JPS61161442A - Method for measuring hydrogen and oxygen concentration in molten copper or copper alloy - Google Patents

Method for measuring hydrogen and oxygen concentration in molten copper or copper alloy

Info

Publication number
JPS61161442A
JPS61161442A JP60001928A JP192885A JPS61161442A JP S61161442 A JPS61161442 A JP S61161442A JP 60001928 A JP60001928 A JP 60001928A JP 192885 A JP192885 A JP 192885A JP S61161442 A JPS61161442 A JP S61161442A
Authority
JP
Japan
Prior art keywords
gas
molten metal
hydrogen
oxygen
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60001928A
Other languages
Japanese (ja)
Inventor
Kenji Osumi
大隅 研治
Masahiro Tsukuda
筑田 昌宏
Setsuo Yamaguchi
山口 節夫
Eiji Yoshida
吉田 栄次
Katsutaro Shin
進 克太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP60001928A priority Critical patent/JPS61161442A/en
Publication of JPS61161442A publication Critical patent/JPS61161442A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/20Metals
    • G01N33/202Constituents thereof
    • G01N33/2022Non-metallic constituents
    • G01N33/2025Gaseous constituents

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PURPOSE:To measure the hydrogen or oxygen concn. in molten copper or copper alloy without being affected by a disturbing gas by blowing nitrogen or helium as a carrier gas into the molten metal and maintaining the hydrogen and oxygen under the equil. partial pressure in the melt and vapor phase. CONSTITUTION:Nitrogen is first blown as the inert carrier gas into the molten metal and the gas blown from the molten metal is again returned into the molten metal to maintain the partial pressure of the hydrogen in the equil. state with the vapor phase in the molten metal in the case of measuring the hydrogen in the molten metal. The heat conductivity of the vapor phase is measured and the hydrogen concn. is determined. The measurement is made possible without disturbance by gaseous carbon dioxide, etc. Helium is used as the carrier gas and the oxygen is measured similarly without being disturbed by gaseous carbon dioxide, etc. in the case of measuring the oxygen in the molten metal. The equilibrium between partial pressure of the hydrogen or oxygen with the vapor phase in the molten metal is maintained by blowing the carrier gas into the molten metal in the above-mentioned manner and therefore the measurement of the hydrogen or oxygen concn. with high reliability without being affected by the disturbing gas is made possible.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、気相側の熱伝導率を測定することにより銅又
は銅合金溶湯中の水素及び酸素濃度を測定するに当たり
該測定における妨害ガスの影響を除去することによって
上記測定の信頼性を向上させることのでさた銅又は銅合
金中の水素及び酸素濃度測定方法に関するものである。
Detailed Description of the Invention [Industrial Application Field] The present invention is directed to the measurement of hydrogen and oxygen concentrations in copper or copper alloy molten metal by measuring the thermal conductivity of the gas phase side. The present invention relates to a method for measuring hydrogen and oxygen concentrations in copper or copper alloys, which improves the reliability of the measurement by eliminating the influence of.

[従来の技術] 金属中に存在するガス成分が該金属の物理的化学的性質
に大きな影響を怪えることはよく知られている0例えば
鉄や銅についてはガス成分の含有率が過剰になるとひず
み、固溶硬化、溶接時の遅れ割れ等が生じ製品の品質を
著しく低下させる。
[Prior Art] It is well known that gas components present in metals have a great influence on the physical and chemical properties of the metals.For example, for iron and copper, if the content of gas components becomes excessive, Distortion, solid solution hardening, delayed cracking during welding, etc. occur, significantly reducing product quality.

銅や銅合金についても同様であり、水素や酸素の含有率
によっては鋳塊割れや気孔欠陥等が生じこれらの影響が
製品にも及んでいた。従って上述の如き過剰なガス成分
を適正含有率以下に調節して製品品質を向上させようと
すれば、ガス分析をrI:。
The same applies to copper and copper alloys, and depending on the content of hydrogen or oxygen, cracks in the ingot or pore defects may occur, and these effects also affect the product. Therefore, in order to improve product quality by controlling the above-mentioned excessive gas components to below the appropriate content, gas analysis should be performed using rI:.

