JPS61162471A - Article feeding device - Google Patents

Article feeding device

Info

Publication number
JPS61162471A
JPS61162471A JP358985A JP358985A JPS61162471A JP S61162471 A JPS61162471 A JP S61162471A JP 358985 A JP358985 A JP 358985A JP 358985 A JP358985 A JP 358985A JP S61162471 A JPS61162471 A JP S61162471A
Authority
JP
Japan
Prior art keywords
spring steel
steel material
frequency
electromagnet
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP358985A
Other languages
Japanese (ja)
Other versions
JPH021055B2 (en
Inventor
Hirao Otojima
音島 比良雄
Norio Kubota
窪田 憲夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Machinery Ltd
Original Assignee
Murata Machinery Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Machinery Ltd filed Critical Murata Machinery Ltd
Priority to JP358985A priority Critical patent/JPS61162471A/en
Publication of JPS61162471A publication Critical patent/JPS61162471A/en
Publication of JPH021055B2 publication Critical patent/JPH021055B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G27/00Jigging conveyors
    • B65G27/08Supports or mountings for load-carriers, e.g. framework, bases, spring arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H67/00Replacing or removing cores, receptacles, or completed packages at paying-out, winding, or depositing stations
    • B65H67/06Supplying cores, receptacles, or packages to, or transporting from, winding or depositing stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/30Handled filamentary material
    • B65H2701/31Textiles threads or artificial strands of filaments

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Feeding Of Articles To Conveyors (AREA)
  • Replacing, Conveying, And Pick-Finding For Filamentary Materials (AREA)

Abstract

PURPOSE:To enable maintenance of a specified speed, by a method wherein, in an article feeding device employing high frequency vibration, by means of a signal from a vibration system displacement sensor, suction frequency of an electromagnet is synchronized with natural frequency of a vibration system. CONSTITUTION:Sensors S<1> and S<2> is supported below a base bed 2 supporting a spering steel material K between an electromagnet M and a receiving and feeding disc 1 and to a base 40 supporting the base bed 2 through a screw rod 41 and a bracket 42. The sensor S<1>, if the electromagnet M is magnetically erased, the spring steel material K repelled by its spring force to provide a timing at which an exciting instruction is outputted to the electromagnet M again. The sensor S<2> prevents amplitude of the string steel material K, i.e., amplitude of a receiving and feeding disc 1 from being increased to high than a set value. A pulse width controller 42 controls through a triac 45 by means of signals therefrom so that suction frequency of the electromagnet M is synchronized with natural frequency of a vibration system. This enables mainenance of a specified feeding sped even against a fluctuation in the weight of an article.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高周波振動を利用した物品送出装置に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to an article delivery device using high frequency vibration.

〔従来の技術〕[Conventional technology]

高周波振動を利用して、物品を整列して送出する装置は
公知である。実公昭51−49401号公報には、ボビ
ンの送出装置が示されている。
2. Description of the Related Art Devices that use high-frequency vibrations to align and deliver articles are known. Japanese Utility Model Publication No. 51-49401 discloses a bobbin delivery device.

即ち、第15図〜第17図に示すように、受送盤(1)
と基台(2)間は複数箇所に、バネ鋼材(3)が傾斜し
てその両端が部材(1)(21に固着(26X26)さ
れており、基台に設置した電磁マグネットのオン・オフ
によって受送盤(1)がバネ鋼材(3)に抗して吸着(
1)、離反(1a)する動作が周期的に繰返されて受送
盤(1)上の物品(W)に円周方向の送り力が作用し、
物品は飛びはね運動を行いつつ送出されるようになって
いる。従って、受送盤(1)が電磁マグネットに、バネ
鋼材のバネ力に抗して吸着される際には、受送盤(1)
は下方向および円周方向に変位することになりバネ鋼材
(3)に第15図の矢印(4)方向のたわみ、および、
第16図の矢印(5)方向のねじれが生じる。この結果
、第16図におけるバネ鋼材(3)の半径方向の内側部
分(3a)に圧縮応力、外側部分(3b)に引張応力が
かかり、しかも、上記バネ鋼材(3)は平板状のプレー
ト(3i)が複数枚重合わせ、両端部分が固定された状
態であるため、まげ応力、ねじりによるせん断心力が直
接的にバネ鋼材に応力として作用するため高周波振動に
よって短時間の内に疲労破壊を生じ、頻繁にバネ鋼材を
取換える必要があった。
That is, as shown in FIGS. 15 to 17, the receiving board (1)
The spring steel material (3) is inclined at multiple locations between the base and the base (2), and both ends are fixed (26x26) to the member (1) (21), and the electromagnetic magnet installed on the base can be turned on and off. The receiving board (1) is attracted against the spring steel material (3) (
1) The movement of separating (1a) is repeated periodically, and a feeding force in the circumferential direction is applied to the article (W) on the receiving and feeding board (1),
The article is sent out while performing a bouncing motion. Therefore, when the receiving board (1) is attracted to the electromagnetic magnet against the spring force of the spring steel material, the receiving board (1)
is displaced downward and circumferentially, causing the spring steel material (3) to deflect in the direction of arrow (4) in Figure 15, and
Twisting occurs in the direction of arrow (5) in FIG. 16. As a result, compressive stress is applied to the radially inner portion (3a) of the spring steel material (3) in FIG. 16, and tensile stress is applied to the outer portion (3b) of the spring steel material (3). Since multiple pieces of 3i) are stacked one on top of the other and both ends are fixed, bending stress and shear core force due to torsion directly act on the spring steel as stress, resulting in fatigue failure within a short time due to high frequency vibration. , it was necessary to frequently replace the spring steel.

