JPH021055B2 - - Google Patents
Info
- Publication number
- JPH021055B2 JPH021055B2 JP60003589A JP358985A JPH021055B2 JP H021055 B2 JPH021055 B2 JP H021055B2 JP 60003589 A JP60003589 A JP 60003589A JP 358985 A JP358985 A JP 358985A JP H021055 B2 JPH021055 B2 JP H021055B2
- Authority
- JP
- Japan
- Prior art keywords
- spring steel
- steel material
- receiving
- board
- frequency
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910000639 Spring steel Inorganic materials 0.000 description 79
- 239000000463 material Substances 0.000 description 63
- 230000007423 decrease Effects 0.000 description 13
- 238000010586 diagram Methods 0.000 description 11
- 230000005284 excitation Effects 0.000 description 11
- 238000005452 bending Methods 0.000 description 6
- 238000001514 detection method Methods 0.000 description 4
- 238000006073 displacement reaction Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 230000001154 acute effect Effects 0.000 description 2
- 238000013016 damping Methods 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005279 excitation period Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65G—TRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
- B65G27/00—Jigging conveyors
- B65G27/08—Supports or mountings for load-carriers, e.g. framework, bases, spring arrangements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H67/00—Replacing or removing cores, receptacles, or completed packages at paying-out, winding, or depositing stations
- B65H67/06—Supplying cores, receptacles, or packages to, or transporting from, winding or depositing stations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H2701/00—Handled material; Storage means
- B65H2701/30—Handled filamentary material
- B65H2701/31—Textiles threads or artificial strands of filaments
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Feeding Of Articles To Conveyors (AREA)
- Replacing, Conveying, And Pick-Finding For Filamentary Materials (AREA)
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は高周波振動を利用した物品送出装置に
関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an article delivery device that utilizes high frequency vibration.
高周波振動を利用して、物品を整列して送出す
る装置は公知である。実公昭51−49401号公報に
は、ボビンの送出装置が示されている。即ち、第
15図〜第17図に示すように、受送盤1と基台
2間は複数箇所に、バネ鋼材3が傾斜してその両
端が部材1,2に固着26,26されており、基
台に設置した電磁マグネツトのオン・オフによつ
て受送盤1がバネ鋼材3に抗して吸着1、離反1
aする動作が周期的に繰返されて受送盤1上の物
品Wに円周方向の送り力が作用し、物品は飛びは
ね運動を行いつつ送出されるようになつている。
従つて、受送盤1が電磁マグネツトに、バネ鋼材
のバネ力に抗して吸着される際には、受送盤1は
下方向および円周方向に変位することになりバネ
鋼材3に第15図の矢印4方向のたわみ、およ
び、第16図の矢印5方向のねじれが生じる。こ
の結果、第16図におけるバネ鋼材3の半径方向
の内側部分3aに圧縮応力、外側部分3bに引張
応力がかかり、しかも、上記バネ鋼材3は平板状
のプレート3iが複数枚重合わせ、両端部分が固
定された状態であるため、まげ応力、ねじりによ
るせん断応力が直接的にバネ鋼材に応力として作
用するため高周波振動によつて短時間の内に疲労
破壊を生じ、頻繁にバネ鋼材を取換える必要があ
つた。
2. Description of the Related Art Devices that use high-frequency vibrations to align and deliver articles are known. Japanese Utility Model Publication No. 51-49401 discloses a bobbin delivery device. That is, as shown in FIGS. 15 to 17, spring steel members 3 are inclined at multiple locations between the receiving board 1 and the base 2, and both ends thereof are fixed 26, 26 to the members 1, 2. By turning on and off the electromagnetic magnet installed on the base, the receiving and sending board 1 resists the spring steel material 3 to attract 1 and to separate 1.
The operation of a is repeated periodically, and a circumferential feeding force is applied to the article W on the receiving and sending board 1, so that the article is sent out while performing a bouncing motion.
Therefore, when the receiving board 1 is attracted by the electromagnetic magnet against the spring force of the spring steel material, the receiving board 1 is displaced downward and in the circumferential direction, and the spring steel material 3 Deflection in the direction of arrow 4 in FIG. 15 and twisting in the direction of arrow 5 in FIG. 16 occur. As a result, compressive stress is applied to the inner portion 3a in the radial direction of the spring steel material 3 in FIG. 16, and tensile stress is applied to the outer portion 3b. Since the spring steel is in a fixed state, bending stress and shear stress due to torsion act directly on the spring steel, resulting in fatigue failure within a short time due to high frequency vibration, and the spring steel must be replaced frequently. The need arose.
特に物品の送出速度を高速にする場合、受送盤
の物品の送出方向における振巾を大きくする必要
があり、即ちバネ鋼材のたわみ量を大きくする必
要があり、この結果さらに前記した曲げ応力、圧
縮応力、引張り応力が増大し、増々バネ鋼材の寿
命時間が減少し、高速化の大きな問題点となつて
いる。 In particular, when increasing the article delivery speed, it is necessary to increase the amplitude of the receiving and sending board in the article delivery direction, that is, it is necessary to increase the amount of deflection of the spring steel material, and as a result, the above-mentioned bending stress Compressive stress and tensile stress increase, and the service life of spring steel materials decreases, which is a major problem in increasing speed.