確且つ迅速に行ないその結果を製造操業に反映さ”せな
ければならないが、この意味でもガス分析は非常に重要
である。
Gas analysis must be performed reliably and quickly and the results must be reflected in manufacturing operations, and in this sense, gas analysis is also extremely important.

ところで銅や銅合金のガス分析は従来より主に固体抽出
法(レフ、イタツク法)により行なわれている。この方
法を用いると測定における信頼性の点ではかなり良好な
結果が得られるものの。
By the way, gas analysis of copper and copper alloys has traditionally been carried out mainly by solid extraction methods (Lev and Itak methods). Although this method gives fairly good results in terms of measurement reliability.

(1)経費が多くかかる、(2)測定に時間がかかる、
(3)もし満足出来る測定結果が得られなければ鋳塊を
再び溶解して脱ガス工程へ戻す必要があり、七の点無駄
が生じる。といった問題点が存在している。
(1) It costs a lot of money. (2) It takes time to measure.
(3) If a satisfactory measurement result is not obtained, the ingot must be melted again and returned to the degassing process, resulting in seven points of waste. There are problems such as:

そこで熱伝導率を測定する方法が提案されているが、こ
の方法を用いると上述の様な問題点を生じることがない
、しかし測定における信頼性の点で必ずしも満足のいく
結果が得られず、この方法を用いるには何らかの工夫を
加える必要があった。
Therefore, a method of measuring thermal conductivity has been proposed, but this method does not cause the problems mentioned above, but it does not necessarily give satisfactory results in terms of reliability in measurement. In order to use this method, it was necessary to add some kind of ingenuity.

[発明が解決しようとする問題点] 本発明は上述の様な状況に鑑みてなされたものであり、
熱伝導率を測定することにより銅又は銅合金溶湯中の水
素及び酸111度を測定するに当たり該測定における妨
害ガスの影響を除去することによって上記測定の信頼性
を向上させることを目的とするものである。
[Problems to be solved by the invention] The present invention has been made in view of the above-mentioned situation,
The purpose is to improve the reliability of the above measurement by removing the influence of interfering gases in the measurement of hydrogen and acid 111 degrees in copper or copper alloy molten metal by measuring thermal conductivity. It is.

〔問題点を解決するための手段] 上記目的に適う本発明の銅又は銅合金溶湯中の水素濃度
測定方法とは、水素を含む複数のガス成分が銅又は銅合
金溶湯と気相との間で分圧平衡を保っている状態におい
て気相の熱伝導度を測定することによって該溶湯中の水
am度を測定するに当たり、キャリヤガスとして窒素を
用いることにより妨害ガスの影響を除去することに要旨
が存在するものである。
[Means for Solving the Problems] The method for measuring hydrogen concentration in molten copper or copper alloy according to the present invention, which meets the above objectives, is a method for measuring hydrogen concentration in molten copper or copper alloy, in which a plurality of gas components containing hydrogen are present between the molten copper or copper alloy and the gas phase. When measuring the water am content in the molten metal by measuring the thermal conductivity of the gas phase while maintaining partial pressure equilibrium, nitrogen is used as a carrier gas to eliminate the influence of interfering gases. It has a gist.

また水素及び酸素の両方を含む複数のガス成分が銅又は
銅合金溶湯と気相との間で分圧平衡を保っている場合に
おいては、まずキャリヤガスとして窒素を用いることに
より妨害ガスの影響を除去して水素濃度を求めておき、
次にキャリヤガスとしてヘリウムを用いると共に上記水
素濃度の測定結果を用いることにより妨害ガスの影響を
除去して酸素濃度を測定することに要旨が存在する。
In addition, when multiple gas components including both hydrogen and oxygen maintain partial pressure equilibrium between the molten copper or copper alloy and the gas phase, first use nitrogen as a carrier gas to eliminate the effects of interfering gases. Remove it and find the hydrogen concentration,
Next, the gist lies in measuring the oxygen concentration by using helium as a carrier gas and using the measurement results of the hydrogen concentration to remove the influence of the interfering gas.