特に物品の送出速度を高速にする場合、受送盤の物品の
送出方向における振巾を大きくする必要があり、即ちバ
ネ鋼材のたわみ量を大きくする必要があり、この結果さ
らに前記した曲げ応力、圧縮応力、引張り応力が増大し
、増々バネ鋼材の寿命時間が減少し、高速化の大きな問
題点となっている。
In particular, when increasing the article delivery speed, it is necessary to increase the amplitude of the receiving and sending board in the article delivery direction, that is, it is necessary to increase the amount of deflection of the spring steel, and as a result, the above-mentioned bending stress, Compressive stress and tensile stress increase, and the life time of spring steel materials decreases, which is a major problem in increasing speed.

さらに、従来の送出装置は、電磁マグネットの駆動源と
して商用の交流電流を通常の周波数(50〜60Hz)
で使用しており、振巾も小さく、さらに受送盤の内部に
収容する物品の増減により受送盤自体の重量が絶えず変
化するため、重量が一つの変数となり固有振動数が常時
変化し、振巾の最大である振動数にセットして運転を開
始したとしても物品の増減によって振動数が最大振巾か
らずれて、送出速度が低下することがある。
Furthermore, conventional sending devices use commercial alternating current at a normal frequency (50 to 60 Hz) as a driving source for an electromagnetic magnet.
The oscillation width is small, and the weight of the receiving board itself changes constantly due to increases and decreases in the number of items stored inside the receiving board, so weight becomes a variable and the natural frequency changes constantly. Even if the vibration frequency is set to the maximum amplitude and operation is started, the frequency may deviate from the maximum amplitude due to increase or decrease in the number of articles, and the delivery speed may decrease.

本発明は上記種々の問題を解決し、物品の高速送出が可
能な高周波振動を利用した物品の送出装置を提供するこ
とを目的とするものである。
It is an object of the present invention to solve the various problems mentioned above and to provide an article delivery device that utilizes high frequency vibration and is capable of delivering articles at high speed.

〔問題を解決するための手段〕[Means to solve the problem]

ら線状の通路を有する受送盤を電磁マグネットと、基台
と上記受送盤間に連結したバネ鋼材とによって、受送盤
を高周波振動させて物品を送出する装置であって、受送
盤、バネ鋼材等の振動系の変位を検出するセンサを配置
したものである。
This is a device that sends out articles by vibrating a receiving board having a spiral path at high frequency using an electromagnetic magnet and a spring steel material connected between the base and the receiving board. A sensor is installed to detect the displacement of a vibration system such as a board or spring steel.

〔作用〕[Effect]

振動系の重量変化による固有振動数の変化tこ対応して
、電磁マグネットの吸引周期を振動系の固有振動数に同
調させることによって振巾の減衰を防止する。即ち、セ
ンサのオン・オフ信号から電磁マグネットの吸引周期信
号を得ることによって、振動数の変化に追従するのであ
る。
Corresponding to the change in the natural frequency due to the change in the weight of the vibration system, damping of the amplitude is prevented by tuning the attraction period of the electromagnet to the natural frequency of the vibration system. That is, by obtaining the attraction cycle signal of the electromagnetic magnet from the on/off signal of the sensor, changes in the vibration frequency can be followed.

〔実施例〕〔Example〕

以下、本発明の実施例を図面に従って説明する0 なお、本実施例の送出装置は糸層を有する、あるいは有
しないボビンの送出装置について説明するが、処理され
る物品は種々のものが可能であり、物品の大きさ、形状
重量等によって受送盤の寸法、通路の形状等、バネ鋼材
の寸法等を変更し、物品の種類に対応して本発明装置を
適用することは可能である。さらに、また、直進フィー
ダにも適用可能であろう。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the delivery device of this embodiment will be described as a delivery device for a bobbin with or without a yarn layer, but various articles can be processed. However, it is possible to apply the device of the present invention according to the type of article by changing the dimensions of the receiving board, the shape of the passage, the dimensions of the spring steel material, etc., depending on the size, shape, weight, etc. of the article. Furthermore, it would also be applicable to linear feeders.

第2.3図に本発明を適用したボビンの送出装置(A)
を示す。該装置は基台(2)、受送盤(1)、電磁マグ
ネット(M)、バネ鋼材(K)等より構成され、床上に
固定設置された基台(2)の中央部に、ネジロッド(6
)により高さ調節可能に支持固定された電磁マグネット
(M)が配置され、該マグネット(M)の上面が吸着面
(7)とされる。
Figure 2.3 shows a bobbin delivery device to which the present invention is applied (A)
shows. The device consists of a base (2), a receiving board (1), an electromagnetic magnet (M), a spring steel material (K), etc., and a threaded rod ( 6
An electromagnetic magnet (M) supported and fixed in a height-adjustable manner is arranged, and the upper surface of the magnet (M) serves as an attraction surface (7).

一方、上記基台(2)上には複数箇所に配置されたバネ
鋼材(K)を介して受送盤(1)が支持される。
On the other hand, a receiving/transferring board (1) is supported on the base (2) via spring steel members (K) arranged at a plurality of locations.