さらに、従来の送出装置は、電磁マグネツトの
駆動源として商用の交流電流を通常の周波数(50
〜60Hz)で使用しており、振巾も小さく、さらに
受送盤の内部に収容する物品の増減により受送盤
自体の重量が絶えず変化するため、重量が一つの
変数となり固有振動数が常時変化し、振巾の最大
である振動数にセツトして運転を開始したとして
も物品の増減によつて振動数が最大振巾からずれ
て、送出速度が低下することがある。 Furthermore, conventional delivery devices use commercial alternating current at a normal frequency (50
~60Hz), the amplitude is small, and the weight of the receiving board itself changes constantly due to increases and decreases in the number of items stored inside the receiving board, so weight is a variable and the natural frequency is constant. Even if the vibration frequency is set to the maximum amplitude and operation is started, the frequency may deviate from the maximum amplitude due to increase or decrease in the number of articles, and the delivery speed may decrease.
本発明は上記種々の問題を解決し、物品の高速
送出が可能な高周波振動を利用した物品の送出装
置を提供することを目的とするものである。 It is an object of the present invention to solve the various problems mentioned above and to provide an article delivery device that utilizes high frequency vibration and is capable of delivering articles at high speed.
ら線状の通路を有する受送盤を電磁マグネツト
と、基台と上記受送盤間に連結したバネ鋼材とに
よつて、受送盤を高周波振動させて物品を送出す
る装置であつて、受送盤、バネ鋼材のうち少なく
とも一方の振巾を検出するセンサを配置したもの
である。
A device that sends out articles by vibrating a receiving board having a spiral passage at high frequency using an electromagnetic magnet and a spring steel member connected between a base and the receiving board, A sensor is arranged to detect the swing width of at least one of the receiving board and the spring steel material.
振動系の重量変化による固有振動数の変化に対
応して、電磁マグネツトの吸引周期を振動系の固
有振動数に同調させることによつて振巾の減衰を
防止する。即ち、センサのオン・オフ信号から電
磁マグネツトの吸引周期信号を得ることによつ
て、振動数の変化に追従するのである。
In response to changes in the natural frequency due to changes in the weight of the vibration system, damping of the amplitude is prevented by tuning the attraction period of the electromagnet to the natural frequency of the vibration system. That is, by obtaining the attraction cycle signal of the electromagnet from the on/off signal of the sensor, changes in the vibration frequency can be followed.
以下、本発明の実施例を図面に従つて説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.
なお、本実施例の送出装置は糸層を有する、あ
るいは有しないボビンの送出装置について説明す
るが、処理される物品は種々のものが可能であ
り、物品の大きさ、形状重量等によつて受送盤の
寸法、通路の形状等、バネ鋼材の寸法等を変更
し、物品の種類に対応して本発明装置を適用する
ことは可能である。さらに、また、直進フイーダ
にも適用可能であろう。 Note that the delivery device of this embodiment will be described as a delivery device for a bobbin with or without a yarn layer, but various products can be processed, and the processing may vary depending on the size, shape, weight, etc. of the product. It is possible to apply the device of the present invention depending on the type of article by changing the dimensions of the receiving board, the shape of the passage, and the dimensions of the spring steel material. Furthermore, it would also be applicable to linear feeders.
第2,3図に本発明を適用したボビンの送出装
置Aを示す。該装置は基台2、受送盤1、電磁マ
グネツトM、バネ鋼材K等より構成され、床上に
固定設置された基台2の中央部に、ネジロツド6
により高さ調節可能に支持固定された電磁マグネ
ツトMが配置され、該マグネツトMの上面が吸着
面7とされる。 2 and 3 show a bobbin delivery device A to which the present invention is applied. This device consists of a base 2, a receiving and receiving board 1, an electromagnetic magnet M, a spring steel K, etc., and a screw rod 6 is attached to the center of the base 2, which is fixedly installed on the floor.
An electromagnetic magnet M supported and fixed in a height-adjustable manner is disposed, and the upper surface of the magnet M serves as an attraction surface 7.
一方、上記基台2上には複数箇所に配置された
バネ鋼材Kを介して受送盤1が支持される。上記
受送盤1は、内部にボビンBをランダムな配列状
態で収容するスペース8、および、内周壁面に沿
つてらせん状の緩やかな上向きの斜面となつたボ
ビン通路9が合成樹脂等の材質で成形されたボビ
ン受容部10と、外部底面に上記バネ鋼材Kと連
結するブラケツト部11、および上記電磁マグネ
ツトMの吸着面7に対向して固定される被吸着部
材12等から構成され、各部材はボルト、あるい
は溶接等の固定手段により一つの鋼体として形成
される。 On the other hand, the receiving and sending board 1 is supported on the base 2 via spring steel members K arranged at a plurality of locations. The receiving board 1 has a space 8 for accommodating the bobbins B in a randomly arranged state, and a bobbin passage 9 that is spirally sloped gently upward along the inner circumferential wall surface, and is made of a material such as synthetic resin. It is composed of a bobbin receiving part 10 molded in The member is formed as a single steel body by fixing means such as bolts or welding.