[作用] 以下本発明を完成するに至る迄の経緯を辿りつつ本発明
の構成及び作用効果を明らかにしていくが4その際本発
明の測定方法における基本的操作についてまず説明し1
次いで未発+51の特徴を水素と酸素とに分けて夫々説
明することとする。
[Function] The structure and effects of the present invention will be clarified below while tracing the process leading up to the completion of the present invention.4 At that time, the basic operations of the measuring method of the present invention will first be explained1.
Next, the characteristics of unexploded +51 will be explained separately for hydrogen and oxygen.

測定の基本的操作については以下の通りである。すなわ
ち(1)溶湯と反応しない不活性ガスをキャリヤガスと
して選定し、(2)その一定量を溶湯中に吹き込み、(
3)溶湯中から吹き出るカス成分を再び溶湯中に吹き込
み、(4)上記(3)の操作を循環的に繰り返して上記
ガス成分が溶湯と気相との間で分圧平衡を保っている状
態とし、(5)上記気相の熱伝導度を測定し、(6)そ
の結果を用いて計算し溶湯中のガス分析を行なう。
The basic operations for measurement are as follows. That is, (1) select an inert gas that does not react with the molten metal as a carrier gas, (2) blow a certain amount of it into the molten metal, and (
3) The scum components blowing out from the molten metal are blown into the molten metal again, and (4) the above operation (3) is repeated cyclically to maintain partial pressure equilibrium between the molten metal and the gas phase. (5) Measure the thermal conductivity of the gas phase, and (6) Calculate using the results to analyze the gas in the molten metal.

次に本発明の作用を水素の場合と酸素の場合に分けて説
明する。
Next, the effect of the present invention will be explained separately for the case of hydrogen and the case of oxygen.

(1)永久 本発明者等は、N2ガスの熱伝導率と相当異なり且つ0
2ガス、C02ガス、COガス等の妨害ガスの熱伝導率
と類似する様な熱伝導率を有するガ予を、前述の基本的
操作(1)におけるキャリヤガスとして選択すればよい
との着想を基に。
(1) Permanent The present inventors have found that the thermal conductivity is considerably different from that of N2 gas and is 0.
The idea was that a gas having a thermal conductivity similar to that of interfering gases such as 2 gas, CO2 gas, and CO gas should be selected as the carrier gas in the basic operation (1) above. Based on.

N2ガスを選定して鋭意研究を重ねた結果本発明を完成
するに至ったものである。上述の様な着想段階について
第1表を用いてさらに説明する。
The present invention was completed as a result of extensive research on the selection of N2 gas. The ideation stage as described above will be further explained using Table 1.

第1表 第1表はA一定[1的ガス、キャリヤガス、妨害ガスの
夫々について室温での熱伝4率の値を示したものである
が、測定目的ガスであるN2ガスの熱伝導率が419 
X 10− ’  にal/ssc cm”c (以下
全てのガスについてX I O−’  Cal/see
 C1l”0(7)部分は省略して記す)であるのに対
し、キャリヤガスN2は57であり、主たる妨害ガス0
2は58である。この様にN2ガスをキャリヤガスとし
て選定した場合、この熱伝導率が支たる妨害ガスである
02の熱伝導率と類似している為、02も実質上ギヤリ
ヤガスとして扱うことができ測定目的ガスH2は妨゛S
ガスo2の影響を受けることなく測定されることになる
。尚CO2ガス及びCOガスも妨害ガスとして存在する
が COガスの熱伝導率は53であり、キャリヤガスで
あるN2ガスの値と類似している為上記同様妨害ガスと
はならず、またCO2ガスとCOガスとの溶湯における
合計の含有率が1%にも満たないというのが一般的であ
る為N2ガスの定着ではCO2とCOとは無視しても良
いと言える。
Table 1 Table 1 shows the values of the heat transfer coefficient at room temperature for each of A constant gas, carrier gas, and interference gas, but the thermal conductivity of N2 gas, which is the gas to be measured. is 419
X 10-' al/ssc cm"c (For all gases, X I O-' Cal/see
C1l"0 (7) part is omitted), whereas the carrier gas N2 is 57, and the main interfering gas is 0.
2 is 58. When N2 gas is selected as the carrier gas in this way, since its thermal conductivity is similar to that of 02, which is the supporting interfering gas, 02 can also be treated as a gear carrier gas, and the measurement target gas H2 is a hindrance
The measurement will be performed without being affected by the gas o2. Note that CO2 gas and CO gas also exist as interfering gases, but the thermal conductivity of CO gas is 53, which is similar to that of N2 gas, which is a carrier gas, so they are not interfering gases as above, and CO2 gas Since the total content of N2 gas and CO gas in the molten metal is generally less than 1%, it can be said that CO2 and CO can be ignored when fixing with N2 gas.

(2)酸素 N2ガスのときと同様本発明者等は、熱伝導率において
02ガスと相当異なり且つN2ガス。
(2) Similar to the case of oxygen and N2 gas, the present inventors found that the thermal conductivity of the N2 gas is considerably different from that of the 02 gas.

CO2ガス、COガス等の妨害ガスと類似するガスを前
述の基本的操作(1)におけるキャリヤガスとして選択
すればよいとの着想を基に、Heガスを選定して鋭意研
究を重ねた結果本発明を完成するに至ったものである。
Based on the idea that a gas similar to interfering gases such as CO2 gas and CO gas should be selected as the carrier gas in the basic operation (1) mentioned above, we selected He gas and conducted intensive research. This led to the completion of the invention.

但し02ガスの場合におけるキャリヤガスHeと主たる
妨害ガスH2との熱伝導率の類似性は、N2ガス測定の
場合におけるキャリヤガスN2と主たる妨害ガス02の
熱伝導率の類似性より弱く、これが原因となり基本的操
作(6)に示した計算の際に若干の工夫が必要であるが
このあたりの事情を中心に再び第1表を参照して説明す
る。キャリヤガスHeの熱伝導率は343であるのに対
し主たる妨害ガスH2の熱伝導率は419であり、それ
らの値にはかなりの違いがあることがわかる。この為キ
ャリヤガスとしてHeガスを用いて熱伝導率を測定した
場合における該熱伝導率にはHeガスと02ガス以外の
他の要素すなわちN2ガスの影響が含まれていることに
なる。従って02ガス測定における信頼性向上の為には
N2ガスの影響を線素する必要が生じる。しかるに溶湯
中におけるN2ガス濃度は前述の水素ガス測定のところ
で求めたので既知の値となっており、一方別途Heガス
に対するN2ガスの影響を把握する検量線を作成してお
き、上記既知のN2ガス濃度とこの検量線とを対比する
ことにより溶湯中における02濃度に対するN2ガスの
影響を知り、この知見を基に02ガス濃度の補正を行な
うことができる。概念的には以上の様にして妨害ガスの
影響を除去する訳であるが具体的には次の様に行なう。
However, the similarity in thermal conductivity between the carrier gas He and the main interfering gas H2 in the case of 02 gas is weaker than the similarity in thermal conductivity between the carrier gas N2 and the main interfering gas 02 in the case of N2 gas measurement, and this is the cause. Therefore, some ingenuity is required in the calculation shown in basic operation (6), but the circumstances will be explained again with reference to Table 1. It can be seen that the thermal conductivity of the carrier gas He is 343, while that of the main interfering gas H2 is 419, and there is a considerable difference in these values. Therefore, when thermal conductivity is measured using He gas as a carrier gas, the thermal conductivity includes the influence of other elements other than He gas and O2 gas, that is, N2 gas. Therefore, in order to improve reliability in 02 gas measurement, it is necessary to eliminate the influence of N2 gas. However, since the N2 gas concentration in the molten metal was determined in the hydrogen gas measurement described above, it is a known value.On the other hand, a calibration curve was separately created to grasp the influence of N2 gas on He gas, and the above-mentioned known N2 By comparing the gas concentration with this calibration curve, the influence of N2 gas on the 02 concentration in the molten metal can be known, and the 02 gas concentration can be corrected based on this knowledge. Conceptually, the influence of the interfering gas is removed as described above, but specifically, it is performed as follows.

■まずキャリヤガスN2を溶湯に循環させ分圧平衡を得
る。
(1) First, carrier gas N2 is circulated through the molten metal to achieve partial pressure equilibrium.

■N2φのH2の濃度を測定し溶湯中のH2の分圧を求
める。
(2) Measure the concentration of H2 in N2φ and find the partial pressure of H2 in the molten metal.

■溶解度と分圧の関係式(別途測定)を用い。■Using the relationship between solubility and partial pressure (measured separately).

H2分圧を溶湯中のH2濃度に変換する。Convert the H2 partial pressure to the H2 concentration in the molten metal.

■キャリヤガスHeを溶湯にff1l13させ分圧平衡
を11トる。
(2) Add carrier gas He to the molten metal by ff1l13 to balance the partial pressure by 11.

([株]He中の02の濃度を測定し、溶湯中の02の
分圧を求める。
(Measure the concentration of 02 in He, and determine the partial pressure of 02 in the molten metal.

1句あらかじめHe−H2系で求めた補正値を用い、溶
解度と分圧の関係式(別途測定)により02分圧を溶湯
φの026度に変換する。
Using the correction value determined in advance in the He-H2 system, 02 partial pressure is converted to 026 degrees of molten metal φ using a relational expression between solubility and partial pressure (separately measured).

[実施例] 本発明の方法による測定結果と固体抽出法によるI定結
果との比較を第2表に示す、固体抽出法では02ガス、
H2ガスを夫々レコ、イタツク法を用いて分析した。
[Example] Table 2 shows a comparison between the measurement results by the method of the present invention and the I-determined results by the solid extraction method.
H2 gas was analyzed using the Reco and Itatsuk methods, respectively.

第2表 (Pp、) 尚02測定におけるコストに関しては、従来の約171
0になった。従来の様な熱起電力を用いる方法では浸漬
部がほぼ1回限りで消耗品となっていまい、この為測定
コストが高かった。
Table 2 (Pp,) Regarding the cost for 02 measurement, the conventional cost is about 171
It became 0. In the conventional method using thermoelectromotive force, the immersion part is used only once and becomes a consumable item, resulting in high measurement costs.

[発明の効果] 以上説明した様に本発明によれば、銅又は銅合金溶湯中
の水素及び酸素濃度を測定するときの妨害ガスの影響を
除去することができたので、ガス測定における信頼性を
向上させることが+il能となった。
[Effects of the Invention] As explained above, according to the present invention, the influence of interfering gases when measuring the hydrogen and oxygen concentrations in copper or copper alloy molten metal can be removed, thereby improving the reliability in gas measurement. It has become a +il ability to improve.

Claims (2)

【特許請求の範囲】[Claims] (1)水素を含む複数のガス成分が銅又は銅合金溶湯と
気相との間で分圧平衡を保っている状態において気相の
熱伝導率を測定することによって該溶湯中の水素濃度を
測定するに当たり、キャリヤガスとして窒素を用いるこ
とにより妨害ガスの影響を除去することを特徴とする銅
又は銅合金溶湯中の水素濃度測定方法。
(1) The hydrogen concentration in the molten metal can be determined by measuring the thermal conductivity of the gas phase in a state where multiple gas components including hydrogen maintain partial pressure equilibrium between the molten copper or copper alloy and the gas phase. A method for measuring hydrogen concentration in molten copper or copper alloy, characterized in that during measurement, the influence of interfering gases is removed by using nitrogen as a carrier gas.
(2)水素及び酸素を含む複数のガス成分が銅又は銅合
金溶湯と気相との間で分圧平衡を保っている状態におい
て気相の熱伝導率を測定するに当たり、キャリヤガスと
して窒素を用いることにより妨害ガスの影響を除去して
水素濃度を求めておき、一方酸素の測定に際してはキャ
リヤガスとしてヘリウムを用いると共に上記水素濃度の
測定結果を用いることにより妨害ガスの影響を除去する
ことを特徴とする銅又は銅合金溶湯中の酸素濃度測定方
法。
(2) When measuring the thermal conductivity of the gas phase in a state where multiple gas components including hydrogen and oxygen maintain partial pressure equilibrium between the molten copper or copper alloy and the gas phase, use nitrogen as a carrier gas. By using this method, the influence of interfering gases is removed and the hydrogen concentration is determined. On the other hand, when measuring oxygen, the influence of interfering gases is removed by using helium as a carrier gas and using the above hydrogen concentration measurement results. A method for measuring oxygen concentration in molten copper or copper alloy.
JP60001928A 1985-01-09 1985-01-09 Method for measuring hydrogen and oxygen concentration in molten copper or copper alloy Pending JPS61161442A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60001928A JPS61161442A (en) 1985-01-09 1985-01-09 Method for measuring hydrogen and oxygen concentration in molten copper or copper alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60001928A JPS61161442A (en) 1985-01-09 1985-01-09 Method for measuring hydrogen and oxygen concentration in molten copper or copper alloy

Publications (1)

Publication Number Publication Date
JPS61161442A true JPS61161442A (en) 1986-07-22

Family

ID=11515265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60001928A Pending JPS61161442A (en) 1985-01-09 1985-01-09 Method for measuring hydrogen and oxygen concentration in molten copper or copper alloy

Country Status (1)

Country Link
JP (1) JPS61161442A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100425978C (en) * 2004-10-10 2008-10-15 中国科学院金属研究所 Device for determining halium in metal using pulse heat conduction method and its application
CN104764695A (en) * 2015-03-26 2015-07-08 中国船舶重工集团公司第七二五研究所 Method for determining oxygen/nitrogen/hydrogen content in interalloy for titanium alloys

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100425978C (en) * 2004-10-10 2008-10-15 中国科学院金属研究所 Device for determining halium in metal using pulse heat conduction method and its application
CN104764695A (en) * 2015-03-26 2015-07-08 中国船舶重工集团公司第七二五研究所 Method for determining oxygen/nitrogen/hydrogen content in interalloy for titanium alloys

Similar Documents

Publication Publication Date Title
US10641711B2 (en) Method for analyzing nitrogen in metal sample, apparatus for analyzing nitrogen in metal sample, method for adjusting nitrogen concentration in molten steel, and method for manufacturing steel
KASHYAP Solubility of nitrogen in liquid iron and iron alloys
US5190577A (en) Replacement of argon with carbon dioxide in a reactor containing molten metal for the purpose of refining molten metal
JPS61161442A (en) Method for measuring hydrogen and oxygen concentration in molten copper or copper alloy
Mimura et al. Purification of chromium by hydrogen plasma-arc zone melting
JP5087840B2 (en) Decarburization end point judgment method in vacuum degassing equipment
CN102560270A (en) Clean steel spectral standard sample and preparation method thereof
JP3613016B2 (en) Adjustment method of nitrogen concentration in molten steel
US1931134A (en) Bright annealing
Jun et al. The rate of nitrogen desorption from liquid iron by blowing argon gas under the condition of non-inductive stirring
Ames Effect of sulfur on the magnetic properties of molybdenum Permalloy
SU1010140A1 (en) Method for vacuum treating molten steel in ladle
SU939578A1 (en) Method for treating melt of aluminium and its alloys
CN115753277A (en) Method for analyzing gold content in high-copper-content alloy gold
US6692593B2 (en) Method for quenching metallic workpieces
Xuan Determination of Small Amounts of Arsenic in Pure Iron, Nickel, Cobalt, Copper, Manganese, and Carbon Steel by Graphite Furnace Atomic Absorption Spectrometry Using Zeeman Background Correction
Nishikawa et al. Improvement of Steelmaking Technology for Production of Ultra Low Carbon Steel at No. 3 Steelmaking Shop in Chiba Works
JPH02294421A (en) Production of miscellaneous unalloyed and alloyed steels
SU759597A1 (en) Method of smelting chrome-containing steels and alloys
CN116256488A (en) Method for detecting ultralow oxygen content in bearing steel
FI97626C (en) Procedure for manufacturing stainless steel
RU2082816C1 (en) Method of color recovery of the oxidized article made of copper-containing gold alloys
Scaff et al. Some theoretical and practical aspects of gases in metals
RU1827606C (en) Method for determination of sulfur content in metals
JPH04259320A (en) Method for removing nitrogen in molten steel