上記受送盤(1)は、内部にボビン(B)をランダムな
配列状態で収容するスペース(8)、および、内周壁面
に沿ってらせん状の緩やかな上向きの斜面となったボビ
ン通路(9)が合成樹脂等の材質で成形されたボビン受
容部(10)と、外部底面に上記バネ鋼材(K)と連結
するブラケット部(11)、および上記電磁マグネット
(M)の吸着面(7)に対向して固定される被吸着部材
(12)等から構成され、各部材はボルト、あるいは溶
接等の固定手段により一つの銅体としで形成される。
The receiving board (1) has a space (8) for accommodating bobbins (B) in a random arrangement therein, and a bobbin passageway (8) that is spirally sloped gently upward along the inner circumferential wall surface. 9) includes a bobbin receiving part (10) molded from a material such as synthetic resin, a bracket part (11) connected to the spring steel material (K) on the external bottom surface, and an adsorption surface (7) of the electromagnetic magnet (M). ), each member is formed into a single copper body by fixing means such as bolts or welding.

上記基台に)と受送盤(1)間を連結するバネ鋼材(K
)は例えば第4図示の如く、基台(2]に固定する下水
平部分(13)、と受送盤(1)に固定する土水手部分
(14)および、両水平部分(13X14)間にのびる
傾斜部分(15)とが一体的に折曲げ形成されたもので
、スペーサ(16)(17)等を介してボルト(18X
19)によって基台(2)および受送盤(1)に固定さ
れる。なお、上記バネ鋼材(K)を固定するボルト(1
8X19)は折曲げ部分(CI )(C2)よりも距離
ta+だけ離れた位置が好ましく)少くともa > O
であり、距離(alの値は大きいほどよいが装置の構成
上の制約、バネ鋼材のたわみ量等より最適の値が設定さ
れる。
The spring steel material (K
) is, for example, as shown in the fourth diagram, the lower horizontal part (13) fixed to the base (2), the earth/water hand part (14) fixed to the receiving board (1), and between both horizontal parts (13 x 14). The extending inclined portion (15) is integrally bent and formed, and the bolt (18X
19) is fixed to the base (2) and the receiving board (1). In addition, the bolt (1) that fixes the spring steel material (K) is
8X19) is preferably located at a distance ta+ from the bent portion (CI) (C2)) at least a > O
The larger the value of the distance (al), the better, but the optimal value is set based on constraints on the configuration of the device, the amount of deflection of the spring steel, etc.

さらに、傾斜角(θ1)は、受送盤の必要とされる振巾
および電磁マグネンl−(M)と受送盤(1)の吸着面
(20)間の距離(S)等の条件によって設定される。
Furthermore, the inclination angle (θ1) depends on conditions such as the required swing width of the receiving board and the distance (S) between the electromagnetic magnene l-(M) and the suction surface (20) of the receiving board (1). Set.

上記実施例においては、バネ鋼材(K)は一枚の板状体
で厚さく1)のものが適用されるが、上記厚さくtlは
受送盤に要求される振巾を得るための固有振動数に対応
して適当なものが設定される。
In the above embodiment, the spring steel material (K) is a single plate with a thickness of 1). An appropriate value is set depending on the vibration frequency.

即ち、一般に、受送盤の固有振動数(ff(z)lよで
表わされる。ここでkはバネ鋼材のバネ定数(K?/C
m) 、 Wは受送盤全体の重量(切、gは重力加速度
(980cm/8eC2)である。従って振動数(fl
はバネ定数(k)および重量(W)によって影響される
のである。即ちバネ定数が小さい程、固有振動数も小さ
くなりまた、重量(W)が小さくなるに従い、固有振動
数(flが小さくなる。
That is, it is generally expressed as the natural frequency (ff(z)) of the receiving and transmitting board. Here, k is the spring constant of the spring steel material (K?/C
m), W is the weight of the entire receiving and sending board (g) is the gravitational acceleration (980cm/8eC2).Therefore, the frequency (fl
is influenced by the spring constant (k) and weight (W). That is, the smaller the spring constant, the smaller the natural frequency, and the smaller the weight (W), the smaller the natural frequency (fl).

従って通常の運転中においてはバネ定数(klは一定で
あり、重量(W)、によって大きな影響を受ける。
Therefore, during normal operation, the spring constant (kl) is constant and is greatly affected by the weight (W).

さらに、上記固有振動数(fHz)と振巾(elの関係
については、第9図の特性関係がある。即ち、所望の振
動に耐え得る厚さのバネ鋼材を用いて高周波振動させた
場合、振動数によってバネ鋼材の最大振巾が表われる位
置が異なるのである。第9図のグラフから明らかなよう
に、振動数が小さくなるに従い、最大振巾が大きくなっ
ている。例えば60Hzでは最大振巾は約4Mであるが
25Hz近傍では10Mの如くである。
Furthermore, the relationship between the above-mentioned natural frequency (fHz) and amplitude (el) has the characteristic relationship shown in FIG. The position where the maximum amplitude of the spring steel material appears differs depending on the frequency of vibration.As is clear from the graph in Figure 9, the maximum amplitude increases as the frequency decreases.For example, at 60Hz, the maximum amplitude The width is about 4M, but around 25Hz it is like 10M.

上記関係から受送盤の送出速度を上昇させるためには、
振巾を大きくすればよく、即ち、固有振動数を20〜3
0Hzの如〈従来の使用振動数(50〜5QHz )よ
り小さくすればよく、このためにはバネ定数即ち、バネ
鋼材の厚さを小さくしたものが適当である。
From the above relationship, in order to increase the sending speed of the receiving board,
All you need to do is increase the amplitude, that is, increase the natural frequency to 20 to 3.
It is sufficient to make the vibration frequency smaller than the conventionally used vibration frequency (50 to 5 QHz), such as 0 Hz, and for this purpose, it is appropriate to reduce the spring constant, that is, the thickness of the spring steel material.