上記基台2と受送盤1間を連結するバネ鋼材K
は例えば第4図示の如く、基台2に固定する下水
平部分13、と受送盤1に固定する上水平部分1
4および、両水平部分13,14間にのびる傾斜
部分15とが一体的に折曲げ形成されたもので、
スペーサ16,17等を介してボルト18,19
によつて基台2および受送盤1に固定される。な
お、上記バネ鋼材Kを固定するボルト18,19
は折曲げ部分C1,C2よりも距離(a)だけ離れた
位置が好ましく少くともa>0であり、距離(a)の
値は大きいほどよいが装置の構成上の制約、バネ
鋼材のたわみ量等より最適の値が設定される。 Spring steel material K connecting between the base 2 and the receiving board 1
For example, as shown in the fourth figure, the lower horizontal part 13 is fixed to the base 2, and the upper horizontal part 1 is fixed to the receiving board 1.
4 and an inclined portion 15 extending between both horizontal portions 13 and 14 are integrally bent and formed,
Bolts 18, 19 via spacers 16, 17, etc.
It is fixed to the base 2 and the receiving board 1 by means of. Note that the bolts 18 and 19 that fix the spring steel material K are
is preferably a distance (a) away from the bent portions C1 and C2, with at least a > 0, and the larger the value of distance (a), the better, but due to restrictions due to the configuration of the device and the amount of deflection of the spring steel material. The optimum value is set based on the above.
さらに、傾斜角(θ1)は、受送盤の必要とされ
る振巾および電磁マグネツトMと受送盤1の吸着
面20間の距離(S)等の条件によつて設定され
る。 Furthermore, the angle of inclination (.theta.1) is set according to conditions such as the required swing width of the receiving and receiving board and the distance (S) between the electromagnetic magnet M and the suction surface 20 of the receiving and sending board 1.
上記実施例においては、バネ鋼材Kは一枚の板
状体で厚さ(t)のものが適用されるが、上記厚
さ(t)は受送盤に要求される振巾を得るための
固有振動数に対応して適当なものが設定される。
即ち、一般に、受送盤の固有振動数(fHz)は
で表わされる。ここでkはバネ鋼材のバネ定数
(Kg/cm)、Wは受送盤全体の重量(Kg)、gは重
力加速度(980cm/sec2)である。従つて振動数
(f)はバネ定数(k)および重量(W)によつて影響さ
れるのである。即ちバネ定数が小さい程、固有振
動数も小さくなりまた、重量(W)が小さくなる
に従い、固有振動数(f)が小さくなる。 In the above embodiment, the spring steel material K is a single plate with a thickness (t), but the thickness (t) is determined to obtain the swing width required for the receiving board. An appropriate value is set depending on the natural frequency.
That is, in general, the natural frequency (fHz) of the receiving and transmitting board is It is expressed as Here, k is the spring constant of the spring steel material (Kg/cm), W is the weight of the entire receiving and sending board (Kg), and g is the gravitational acceleration (980 cm/sec 2 ). Therefore the frequency
(f) is influenced by the spring constant (k) and weight (W). That is, the smaller the spring constant, the smaller the natural frequency, and the smaller the weight (W), the smaller the natural frequency (f).
従つて通常の運転中においてはバネ定数(k)は一
定であり、重量(W)によつて大きな影響を受け
る。 Therefore, during normal operation, the spring constant (k) is constant and is greatly influenced by the weight (W).
さらに、上記固有振動数(fHz)と振巾(e)の関
係については、第9図の特性関係がある。即ち、
所望の振動に耐え得る厚さのバネ鋼材を用いて高
周波振動させた場合、振動数によつてバネ鋼材の
最大振巾が表われる位置が異なるのである。第9
図のグラフから明らかなように、振動数が小さく
なるに従い、最大振巾が大きくなつている。例え
ば60Hzでは最大振巾は約4mmであるが25Hz近傍で
は10mmの如くである。 Furthermore, regarding the relationship between the natural frequency (fHz) and the amplitude (e), there is a characteristic relationship shown in FIG. 9. That is,
When a spring steel material with a thickness that can withstand a desired vibration is vibrated at high frequency, the position where the maximum amplitude of the spring steel material appears differs depending on the frequency of vibration. 9th
As is clear from the graph in the figure, as the frequency decreases, the maximum amplitude increases. For example, at 60 Hz, the maximum amplitude is about 4 mm, but near 25 Hz, it is 10 mm.
上記関係から受送盤の送出速度を上昇させるた
めには、振巾を大きくすればよく、即ち、固有振
動数を20〜30Hzの如く従来の使用振動数(50〜60
Hz)より小さくすればよく、このためにはバネ定
数即ち、バネ鋼材の厚さを小さくしたものが適当
である。 From the above relationship, in order to increase the sending speed of the receiving and sending board, it is sufficient to increase the amplitude.
Hz), and for this purpose, it is appropriate to reduce the spring constant, that is, the thickness of the spring steel material.
一方、バネ鋼材にかかる曲げ応力については、
一般に平バネの荷重(PKg)およびたわみ(δ
mm)は
P=bh2σ/6l ……(ロ)
δ=4l3P/bh3E ……(ハ)
の関係がある。ここでbは平バネの断面における
長手方向の長さ、hは同短手方向の長さいわゆる
厚さ(t)であり、lはバネの長さ、Eはヤング
率である。 On the other hand, regarding the bending stress applied to spring steel,
In general, the load (PKg) and deflection (δ
mm) has the following relationship: P=bh 2 σ/6l...(b) δ=4l 3 P/bh 3 E...(c). Here, b is the length in the longitudinal direction of the cross section of the flat spring, h is the length in the transverse direction, so-called thickness (t), l is the length of the spring, and E is Young's modulus.
上記式(ロ)(ハ)より曲げ応力(σ)は σ=6/4δhE/l2 ……(ニ) となる。 From the above equations (b) and (c), the bending stress (σ) is σ=6/4δhE/l 2 ...(d).
上記式(ニ)より、たわみ量(δ)を一定とする
と、バネ鋼材の厚さ(h)が小さい程曲げ応力は小さ
くなる。 From the above formula (d), if the amount of deflection (δ) is constant, the bending stress becomes smaller as the thickness (h) of the spring steel material becomes smaller.
従つて、従来は厚さの小さいバネ鋼材を複数枚
重ねて、所望のバネ定数に設定し、第15図示の
如くして、通常の交流電流の50〜60Hzの振動数の
下で作動させていたのである。従つて、高周波振
動による疲労破壊にも耐え得るはずであるが、実
際には上記計算による曲げ応力に達しない応力で
も破壊することがあつたのである。 Therefore, conventionally, multiple pieces of spring steel with small thickness are stacked, set to a desired spring constant, and operated under the frequency of 50 to 60 Hz of normal alternating current as shown in Figure 15. It was. Therefore, it should be able to withstand fatigue failure due to high-frequency vibrations, but in reality, failure occurred even under stress that did not reach the bending stress calculated above.
そこで、本発明者は、バネ鋼材Kの形状を第4
図示の折曲げ部分C1,C2を有するものとする
と共に、固有振動数(f)を従来よりも小さい値の振
動数として高速送出を可能にしたのである。 Therefore, the inventor changed the shape of the spring steel material K into a fourth shape.
In addition to having the bent portions C1 and C2 shown in the figure, the natural frequency (f) is set to a smaller value than the conventional one to enable high-speed transmission.
以下、本実施例の作用を説明する。 The operation of this embodiment will be explained below.
第4図示の正面視略S形のバネ鋼材Kの作用を
第10,11図に示す。即ち、
バネ鋼材Kは電磁マグネツトとの吸着、離反の
繰り返しによつて、正面視においては、第10図
の如く、実線位置Kと二点鎖線位置Kaを交互に
とり、平面視においては第11図の如く、実線位
置Kと二点鎖線位置Kbとをとる。従つてバネ鋼
材Kの下水平部13は基台に固定され、上水平部
14は受送盤に固定されているため、バネ鋼材K
が実線位置Kから二点鎖線位置Ka,Kbへ変位す
る際に、ねじりの力が作用することになる。しか
しながら上記ねじりの力は、折曲げ部分C1,C
2の角度変位として作用し、第15図示のバネ鋼
材3にはねじりによるせん断応力として作用して
いた応力が、第10図のバネ鋼材Kではねじりに
よるせん断応力を逃がすことになる。即ち、ボル
トによる固定点18,19間のバネ鋼材Kの長さ
は、固定点18,19間の最短直線距離(L)よりも
大きく、従つて固定点18,19の変位によつて
直線距離が変化したとしてもバネ鋼材Kの折曲げ
部分の角度変化によつて自由に追従できるのであ
る。 10 and 11 show the action of the spring steel material K, which is approximately S-shaped when viewed from the front, shown in FIG. 4. That is, as the spring steel material K repeatedly attracts and separates from the electromagnet, when viewed from the front, it alternates between the solid line position K and the two-dot chain line position Ka, as shown in FIG. 10, and when viewed from above, as shown in FIG. As shown, the solid line position K and the two-dot chain line position Kb are taken. Therefore, since the lower horizontal part 13 of the spring steel material K is fixed to the base, and the upper horizontal part 14 is fixed to the receiving board, the spring steel material K
When is displaced from the solid line position K to the two-dot chain line positions Ka and Kb, a torsional force acts. However, the above torsional force is applied to the bent portions C1 and C
2, and the stress that was acting as shear stress due to torsion on the spring steel material 3 shown in FIG. 15 releases the shear stress due to torsion in the spring steel material K shown in FIG. 10. That is, the length of the spring steel material K between the fixing points 18 and 19 by bolts is larger than the shortest straight line distance (L) between the fixing points 18 and 19, and therefore the straight line distance can be changed by the displacement of the fixing points 18 and 19. Even if the angle changes, it can be freely followed by changing the angle of the bent portion of the spring steel material K.
第5〜第8図にバネ鋼材の他の実施例を示す。
第5図のバネ鋼材K1は、上水平部21と傾斜部
22、下水平部23と傾斜部22とのなす折曲部
分C3,C4の角度(θ3)が鋭角の場合を示し、
傾斜部22の傾きが第4図示のバネ鋼材Kと反対
方向である。従つて、受送盤上の物品の移送方向
は矢印24方向であり、第4図の移送方向25と
逆方向となる。 Other embodiments of the spring steel material are shown in FIGS. 5 to 8.
The spring steel material K1 in FIG. 5 shows the case where the angle (θ3) of the bent portions C3 and C4 formed between the upper horizontal portion 21 and the inclined portion 22, and the lower horizontal portion 23 and the inclined portion 22 is an acute angle,
The slope of the inclined portion 22 is in the opposite direction to that of the spring steel material K shown in the fourth figure. Therefore, the direction of transport of the articles on the receiving board is the direction of arrow 24, which is opposite to the direction of transport 25 in FIG.
第6図のバネ鋼材K2は、折曲げ部分C5が1
箇所のみの場合を示し、バネ鋼材K2の下部は基
台側2の傾斜固定面2aにボルト26により固定
され、上水平部27が受送盤1に固定されたもの
である。傾斜部28の傾き方向は第4図と同様
で、従つて物品の送りは矢印25方向となる。 In the spring steel material K2 shown in Fig. 6, the bent portion C5 is 1
The lower part of the spring steel material K2 is fixed to the inclined fixing surface 2a of the base side 2 with bolts 26, and the upper horizontal part 27 is fixed to the receiving and sending board 1. The direction of inclination of the inclined portion 28 is the same as that shown in FIG. 4, so the article is fed in the direction of the arrow 25.
第7図は、さらに他の実施例で、上下に折曲げ
部C6,C7を形成した略コ字形のバネ鋼材K3
で、上水平部29と傾斜部30とのなす角(θ5)
が鈍角、下水平部31と傾斜部30とのなす角
(θ6)が鋭角の場合を示す。 FIG. 7 shows still another embodiment, a substantially U-shaped spring steel member K3 with bent portions C6 and C7 formed on the upper and lower sides.
The angle (θ5) between the upper horizontal part 29 and the inclined part 30 is
is an obtuse angle, and the angle (θ6) between the lower horizontal portion 31 and the inclined portion 30 is an acute angle.
上記第4〜7図のバネ鋼材K,K1,K2,K
3はいずれも厚さ(t)の一枚物のバネ鋼材を示
したが、第8図示の如く、厚さ(t)のバネ鋼材
Kiを複数枚重ね合わせた状態で厚さ(nt)の一
つのバネ鋼材K4として用いることも可能であ
る。上記符号(n)は重ね合わせ枚数である。こ
のように重ね合わせる場合は、一枚のバネ鋼材は
Z形、あるいはS形のバネ鋼材とすれば同一形状
寸法のバネ鋼材を複数枚製作しておけば、互いの
バネ鋼材を密接して重ね合わせることができる。 Spring steel materials K, K1, K2, K in Figures 4 to 7 above
3 shows a single piece of spring steel material with a thickness (t), but as shown in FIG. 8, a spring steel material with a thickness (t)
It is also possible to use a plurality of pieces of Ki layered together as one spring steel material K4 with a thickness (nt). The above code (n) is the number of overlapping sheets. When overlapping in this way, if one spring steel material is a Z-shaped or S-shaped spring steel material, it is possible to make multiple pieces of spring steel material with the same shape and dimensions, so that the spring steel materials can be stacked closely together. Can be matched.
さらに、本発明では、上記バネ鋼材の近傍に、
電磁マグネツトの励磁タイミングを制御するため
にバネ鋼材の振巾を検出するセンサが第1図の如
く配置されている。即ち、電磁マグネツト、バネ
鋼材を支持した基台2下方にあつて基台2を支持
したベース40上にネジロツド41が立設され、
該ネジロツド41にセンサS1,S2を支承した
ブラケツト42が上下方向に位置調節自在に螺着
支持される。上記基台2と別体のベース40上に
センサS1,S2を支持することにより、高周波
振動する受送盤、バネ鋼材との反作用により振動
する基台2の影響を回避でき、センサの検出精度
を高めることができるのである。 Furthermore, in the present invention, near the spring steel material,
In order to control the excitation timing of the electromagnet, a sensor for detecting the amplitude of the spring steel material is arranged as shown in FIG. That is, a screw rod 41 is erected on a base 40 that is located below the base 2 that supports the electromagnetic magnet and the spring steel, and that supports the base 2.
A bracket 42 supporting the sensors S1 and S2 is screwed onto the threaded rod 41 so as to be vertically adjustable. By supporting the sensors S1 and S2 on a base 40 that is separate from the base 2, it is possible to avoid the influence of the base 2, which vibrates due to the reaction with the high-frequency vibration receiving and sending board and the spring steel material, and the detection accuracy of the sensor. It is possible to increase the
なお、センサS1は、電磁マグネツトが非励磁
になり、バネ力によつて反発したバネ鋼材を検出
し、再び電磁マグネツトに励磁指令を付与するタ
イミングを得るためのセンサで近接センサが適用
されている。 The sensor S1 is a proximity sensor that detects the spring steel material that is repelled by the spring force when the electromagnet is de-energized and obtains the timing for giving an excitation command to the electromagnet again. .
一方、上方のセンサS2は、バネ鋼材Kの振巾
即ち受送盤の振巾が設定以上に大きくなることを
防止するためのセンサで、センサS1よりも後退
した位置に設置され、通常の振動中は作用しない
位置であり、振巾が設定以上に大きくなつた時に
バネ鋼材を検出して、電磁マグネツトに付与する
電圧を低下させるとか、電磁マグネツトの励磁周
期即ち加振振動数比をずらせる等の制御を行い、
減衰させる作用を行うものである。 On the other hand, the upper sensor S2 is a sensor for preventing the swing width of the spring steel material K, that is, the swing width of the receiving board from becoming larger than the set value, and is installed at a position further back than the sensor S1, and is used to prevent normal vibrations. The middle position is a non-active position, and when the amplitude of vibration becomes larger than the setting, the spring steel material is detected and the voltage applied to the electromagnetic magnet is lowered, or the excitation period of the electromagnetic magnet, that is, the excitation frequency ratio, is shifted. etc.,
It has a damping effect.
次に上記センサの作用と受送盤、バネ鋼材の振
動および電磁マグネツトの吸引周期について説明
する。 Next, the operation of the sensor, the vibration of the receiving and receiving board, the spring steel material, and the suction cycle of the electromagnet will be explained.
第12図においてバネ鋼材の振動と近接センサ
S1,S2の検出範囲の関係を示す。振動を示す
線図Eの右端部E1は電磁マグネツトに受送盤が
吸着されて第1図のバネ鋼材が吸引力により最も
たわんだ位置を示し、左端部E2は電磁マグネツ
トがオフとなつて、バネ鋼材の弾性力によつて最
も反発した位置を示す。従つて、左端部E2にバ
ネ鋼材が到り、再び弾性力により右方へ変位しよ
うとする瞬間から電磁マグネツトに電流を流せ
ば、振動系即ち受送盤1、バネ鋼材Kおよび物品
を収容した状態の振動系の固有振動数を電磁マグ
ネツトに電流を流す周期即ち吸引周期に同調させ
ることによりわずかな電力で受送盤を共振する。 FIG. 12 shows the relationship between the vibration of the spring steel material and the detection range of the proximity sensors S1 and S2. The right end E1 of the diagram E showing the vibration shows the position where the receiving board is attracted to the electromagnetic magnet and the spring steel material in FIG. It shows the position where the most rebound occurs due to the elastic force of the spring steel material. Therefore, if a current is applied to the electromagnetic magnet from the moment when the spring steel reaches the left end E2 and is about to be displaced to the right again due to the elastic force, the vibration system, that is, the receiving board 1, the spring steel K, and the article will be accommodated. By tuning the natural frequency of the state vibration system to the cycle of current flowing through the electromagnet, that is, the attraction cycle, the receiving and transmitting board resonates with a small amount of electric power.
従つてセンサS1はバネ鋼材Kの左端部におけ
る範囲(α)においてバネ鋼材を検出し、第13
図のパルス信号P1を発する。パルス信号P1の
パルス巾(α)は上記範囲(α)と一致し、中央
位置E2は第12図の左端部E2に一致する。セ
ンサS1から得られる上記パルス信号P1は第1
図のパルス巾コントローラ43に入力、処理され
て、第13図のパルス信号P2として出力44さ
れる。該出力信号44が電磁マグネツトMのコイ
ルに電流を流すタイミング信号として、第1図の
トライアツク45を制御し、コイル電流をオン・
オフするのである。即ち、補正されたパルス信号
P2のパルスP2aの立上り位置46は前記した
振動線図の左端位置E2に一致するように補正処
理されるのである。即ちパルスP2aの巾(第1
3図ではα/2)の時間、電磁マグネツトに吸引
力が作用し、受送盤が吸引され、非励磁部分P2
bはバネ鋼材の弾性力によつて振動するのであ
る。従つて、上記パルスP2aは受送盤の固有振
動数と同調することになるのである。即ち、受送
盤1内部の物品の量が変化し、前記した式(イ)にお
ける重量(W)が変化し、固有振動数(fHz)が
変化したとしても、電磁マグネツトの吸引周期も
必ず上記振動数(fHz)に同調するのである。 Therefore, the sensor S1 detects the spring steel material in the range (α) at the left end of the spring steel material K, and
The pulse signal P1 shown in the figure is generated. The pulse width (α) of the pulse signal P1 coincides with the above range (α), and the center position E2 coincides with the left end E2 in FIG. The pulse signal P1 obtained from the sensor S1 is the first
It is input to the pulse width controller 43 shown in the figure, processed, and output 44 as the pulse signal P2 shown in FIG. The output signal 44 is used as a timing signal to cause a current to flow through the coil of the electromagnetic magnet M, and controls the triax 45 shown in FIG. 1 to turn on/off the coil current.
Turn it off. That is, the rising position 46 of the pulse P2a of the corrected pulse signal P2 is corrected so as to match the left end position E2 of the vibration diagram. That is, the width of pulse P2a (first
In Figure 3, an attractive force acts on the electromagnetic magnet for a time α/2), the receiving board is attracted, and the non-excited part P2
b vibrates due to the elastic force of the spring steel material. Therefore, the pulse P2a is synchronized with the natural frequency of the receiving and transmitting board. In other words, even if the amount of articles inside the receiving and receiving board 1 changes, the weight (W) in the above equation (a) changes, and the natural frequency (fHz) changes, the attraction period of the electromagnetic magnet will always be the same as above. It tunes to the frequency (fHz).
第14図には、振巾比と加振振動数比の関係を
示す。今、加振振動数、即ち電磁マグネツトの吸
引周期が受送盤の固有振動数に一致している場合
の線図はIである。即ち、加振振動数比が1.0で
最大の振巾比を示しており、物品の重量変化、例
えば重量(W)が減少した場合、固有振動数(f
Hz)は増大する。このため加振振動数を一定にし
ておくと振巾比は位置Xまで落ちてしまうのであ
る。 FIG. 14 shows the relationship between the amplitude ratio and the excitation frequency ratio. Now, the diagram I shows when the excitation frequency, that is, the attraction period of the electromagnetic magnet, matches the natural frequency of the receiving and sending board. In other words, when the excitation frequency ratio is 1.0, it shows the maximum amplitude ratio, and when the weight of the article changes, for example, when the weight (W) decreases, the natural frequency (f
Hz) increases. For this reason, if the excitation frequency is kept constant, the amplitude ratio will drop to position X.
ところが、本願装置によれば、物品の重量変化
によつて固有振動数が例えば20%変化したとして
も、加振振動数も同調して変化し、加振振動数比
も同割合変化し、線図Jに移行する振巾比は常に
一定となり、振巾が減少することがないのであ
る。 However, according to the device of the present invention, even if the natural frequency changes by, for example, 20% due to a change in the weight of the article, the excitation frequency also changes in sync, the excitation frequency ratio also changes by the same percentage, and the line The amplitude ratio that shifts to Figure J is always constant, and the amplitude never decreases.
次に、近接センサS2の作用について説明す
る。センサS2は前記第1のセンサS1よりも後
退した位置にあり、通常はバネ鋼材を検出しな
い。今、仮りに振巾が増大し、第12図の二点鎖
線E2aの状態の振動が生じたとすると、センサ
S1,S2からは第13図のパルス信号P1,P
3が得られる。上記信号P1,P3は第1図のパ
ルス巾コントローラ43に入力されるが、パルス
P3が入力された場合には、コントローラ43か
らはパルス信号P4が出力される。即ち、センサ
S2がバネ鋼材を検出した瞬間位置47から直ち
に電磁マグネツトが励磁48されて、吸引力が作
用する。即ち、バネ鋼材が左端部E2aに向かつ
て移動中において既に右向きの吸引力を作用させ
るために、バネ鋼材の振動にある種のブレーキ力
が作用することになり、バネ鋼材の振巾が減少す
るように作用するのである。 Next, the operation of the proximity sensor S2 will be explained. The sensor S2 is located at a position further back than the first sensor S1, and normally does not detect spring steel. Now, if the amplitude increases and vibration occurs as indicated by the two-dot chain line E2a in FIG.
3 is obtained. The signals P1 and P3 are input to the pulse width controller 43 shown in FIG. 1, but when the pulse P3 is input, the controller 43 outputs the pulse signal P4. That is, the electromagnet is immediately excited 48 from the instant position 47 when the sensor S2 detects the spring steel material, and an attractive force is applied. That is, since a rightward suction force is already applied to the spring steel while it is moving toward the left end portion E2a, a kind of braking force is applied to the vibration of the spring steel, and the swing width of the spring steel is reduced. This is how it works.
従つて、振巾が増大しすぎることによつて、バ
ネ鋼材のたわみ量(δ)が大きくなり、この結果
バネ鋼材が折損するという事故が防止される。な
お、振巾が仮に第12図の線図より小さくなつた
場合は、バネ鋼材のたわみ量が減少するので、た
わみ量にのみ起因する折損は生じることはない。 Therefore, an accident in which the deflection amount (δ) of the spring steel material becomes large due to an excessive increase in the swing width, resulting in breakage of the spring steel material is prevented. Note that if the swing width becomes smaller than the diagram in FIG. 12, the amount of deflection of the spring steel material will decrease, so breakage due only to the amount of deflection will not occur.
なお、振巾の減少による送出速度の低下を防止
するという点からは振巾を増大させるための手段
を設けることも可能である。例えば、前記センサ
S1のパルス信号P1のパルス巾(α)が設定以
下に減少した場合には、第1図示の電線49に強
電流を流し、マグネツトの吸引力を増加し、バネ
鋼材の反発力を高めることによつて、振巾を増大
させるような制御回路を設けることができる。 Note that in order to prevent a decrease in the delivery speed due to a decrease in the swing width, it is also possible to provide means for increasing the swing width. For example, when the pulse width (α) of the pulse signal P1 of the sensor S1 decreases below the set value, a strong current is passed through the electric wire 49 shown in the first diagram to increase the attractive force of the magnet and the repulsive force of the spring steel material. A control circuit can be provided to increase the amplitude by increasing the amplitude.
なお、上記実施例においてはバネ鋼材の変位を
検出する近接センサを設けた例を示したが、受送
盤1自体の変位を検出するセンサを設けることに
よつても上記同様の制御を行うことも勿論可能で
ある。即ち、振動系の変位を検出するセンサを配
置し、第13図示の信号P1〜P4を発生させる
のである。 In addition, in the above embodiment, an example was shown in which a proximity sensor was provided to detect the displacement of the spring steel material, but the same control as described above can also be performed by providing a sensor to detect the displacement of the receiving and sending board 1 itself. Of course, it is also possible. That is, a sensor is arranged to detect the displacement of the vibration system, and the signals P1 to P4 shown in FIG. 13 are generated.
以上のように、本発明では、受送盤とバネ綱材
のうち少なくとも1方の振巾を検出するセンサに
基づいて電磁マグネツトの吸引周期を、受送盤の
固有振動数に同調させるようにしたので、受送盤
内の物品重量の増減に対しても、受送盤の振巾が
減少することなく、一定の送出速度を維持でき
る。
As described above, in the present invention, the attraction cycle of the electromagnetic magnet is tuned to the natural frequency of the receiving board based on the sensor that detects the amplitude of at least one of the receiving board and the spring rope. Therefore, even if the weight of the articles in the receiving board increases or decreases, the swing width of the receiving board does not decrease and a constant delivery speed can be maintained.
第1図は、本発明装置の実施例を示す要部正面
図、第2図は物品送出装置の一例を示す概略構成
正面図、第3図は同平面図、第4〜8図はバネ鋼
材の種々の例を示す正面図、第9図はバネ鋼材の
振動数と振巾の関係を示すグラフ線図、第10図
は第1図示のバネ鋼材の挙動を示す正面図、第1
1図は同平面図、第12図はセンサS1,S2の
検出範囲を示す線図、第13図はセンサS1,S
2のパルス信号と、電磁マグネツトの吸引周期と
の関係を示す信号線図、第14図は加振振動数比
と振巾比の関係を示すグラフ線図、第15図は従
来のバネ鋼材を示す正面図、第16図は同平面
図、第17図は物品の移送原理を示す説明図であ
る。
1……受送盤、M……電磁マグネツト、K……
バネ鋼材、S1……近接センサ。
Fig. 1 is a front view of main parts showing an embodiment of the device of the present invention, Fig. 2 is a schematic front view showing an example of the article delivery device, Fig. 3 is a plan view of the same, and Figs. 4 to 8 are spring steel materials. Fig. 9 is a graph diagram showing the relationship between the frequency and amplitude of the spring steel material, Fig. 10 is a front view showing the behavior of the spring steel material shown in Fig. 1;
Figure 1 is a plan view of the same, Figure 12 is a line diagram showing the detection range of sensors S1 and S2, and Figure 13 is a diagram showing the detection range of sensors S1 and S2.
Fig. 14 is a signal diagram showing the relationship between the pulse signal of No. 2 and the attraction period of the electromagnet, Fig. 14 is a graph diagram showing the relation between the excitation frequency ratio and the amplitude ratio, and Fig. 15 is a graph showing the relationship between the excitation frequency ratio and the amplitude ratio. 16 is a plan view of the same, and FIG. 17 is an explanatory diagram showing the principle of transporting articles. 1... Receiving board, M... Electromagnetic magnet, K...
Spring steel material, S1... Proximity sensor.
Claims (1)
トと、基台と上記受送盤間に連結したバネ綱材と
によつて、受送盤を高周波振動させて物品を送出
する装置であつて、受送盤、バネ綱材等のうち少
なくとも1方の振巾を検出するセンサを設け、該
センサの信号により上記電磁マグネツトを制御す
ることを特徴とする物品送出装置。1. A device that sends out articles by vibrating a receiving board having a rectangular path at high frequency using an electromagnetic magnet and a spring rope connected between the base and the receiving board. An article delivery device characterized in that a sensor is provided to detect the swing width of at least one of a receiving board, a spring rope, etc., and the electromagnetic magnet is controlled by a signal from the sensor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP358985A JPS61162471A (en) | 1985-01-11 | 1985-01-11 | Article feeding device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP358985A JPS61162471A (en) | 1985-01-11 | 1985-01-11 | Article feeding device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61162471A JPS61162471A (en) | 1986-07-23 |
JPH021055B2 true JPH021055B2 (en) | 1990-01-10 |
Family
ID=11561648
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP358985A Granted JPS61162471A (en) | 1985-01-11 | 1985-01-11 | Article feeding device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61162471A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0672532A (en) * | 1992-08-24 | 1994-03-15 | Yoshida Kogyo Kk <Ykk> | Part feeder control device |
KR20070105070A (en) * | 2006-04-25 | 2007-10-30 | 이무용 | Frequency dependence model auto array supply system and method for control |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5315276A (en) * | 1976-07-28 | 1978-02-10 | Toyo Eazooru Kougiyou Kk | Aerosol products |
-
1985
- 1985-01-11 JP JP358985A patent/JPS61162471A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5315276A (en) * | 1976-07-28 | 1978-02-10 | Toyo Eazooru Kougiyou Kk | Aerosol products |
Also Published As
Publication number | Publication date |
---|---|
JPS61162471A (en) | 1986-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7104394B2 (en) | Conveying apparatus with piezoelectric driver | |
EP0349693A2 (en) | Two trough, electromagnetically vibratory feeder | |
US6705459B1 (en) | Two-way vibratory feeder | |
US6802220B2 (en) | Apparatus for transporting levitated objects | |
US6637585B2 (en) | Apparatus for levitating and transporting object | |
JPH021055B2 (en) | ||
US3372793A (en) | Vibratory conveyor systems | |
US2696292A (en) | Spiral conveyer feeder bowl | |
JPH045504Y2 (en) | ||
JPS61162470A (en) | Article feeding device | |
JP5590977B2 (en) | Linear feeder and combination weigher using the same | |
EP1673598B1 (en) | Vibratory conveyor | |
JP5626771B2 (en) | Linear feeder and combination weigher using the same | |
JP2004352446A (en) | Straight advancing feeder | |
JP2730208B2 (en) | Linear vibration feeder | |
CN217296028U (en) | Electromagnetic drive formula groove that shakes | |
JP5314930B2 (en) | Linear feeder, fixing method thereof, and combination weigher provided with the same | |
US5946891A (en) | Controllable stop vibratory feeder | |
JP3640697B2 (en) | Vibrating conveyor | |
JP2011105481A (en) | Vibrating type components feeder | |
JP2594004Y2 (en) | Feeder for combination weigher | |
JP2009113972A (en) | Oscillating type part supplying device | |
US20050115807A1 (en) | Vibratory conveyor apparatus | |
TWI717494B (en) | Parts feeder | |
JPH0242654Y2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |