixture was neutralized with calcium hydroxide while being cooled in an ice-water bath, then transferred to a separatory funnel with 50 ml of diisopropyl ether, shaken well, and then separated. Analysis of the organic phase by gas chromatography revealed that no raw material dioxane remained and the amount of pinacolon produced was 3.16 g. This is the preparation 4.4.5-trimethyl-1.
This corresponds to 34.4% of the theoretical yield based on 3-dioxane. In addition, products other than pinacolon include 3.
4-dimethyl-5,6-dihydro-2H-pyran and 2,3-dimethyl-1,3-butadiene were determined to be 8.0% and 1.7%, respectively. Example 1 The reaction and treatment analysis were carried out in exactly the same manner as in Comparative Example 1 except that 7.5 g of lithium chloride was added to the reaction system. The yield was 44.1%. 3,4-dimethyl-5,6-dihydro-2H
The amounts of -pyran and 2,3-dimethyl-1,3-butadiene produced were 1.0% and 0.2%, respectively. Example 2 Raw material dioxane with the same composition as used in Comparative Example 1 was placed in a pressure-resistant glass electromagnetic stirring reactor with an internal volume of 300 ml.
18.5g, 2-methylbutanol-213.7g, concentration
52.0 g of 10% by weight hydrochloric acid and 10.7 g of lithium chloride
was charged and kept at 100°C for 6 hours with vigorous stirring. After the reaction, the mixture was cooled in an ice-water bath, 70 ml of xylene was added, stirred again, and the organic phase was separated using a separatory funnel. The organic phase was washed once with 30 ml of a 10% sodium carbonate aqueous solution and twice with 30 ml of water, and then analyzed by gas chromatography. The yield was 112.3 mol%. Example 3 In the same apparatus as in Example 2, 52.0% hydrochloric acid with a concentration of 10% by weight was added.
g and 10.7 g of lithium chloride while stirring.
It was kept at 100℃. A mixed solution of 18.5 g of raw material dioxane and 13.7 g of 2-methylbutanol-2 having the same composition as used in Example 2 was introduced into the solution using a micro-metering pump and allowed to react over a period of 4 hours. After the introduction was completed, the mixture was stirred at the same temperature for another 2 hours, and then treated and analyzed in the same manner as in Example 2. The yield of pinacolon was 146.4 mol% based on the 4,4,5-trimethyl-1,3-dioxane charged. Ta. Comparative Example 2 The reaction was carried out in exactly the same manner as in Example 2 except that 100 g of 28 wt% hydrochloric acid was used instead of 52.0 g of 10 wt% hydrochloric acid and the addition of lithium chloride was omitted. Process analysis revealed that the yield of pinacolon was The rate is 4.
The amount was 87.1 mol% based on 4,5-trimethyl-1,3-dioxane. Example 4 80.3 g (0.11 mol) of hydrochloric acid with a concentration of 5% by weight and 43.2 g of magnesium chloride were charged into the same reaction apparatus as used in Example 3, and the temperature was raised to 400° C. while stirring. Next, in this state, 4,4,5-trimethyl-1,3-dioxane (composition: 4,4,5-
Trimethyl-1,3-dioxane 98.06%, 4-
Methyl-4-ethyl-1,3-dioxane 1.55
%) 14.3g (0.11 mol) and 10.5g of 2-methylbutanol-2 using a micro metering pump.
The reaction was carried out by keeping the same conditions for an additional 2 hours. The reaction mixture was treated and analyzed in the same manner as in Example 2, and the following results were obtained. Pinacolone yield 130.1 mol% 2,3-dimethylbutadiene yield 0.9 mol% However, the charge 4,4,5-trimethyl-1,3
- Mol% based on dioxane Example 5 Concentration 10 instead of hydrochloric acid and magnesium chloride
The reaction and analysis were carried out in exactly the same manner as in Example 4, except that 108 g (0.11 mol) of sulfuric acid and 71.9 g of sodium hydrogen sulfate were used, and the following results were obtained. Pinacolone yield 102.2 mol% 2,3-dimethylbutadiene yield 5.5 mol% However, the charge 4,4,5-trimethyl-1,3
-Mole% based on dioxane Examples 6 to 14 In a pressure-resistant glass electromagnetic stirring reactor with an internal volume of 300 ml, 52.0 g of hydrochloric acid with a concentration of 10% by weight and 10.7 g of lithium chloride
g was charged and kept at 100°C while stirring. Add 4-methyl-4-ethyl-1,3-dioxane to this.
18.5 g (0.131 mol) of 4,4,5-trimethyl-1,3-dioxane with a purity of 91.9% containing 7.8%
A mixed solution of 0.156 mol of butenes or a derivative thereof represented by the general formula () shown in Table 1 was introduced over a period of 4 hours using a micro-metering pump and allowed to react. After the introduction was completed, the mixture was stirred at the same temperature for an additional 2 hours. After the reaction, the mixture was cooled in an ice-water bath, 70 ml of xylene was added, stirred again, and the organic phase was separated using a separatory funnel. The organic phase was washed once with 30 ml of a 10% aqueous sodium carbonate solution and twice with 30 ml of water, and then analyzed by gas chromatography.
Table 1 shows the yield of pinacolone produced based on the 4,4,5-trimethyl-1,3-dioxane used. 【table】

Claims (1)

【特蚱請求の範囲】  ・・−トリメチル−・−ゞオキサ
ンを䞀般匏 匏においお、およびは氎玠原子であ
り、およびのいずれか䞀方がOH、Clもしく
はBrであり他方が氎玠原子を衚わすか、あるい
は、、およびのうちの隣合う二぀が単結
合を圢成し残りの二぀は氎玠原子を衚わすで瀺
されるブテン類もしくはその誘導䜓の共存䞋たた
は䞍共存䞋に無機匷酞氎溶液の存圚䞋で加熱分解
しおピナコロンを補造するに際に、反応系に少く
ずも郚分的に可溶な無機匷酞の塩を共存させるこ
ずを特城ずするピナコロンの補造方法。
[Claims] 1 4,4,5-trimethyl-1,3-dioxane represented by the general formula () (In formula (), W and Z are hydrogen atoms, and either one of X and Y is OH, Cl or Br and the other is a hydrogen atom, or Pinacolon is produced by thermal decomposition in the presence of a strong inorganic acid aqueous solution in the presence or absence of butenes or their derivatives (two that match form a single bond and the remaining two represent hydrogen atoms). A method for producing pinacolon, which comprises coexisting at least a partially soluble salt of an inorganic strong acid in the reaction system.
JP7353978A 1978-05-15 1978-06-15 Preparation of pinacolone Granted JPS54163510A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP7353978A JPS54163510A (en) 1978-06-15 1978-06-15 Preparation of pinacolone
DE19792918521 DE2918521C3 (en) 1978-05-15 1979-05-08 Process for the production of pinacolone
NL7903751A NL185562C (en) 1978-05-15 1979-05-12 PROCESS FOR PREPARING PINACOLON.
US06/039,300 US4224252A (en) 1978-05-15 1979-05-15 Production of pinacolone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7353978A JPS54163510A (en) 1978-06-15 1978-06-15 Preparation of pinacolone

Publications (2)

Publication Number Publication Date
JPS54163510A JPS54163510A (en) 1979-12-26
JPS6139932B2 true JPS6139932B2 (en) 1986-09-06

Family

ID=13521131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7353978A Granted JPS54163510A (en) 1978-05-15 1978-06-15 Preparation of pinacolone

Country Status (1)

Country Link
JP (1) JPS54163510A (en)

Also Published As

Publication number Publication date
JPS54163510A (en) 1979-12-26

Similar Documents

Publication Publication Date Title
JPH0456833B2 (en)
US7456322B2 (en) Process for preparing 1,3-dibromoacetone, 1-3-dichloroacetone and epichlorohydrin
HU185896B (en) New process for producing 7-hydroxy-2,2-dimethyl-2,3-dihydro-bracket-benzo-furane-bracket closed
US4224252A (en) Production of pinacolone
CN107641067B (en) Alpha-bromination method of o-diketone
US4897482A (en) Process for the preparation of oligomeric 2,2,4-trimethyl-1,2-dihydroquinoline
US20040019243A1 (en) 1,3-Bis(trifluoromethyl)benzene derivatives
US4792630A (en) Process for preparing aminoacetaldehyde dialkyl acetals
JPS6139932B2 (en)
IE42388B1 (en) Process for the preparation of pinacolone
KR100859386B1 (en) Chloromethylation of thiophene
US4059634A (en) Production of pinacolone
JPS6312048B2 (en)
JPH09169688A (en) Production of isophorone
US4144264A (en) Process for producing a 3-methyl-2-(4-halophenyl)butyronitrile
KR920004603B1 (en) Production of 2,2-dimethoxy-2-phenylaceto phenone
JPS6115854B2 (en)
US4306100A (en) Process for production of alkenediols
JPH08231462A (en) Perfluoroalkylarboxylic acid fluoride and production of its derivative
US4992585A (en) Process for producing α-chloroacetoacetic acid monomethylamide
JPH05345739A (en) Preparation of 3,4'-dichlorodiphenyl ether
JPS6116254B2 (en)
US6127577A (en) Method of making 3,5-difluoroaniline from 1,3,5-trichlorobenzene
EP0417720B1 (en) Process for preparing 2-chloro-4-fluorophenol
JPS6410505B2 (en)