一方、バネ鋼材にかかる曲げ応力については、一般に平
バネの荷重(PKSZ)およびたわみ(δWX)は の関係がある。ここでbは平バネの断面における長手方
向の長さ、hは同短手方向の長さいわゆる厚さくtlで
あり、lはバネの長さ、Eはヤング率である。
On the other hand, regarding the bending stress applied to a spring steel material, there is generally a relationship between the load (PKSZ) and the deflection (δWX) of a flat spring. Here, b is the length in the longitudinal direction in the cross section of the flat spring, h is the length in the transverse direction, so-called thickness tl, l is the length of the spring, and E is Young's modulus.

上記式(ロ)(ハンより曲げ応力(σ)はとなる。From the above formula (b) (Han), the bending stress (σ) is as follows.

上記式(ニ)より、たわみ量(δ)を一定とすると、バ
ネ鋼材の厚さChiが小さい程曲げ応力は小さくなる。
According to the above formula (d), when the amount of deflection (δ) is constant, the bending stress becomes smaller as the thickness Chi of the spring steel material becomes smaller.

従って、従来は厚さの小さいバネ鋼材を複数枚重ねて、
所望のバネ定数に設定し、第15図示の如くして、通常
の交流電流の50〜60Hzの振動数の下で作動させて
いたのである。従って、高周波振動による疲労破壊にも
耐え得るはずであるが、実際には上記計算による曲げ応
力に達しない応力でも破壊することがあったのである。
Therefore, conventionally, multiple pieces of spring steel material with small thickness were stacked on top of each other.
The spring constant was set to a desired value, as shown in Figure 15, and the device was operated under a normal alternating current frequency of 50 to 60 Hz. Therefore, it should be able to withstand fatigue failure caused by high-frequency vibrations, but in reality, failure occurred even under stress that did not reach the bending stress calculated above.

そこで、本発明者は、バネ鋼材(K)の形状を第4図示
の折曲げ部分(CI)(C2)を有するものとすると共
に、固有振動数fflを従来よりも小さい値の振動数と
して高速送出を可能にしたのである0 以下、本実施例の作用を説明する。
Therefore, the present inventor changed the shape of the spring steel material (K) to have the bent portions (CI) and (C2) shown in FIG. The operation of this embodiment will be explained below.

第4図示の正面視略S形のバネ鋼材(K)の作用を第1
0.11図に示す。即ち、 バネ鋼材(K)は電磁マグネットとの吸着、離反の繰り
返しによって、正面視においては、第10図の如く、実
線位置(K)と二点鎖線位置(Ka )を交互にとり、
平面視においては第11図の如く、実線位置(K)と二
点鎖線位置(I(b)とをとる。従ってバネ鋼材CK)
の下水平部(13)は基台に固定され、上水平部(14
)は受送盤に固定されているため、バネ鋼材(K)が実
線位置(K)から二点鎖線位置(Ka )(Kb )へ
変位する際に、ねじりの力が作用することになる。しか
しながら上記ねじりの力は、折曲げ部分(CI )(C
2)の角度変位として作用し、第15図示のバネ鋼材(
3)にはねじりによるせん断応力として作用していた応
力が、第10図のバネ鋼材(K)ではねじりによるせん
断応力を逃がすことになる。即ち、ボルトによる固定点
(18)(19)間のバネ鋼材(K)の長さは、固定点
(18X19)間の最短直線距離(L)よりも大きく、
従って、固定点(18)(19)の変位によって直線距
離が変化したとしてもバネ鋼材(■0の折曲げ部分の角
度変化によって自由に追従できるのである0 第5〜第8図やバネ鋼材の他の実施例を示す。
The action of the spring steel material (K), which is approximately S-shaped when viewed from the front, shown in Fig. 4 is explained first.
0.11 Shown in Figure. That is, as the spring steel material (K) repeatedly attracts and separates from the electromagnetic magnet, when viewed from the front, it alternates between the solid line position (K) and the two-dot chain line position (Ka), as shown in Fig. 10.
In plan view, as shown in Fig. 11, the solid line position (K) and the two-dot chain line position (I (b) are taken. Therefore, the spring steel material CK)
The lower horizontal part (13) of is fixed to the base, and the upper horizontal part (14)
) is fixed to the receiving and sending board, so when the spring steel material (K) is displaced from the solid line position (K) to the two-dot chain line position (Ka) (Kb), a torsional force is applied. However, the above torsional force is applied to the bent portion (CI) (C
2), and the spring steel material shown in Fig. 15 (
3), the stress that was acting as shear stress due to torsion is released in the case of the spring steel material (K) in FIG. 10. That is, the length of the spring steel material (K) between the fixing points (18) and (19) with bolts is greater than the shortest straight distance (L) between the fixing points (18x19),
Therefore, even if the straight line distance changes due to the displacement of the fixed points (18) and (19), it can be freely followed by changing the angle of the bent part of the spring steel material (■0). Another example will be shown.

第5図のバネ鋼材(K1)は、上水平部(21)と傾斜
部(22) 、下水平部(23)と傾斜部(22)との
なす折曲部分(C3XC4)の角度(θ3)が鋭角の場
合を示し、傾斜部(22)の傾きが第4図示のバネ鋼材
(K)と反対方向である。従って、受送盤上の物品の移
送方向は矢印(24)方向であり、第4図の移送方向(
25)と逆方向となる。
The spring steel material (K1) in Fig. 5 has an angle (θ3) of a bent portion (C3 shows an acute angle, and the inclination of the inclined portion (22) is in the opposite direction to that of the spring steel material (K) shown in the fourth figure. Therefore, the transport direction of the articles on the receiving board is the direction of arrow (24), and the transport direction (
25) and in the opposite direction.

第6図のバネ鋼材(K2)は、折曲げ部分(C5)が1
箇所のみの場合を示し、バネ鋼材(K2)の下部は基台
側(2)の傾斜固定面(2a月こボルト(26)により
固定され、上水平部(27)が受送盤(1)に固定され
たものである。傾斜部(28)の傾き方向は@4図と同
様で、従って物品の送りは矢印(25)方向となる。
The bent portion (C5) of the spring steel material (K2) in Figure 6 is 1
The lower part of the spring steel material (K2) is fixed by the inclined fixing surface (2a) on the base side (2) with the bolt (26), and the upper horizontal part (27) is fixed to the receiving board (1). The direction of inclination of the inclined portion (28) is the same as in Figure @4, so the article is fed in the direction of the arrow (25).

第7図は、さらに他の実施例で、上下に折曲げ部(C6
)(C7)を形成した略コ字形のバネ鋼材(K3)で、
上水平部(29)と傾斜部(30)とのなす角(θ5)
が鈍角、下水平部(31)と傾斜部(30)とのなす角
(θ6)が鋭角の場合を示す。
FIG. 7 shows still another embodiment, with a vertically bent portion (C6
) (C7) with a roughly U-shaped spring steel material (K3),
Angle (θ5) between the upper horizontal part (29) and the inclined part (30)
is an obtuse angle, and the angle (θ6) between the lower horizontal portion (31) and the inclined portion (30) is an acute angle.

上記第4〜7図のバネ鋼材CK)(K1)CK2)CK
3)はいずれも厚さくtlの一枚物のバネ鋼材を示した
が、第8図示の如く、厚さくtlのバネ鋼材(Ki)を
複数枚重ね合わせた状態で厚さくnりの一つのバネ鋼材
(K4)として用いることも可能である。上記符号(川
は重ね合わせ枚数である。このように重ね合わせる場合
は、一枚のバネ鋼材はZ形、あるいはS形のバネ鋼材と
すれば同一形状寸法のバネ鋼材を複数枚製作しておけば
、互いのバネ鋼材を密接して重ね合わせることができる
Spring steel materials CK) (K1) CK2) CK in Figures 4 to 7 above
3) all show a single piece of spring steel material with a thickness of tl, but as shown in Figure 8, a single piece of spring steel material with a thickness of n is stacked with multiple pieces of spring steel material (Ki) with a thickness of tl. It is also possible to use it as a spring steel material (K4). The above symbol (the river indicates the number of overlapping sheets. When overlapping in this way, if one spring steel material is a Z-shaped or S-shaped spring steel material, multiple pieces of spring steel material with the same shape and dimensions can be manufactured. For example, the spring steel materials can be stacked closely together.

さらに、本発明では、上記バネ鋼材の近傍に、電磁マグ
ネットの励磁タイミングを制御するセンサが第1図の如
く配置されている。即ち、電磁マグネット、バネ鋼材を
支持した基台に)下方にあって基台(2)を支持したベ
ース(40)上にネジロッド(41)が立設され、該ネ
ジロッド(41)にセンサ(Sl)(S2)を支承した
ブラケット(42)が上下方向に位置調節自在に螺着支
持される。上記基台(2)と別体のベース(40)上に
センサ(SIX、S2)を支持することにより、高周波
振動する受送盤、バネ鋼材との反作用により振動する基
台(2]の影響を回避でき、センサの検出精度を高める
ことができるのである。
Further, in the present invention, a sensor for controlling the excitation timing of the electromagnet is arranged near the spring steel material as shown in FIG. 1. That is, a threaded rod (41) is erected on a base (40) that is located below the base (40) that supports the base (2) and that supports the electromagnetic magnet and the spring steel, and a sensor (Sl) is installed on the threaded rod (41). ) (S2) is screwed and supported so that its position can be freely adjusted in the vertical direction. By supporting the sensor (SIX, S2) on a base (40) that is separate from the base (2) above, the effect of the base (2) that vibrates due to the reaction with the receiving and sending board that vibrates at high frequency and the spring steel material. This makes it possible to avoid this problem and improve the detection accuracy of the sensor.

なお、センサ(Sl)は、電磁マグネットが非動磁にな
り、バネ力によって反発したバネ鋼材を検出し、再び電
磁マグネットに励磁指令を付与するタイミングを得るた
めのセンサで近接センサが適用されている。
The sensor (Sl) is a sensor that uses a proximity sensor to detect the spring steel material that is repelled by the spring force when the electromagnetic magnet becomes non-dynamic, and to obtain the timing to give an excitation command to the electromagnetic magnet again. There is.

一方、上方のセンサ(S2)は、バネ鋼材(K)の振巾
即ち受送盤の振巾が設定以上に大きくなることを防止す
るためのセンサで、センサ(Sl)よりも後退した位置
に設置され、通常の振動中は作用しない位置であり、振
巾が設定以上に太きくなった時にバネ鋼材を検出して、
電磁マグネットに付与する電圧を低下させるとか、電磁
マグネットの動磁周期即ち加振振動数比をずらせる等の
制御を行い、減衰させる作用を行うものである。
On the other hand, the upper sensor (S2) is a sensor for preventing the swing width of the spring steel material (K), that is, the swing width of the receiving and feeding board from becoming larger than the set value, and is located at a position farther back than the sensor (Sl). It is installed at a position where it does not work during normal vibration, and when the vibration width becomes thicker than the setting, it detects the spring steel material,
It performs control such as lowering the voltage applied to the electromagnetic magnet or shifting the dynamic magnetic period, that is, the excitation frequency ratio, of the electromagnetic magnet to perform a damping effect.

次に上記センサの作用と受送盤、バネ鋼材の振動および
電磁マグネットの吸引周期について説明する。
Next, the operation of the sensor, the vibration of the receiving and receiving board, the spring steel material, and the attraction cycle of the electromagnet will be explained.

第12図においてバネ鋼材の振動と近接センサ(SIX
S2)の検出範囲の関係を示す。振動を示す線図(E)
の右端部(El)は電磁マグネットに受送盤が吸着され
て第1図のバネ鋼材が吸引力により最もたわんだ位置を
示し、左端部(K2月よ電磁マグネットがオフとなって
、バネ鋼材の弾性力によって最も反発した位置を示す。
Figure 12 shows the vibration of spring steel and the proximity sensor (SIX
The relationship between the detection ranges in S2) is shown. Diagram showing vibration (E)
The right end (El) shows the position where the receiving board is attracted to the electromagnetic magnet and the spring steel material in Fig. 1 is most deflected by the attraction force, and the left end part (K2) shows the position where the electromagnetic magnet is turned off and the spring steel material is It shows the position most repulsed by the elastic force of.

従って、左端部(K2)にバネ鋼材が到り、再び弾性力
により右方へ変位しようとする瞬間から電磁マグネット
に電流を流せば、振動系即ち受送盤(1)、バネ鋼材(
K)および物品を収容した状態の振動系の固有振動数を
電磁マグネットに電流を流す周期即ち吸引周期に同調さ
せることによりわずかな電力で受送盤は共振する。
Therefore, if a current is applied to the electromagnetic magnet from the moment when the spring steel reaches the left end (K2) and is about to be displaced to the right again due to the elastic force, the vibration system, that is, the receiving plate (1), and the spring steel (
K) and by synchronizing the natural frequency of the vibration system containing the article with the cycle of current flowing through the electromagnet, that is, the attraction cycle, the receiving and transmitting board resonates with a small amount of electric power.

従ってセンサ(Sl)はバネ鋼材(K)の左端部におけ
る範囲(α)においてバネ鋼材を検出し、第13図のパ
ルス信号(Pl)を発する。パルス信号(Pl)のパル
ス巾(α)は上記範囲(α)と一致し、中央位置(E2
)は第12図の左端部(E2)に一致する。センサ(S
l)から得られる上記パルス信号(Pl)は第1図のパ
ルス巾コントローラ(43)に入力、処理されて、第1
3図のパルス信号(P2)として出力(44)される。
Therefore, the sensor (Sl) detects the spring steel material in the range (α) at the left end of the spring steel material (K), and emits the pulse signal (Pl) shown in FIG. The pulse width (α) of the pulse signal (Pl) matches the above range (α), and the center position (E2
) corresponds to the left end (E2) in FIG. Sensor (S
The above-mentioned pulse signal (Pl) obtained from the pulse width controller (43) shown in FIG.
It is output (44) as a pulse signal (P2) in FIG.

該出力信号(44)が電磁マグネッ) (M)のコイル
に電流を流すタイミング信号として、第1図のトライア
ック(45)を制御し、コイル電流をオン・オフするの
である。即ち、補正されたパルス信号(P2)のパルス
(P2a)の立上り位置(46)は前記した振動線図の
左端位置(E2)に一致するように補正処理されるので
ある。即ちパルス(P2a)の巾(第13図ではα/2
)の時間、電磁マグネットに吸引力が作用し、受送盤が
吸引され、非動磁部分(P2b)はバネ鋼材の弾性力に
よって振動するのである。従って、上記パルス(P2a
 )は受送盤の固有振動数と同調することになるのであ
る。即ち、受送盤(1)内部の物品の量が変化し、前記
した式(イ)における重量(W)が変化し、固有振動数
(fHz)が変化したとしても、第14図には、振巾比
と加振振動数比の関係を示す。今、加振振動数、即ち電
磁マグネットの吸引周期が受送盤の固有振動数に一致し
ている場合の線図は(I)である。即ち、加振振動数比
が10で最大の振巾比を示しており、物品の重量変化、
例えば重量(′W)が減少した場合、固有振動数(fH
z)は増大する。このため加振振動数を一定にしておく
と振巾比は位置(X)まで落ちてしまうのである。
The output signal (44) serves as a timing signal for causing current to flow through the coil of the electromagnetic magnet (M), and controls the triac (45) shown in FIG. 1 to turn on and off the coil current. That is, the rising position (46) of the pulse (P2a) of the corrected pulse signal (P2) is corrected so as to match the left end position (E2) of the vibration diagram. That is, the width of the pulse (P2a) (α/2 in Fig. 13)
), an attractive force acts on the electromagnetic magnet, attracting the receiving and sending board, and the non-magnetic part (P2b) vibrates due to the elastic force of the spring steel. Therefore, the above pulse (P2a
) will be in tune with the natural frequency of the receiving and transmitting board. In other words, even if the amount of articles inside the receiving board (1) changes, the weight (W) in the above equation (a) changes, and the natural frequency (fHz) changes, the following equation is shown in FIG. The relationship between amplitude ratio and excitation frequency ratio is shown. Now, the diagram when the excitation frequency, that is, the attraction period of the electromagnetic magnet matches the natural frequency of the receiving and sending board, is shown in (I). That is, when the excitation frequency ratio is 10, the amplitude ratio is maximum, and the weight change of the article,
For example, if the weight ('W) decreases, the natural frequency (fH
z) increases. Therefore, if the excitation frequency is kept constant, the amplitude ratio will drop to position (X).

ところが、本願装置によれば、物品の重量変化によって
固有振動数が例えば20%変化したとしても、加振振動
数も同調して変化し、加振振動数比も同割合変化し、線
図(J)に移行する振巾比は常に一定となり、振巾が減
少することがないのである。
However, according to the device of the present invention, even if the natural frequency changes by, for example, 20% due to a change in the weight of the article, the excitation frequency also changes in sync, the excitation frequency ratio also changes by the same percentage, and the diagram ( The amplitude ratio that shifts to J) is always constant, and the amplitude never decreases.

次に、近接センサ(S2)の作用について説明する。セ
ンサ(S2月よ前記第1のセンサ(Sl)よりも後退し
た位置にあり、通常はバネ鋼材を検出しない。今、仮り
に振巾が増大し、第12図の二点鎖線(E2a )の状
態の振動が生じたとすると、センサ(81)(S2)か
らは第13図のパルス信号(Pl)(P3)が得られる
。上記信号(PI)(P3)は第1図のパルス巾コント
ローラ(43)に入力されるが、パルス(P3)が入力
された場合には、コントローラ(43)からはパルス信
号(P4)が出力される。即ち、センサ(S2)がバネ
鋼材を検出した瞬間位置(47)から直ちに電磁マグネ
ットが励磁(48)されて、吸引力が作用する。即ち、
バネ鋼材が左端部(E2a)に向かって移動中において
既に右向きの吸引力を作用させるために、バネ鋼材の振
動にある種のブレーキ力が作用することになり、バネ鋼
材の振巾が減少するように作用するのである0 従って、振巾が増大しすぎることによって、バネ鋼材の
たわみ量(δ)が大きくなり、この結果バネ鋼材が折損
するという事故が防止される。
Next, the action of the proximity sensor (S2) will be explained. The sensor (S2) is located at a position further back than the first sensor (Sl) and normally does not detect spring steel. Now, suppose the amplitude increases and the two-dot chain line (E2a) in Fig. 12 Assuming that state oscillation occurs, the sensor (81) (S2) obtains the pulse signal (Pl) (P3) shown in FIG. 13. The above signal (PI) (P3) is generated by the pulse width controller ( 43), but when a pulse (P3) is input, a pulse signal (P4) is output from the controller (43).In other words, the instantaneous position when the sensor (S2) detects the spring steel material Immediately from (47), the electromagnetic magnet is excited (48) and an attractive force is applied. That is,
Since a rightward suction force is already applied to the spring steel while it is moving toward the left end (E2a), a kind of braking force acts on the vibration of the spring steel, reducing the amplitude of the spring steel. Therefore, an accident in which the amount of deflection (δ) of the spring steel increases due to an excessive increase in the swing width, resulting in breakage of the spring steel can be prevented.

なお、振巾が仮に第12図の線図より小さくなった場合
は、バネ鋼材のたわみ量が減少するので、たわみ量にの
み起因する折損は生じることはな(、NO なお、振巾の減少による送出速度の低下を防止するとい
う点からは振巾を増大させるための手段を設けることも
可能である。例えば、前記センサ(Sl)のパルス信号
(Pl)のパルス巾(α)が設定以下に減少した場合に
は、第1図示の電線(49)に強電流を流し、マグネッ
トの吸引力を増加し、バネ鋼材の反発力を高めることに
よって、振巾を増大させるような制御回路を設けること
ができる。
Note that if the swing width becomes smaller than the diagram in Figure 12, the amount of deflection of the spring steel material will decrease, so breakage due only to the amount of deflection will not occur (NO). It is also possible to provide a means for increasing the amplitude in order to prevent a decrease in the delivery speed due to If the amplitude decreases, a control circuit is provided to increase the amplitude by passing a strong current through the electric wire (49) shown in the first diagram to increase the attraction force of the magnet and the repulsion force of the spring steel material. be able to.

なお、上記実施例においてはバネ鋼材の変位を検出する
近接センサを設けた例を示したが、受送盤(1)自体の
変位を検出するセンサを設けることによっても上記同様
の制御を行うことも勿論可能である。即ち、振動系の変
位を検出するセンサを配置し、第13図示の信号(Pl
)〜(P4)を発生させるのである。
In addition, in the above embodiment, an example was shown in which a proximity sensor was provided to detect the displacement of the spring steel material, but the same control as described above can also be performed by providing a sensor to detect the displacement of the receiving and sending board (1) itself. Of course, it is also possible. That is, a sensor for detecting the displacement of the vibration system is arranged, and a signal (Pl
) to (P4) are generated.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明では、振動系の変位を検出するセ
ンサに基いて電磁マグネットの吸引周期を、振動系の固
有振動数に同調させるようにしたので、受送盤内の物品
重量の増減に対しても、振動系の振巾が減少することな
く、一定の送出速度を維持できる。
As described above, in the present invention, the suction cycle of the electromagnetic magnet is tuned to the natural frequency of the vibration system based on the sensor that detects the displacement of the vibration system. Even in this case, a constant delivery speed can be maintained without reducing the amplitude of the vibration system.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明装置の実施例を示す要部正面図、第2
図は物品送出装置の一例を示す概略構成正面図、第3図
は同平面図、第4〜8図はバネ鋼材の種々の例を示す正
面図、第9図はバネ鋼材の振動数と振巾の関係を示すグ
ラフ線図、第10図は第1図示のバネ鋼材の挙動を示す
正面図、第11図は同平面図、第12図はセンサ(Sl
)(S2)の検出範囲を示す線図、第13図はセンサ(
81)C82)のパルス信号と、電磁マグネットの吸引
周期との関係を示す信号線図、第14図は加振振動数比
と振巾比の関係を示すグラフ線図、第15図は従来のバ
ネ鋼材を示す正面図、@16図は同平面図、第17図は
物品の移送原理を示す説明図である。 (1)・・・受送盤      (M)・・・電磁マグ
ネット(K)・・・バネ鋼材    (Sl)・・・近
接センサ第5図    第4図 0.5       LOl、2    1.5力01
反乎辰垂h#欠上ヒ 第14図 第15図
FIG. 1 is a front view of main parts showing an embodiment of the device of the present invention, and FIG.
The figure is a schematic front view showing an example of the article delivery device, Figure 3 is a plan view of the same, Figures 4 to 8 are front views showing various examples of spring steel, and Figure 9 is the frequency and vibration of spring steel. A graph diagram showing the relationship between widths, FIG. 10 is a front view showing the behavior of the spring steel shown in FIG. 1, FIG. 11 is a plan view of the same, and FIG. 12 is a sensor (Sl
) (S2), Fig. 13 is a diagram showing the detection range of the sensor (
81) A signal diagram showing the relationship between the pulse signal of C82) and the attraction period of the electromagnet, Figure 14 is a graph diagram showing the relationship between the excitation frequency ratio and the amplitude ratio, and Figure 15 is the conventional A front view showing the spring steel material, Fig. 16 is a plan view thereof, and Fig. 17 is an explanatory view showing the principle of transporting articles. (1)...Receiver board (M)...Electromagnetic magnet (K)...Spring steel material (Sl)...Proximity sensor Figure 5 Figure 4 0.5 LOl, 2 1.5 Force 01
Anti-Tatsutare h #Kanagehi Fig. 14 Fig. 15

Claims (1)

【特許請求の範囲】[Claims] ら線状の通路を有する受送盤を含む振動系を電磁マグネ
ットにより高周波振動させて物品を送出する装置におい
て、上記振動系の変位を検出するセンサを設けたことを
特徴とする物品送出装置。
What is claimed is: 1. An article delivery device that sends out articles by vibrating a vibration system including a receiving board having a spiral path at high frequency using an electromagnetic magnet, the article delivery device comprising a sensor for detecting displacement of the vibration system.
JP358985A 1985-01-11 1985-01-11 Article feeding device Granted JPS61162471A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP358985A JPS61162471A (en) 1985-01-11 1985-01-11 Article feeding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP358985A JPS61162471A (en) 1985-01-11 1985-01-11 Article feeding device

Publications (2)

Publication Number Publication Date
JPS61162471A true JPS61162471A (en) 1986-07-23
JPH021055B2 JPH021055B2 (en) 1990-01-10

Family

ID=11561648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP358985A Granted JPS61162471A (en) 1985-01-11 1985-01-11 Article feeding device

Country Status (1)

Country Link
JP (1) JPS61162471A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0584765A1 (en) 1992-08-24 1994-03-02 Ykk Corporation Control system for parts feeder
KR20070105070A (en) * 2006-04-25 2007-10-30 이무용 Frequency dependence model auto array supply system and method for control

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5315276A (en) * 1976-07-28 1978-02-10 Toyo Eazooru Kougiyou Kk Aerosol products

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5315276A (en) * 1976-07-28 1978-02-10 Toyo Eazooru Kougiyou Kk Aerosol products

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0584765A1 (en) 1992-08-24 1994-03-02 Ykk Corporation Control system for parts feeder
US5372237A (en) * 1992-08-24 1994-12-13 Yoshida Kogyo K.K. Control system for parts feeder
KR20070105070A (en) * 2006-04-25 2007-10-30 이무용 Frequency dependence model auto array supply system and method for control

Also Published As

Publication number Publication date
JPH021055B2 (en) 1990-01-10

Similar Documents

Publication Publication Date Title
US6441571B1 (en) Vibrating linear actuator and method of operating same
US20060027443A1 (en) Conveying apparatus with piezoelectric driver
US4979608A (en) Two trough, electromagnetically vibratory feeder
CN88103366A (en) Vibration damping equipment
US5931285A (en) Vibration conveyors
JPS61162471A (en) Article feeding device
US2974265A (en) Electric clock
US6911754B2 (en) Control of electro-magnets
EP0781718B1 (en) Control method and controller of vibrating feeder
US6779291B2 (en) Sound transmitting device for a fishing lure
US4880106A (en) Electromagnetic vibratory feeder
JP4323826B2 (en) Electromagnetic vibratory feeder and combination weighing device
US4128161A (en) Vibratory device
JPS61162470A (en) Article feeding device
JP2879267B2 (en) Vibration device
JPH045504Y2 (en)
TWI717494B (en) Parts feeder
JPH09235016A (en) Controlling method of vibration feeder, controller, and weighing device
US5483225A (en) Structure of a shock device of a shock sensor of a burglar alarm
JP2594004Y2 (en) Feeder for combination weigher
JP3912562B2 (en) Elliptical vibration parts feeder
JP5314930B2 (en) Linear feeder, fixing method thereof, and combination weigher provided with the same
JPH11180529A (en) Method of drivingly controlling elliptical vibration parts feeder
KR20080042611A (en) Duplex transmission in-line parts feeder
JP3944757B2 (en) Elliptical vibration parts feeder

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees