JPH02294421A - Production of miscellaneous unalloyed and alloyed steels - Google Patents

Production of miscellaneous unalloyed and alloyed steels

Info

Publication number
JPH02294421A
JPH02294421A JP2096632A JP9663290A JPH02294421A JP H02294421 A JPH02294421 A JP H02294421A JP 2096632 A JP2096632 A JP 2096632A JP 9663290 A JP9663290 A JP 9663290A JP H02294421 A JPH02294421 A JP H02294421A
Authority
JP
Japan
Prior art keywords
melt
gas
steel
nozzle
carbonization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2096632A
Other languages
Japanese (ja)
Inventor
Gerhard Gross
ゲルハルト・グロース
Marjan Velikonja
マリアン・フエリコンヤ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Messer Griesheim GmbH
Original Assignee
Messer Griesheim GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Messer Griesheim GmbH filed Critical Messer Griesheim GmbH
Publication of JPH02294421A publication Critical patent/JPH02294421A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/30Regulating or controlling the blowing
    • C21C5/35Blowing from above and through the bath
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/068Decarburising
    • C21C7/0685Decarburising of stainless steel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/072Treatment with gases

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE: To reduce the cost of a gas specific to a refining by performing a treatment in the decarburization, heating and mixing processes in the secondary steel refining of various kinds of non-alloy and alloy steel with perfectly gaseous CO2.
CONSTITUTION: When various kinds of non-alloy steel and alloy steel containing ≤10% alloy elements is manufactured by temporarily sucking oxygen and/or treatment gas (inert gas N2 and Ar) as the process gas through a nozzle provided on a bottom of a secondary steel refining converter, the refining is performed by replacing the treatment gas with the gaseous CO2. The gaseous CO2 is preferably obtained through evaporation from its liquid phase.
COPYRIGHT: (C)1990,JPO

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、脱炭、加熱及び混合の工程一より成る方法過
程の間、転炉の底部に設けたノズルを通して一時的Kプ
ロセスガスとしての酸素及び/又は処理ガスを吹入れる
二次鋼精錬転炉中で、種々の非合金鋼及ひ合金元素10
チまでを含有する合金鋼を製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention provides a method for injecting oxygen and gas as a temporary K process gas through a nozzle located at the bottom of a converter during a process consisting of decarburization, heating and mixing steps. / or in a secondary steel refining converter injected with process gas, various non-alloyed steels and alloying elements 10
The present invention relates to a method for manufacturing alloy steel containing up to

従来の技術 底吹転炉中の種々の合金鋼の後処理は、プロセスガスと
しての酸素並びに処理ガスとしての窒素及びアルプンを
用いて行なう。このような二次鋼精錬法は略称MRP 
(金輌精錬法)、AOD(アルプン酸素脱炭) 、UB
D (アンダー・ボトム・プローイング脱炭)及ひAS
M (アルゴンニ次冶金)で知られている。これらは種
々の低合金乃至高台金鉤を底ノズ゛ルを備えた同名の転
炉型で精錬するのに有用であり、その際種々の鋼はアー
ク炉中で溶融する。一般に、非合金鋼はこれらの転炉中
では製造しない。しかし、品質の点でコストが高く、精
錬をアーク炉中で行なうとコスト的に有利であるKもか
かわらず非合金−をこのような種類の転炉中でも精錬す
る製造業者はいる。
BACKGROUND OF THE INVENTION Post-treatment of various alloy steels in bottom-blown converters is carried out using oxygen as process gas and nitrogen and alponic as process gases. This type of secondary steel refining method is abbreviated as MRP.
(Metal Refining Method), AOD (Alponic Oxygen Decarburization), UB
D (under bottom plowing decarburization) and AS
It is known as M (argon secondary metallurgy). They are useful for refining various low alloy to high platen metal hooks in the converter type of the same name with a bottom nozzle, in which various steels are melted in the electric arc furnace. Generally, non-alloyed steels are not produced in these converters. However, there are manufacturers who smelt non-alloys in these types of converters, even though K is expensive in terms of quality and it is cost-effective to smelt it in arc furnaces.

西ドイツ国特許第2430975号明細書から、窒素及
びアルがンをcO2との混合により一部代えることが公
知である。西rイッ国特許第934772号明細書は、
有害なガス分の少ないペツセマー及びトーマス転炉中で
非合金鋼の製法を開示する。この際Kco2を、ガスと
して又は石灰を単独で又は酸素と混合して添加すること
Kより浴中K吹入する。
It is known from German Patent No. 2 430 975 to partially replace nitrogen and argon by mixing with cO2. The specification of Western Patent No. 934772 is as follows:
A process for producing non-alloyed steel in a Petsemer and Thomas converter with a low content of harmful gases is disclosed. At this time, Kco2 is injected into the bath by adding Kco2 as a gas or by adding lime alone or in a mixture with oxygen.

一般K,二次鋼精錬用の鋼融液は初めに溶解炉中で溶融
しかつその後で新しい容器、つまり転炉中に移す。そこ
で、転炉の底を通してグロセスー及び処珊ガスを融液中
忙吹入れることKより処理する。このためK一般K金属
製の周壁ガスノズルが使われ、このノズルでは中心ノズ
ルを通してプロセスガスが及びリングノズルを通して処
理ガスが吹入される。リングノズルを通して吹入される
処理ガスは不活性ガスであり、かつ特に吹入れ中の金属
ノズルの冷却及び融液の混合K有用である。それはAr
及びN2であるウこれらの不活性ガスを一部CO2に代
えることにより固有のガスコストを低減することができ
る。
Generally, the steel melt for secondary steel refining is first melted in a melting furnace and then transferred to a new container, ie, a converter. Therefore, the melt is treated by injecting gross gas and coral gas into the melt through the bottom of the converter. For this purpose, a peripheral wall gas nozzle made of general K metal is used, in which process gas is blown through a central nozzle and process gas is blown through a ring nozzle. The process gas blown through the ring nozzle is an inert gas and is particularly useful for cooling the metal nozzle during blowing and for mixing the melt. That is Ar
and N2. By partially replacing these inert gases with CO2, the inherent gas cost can be reduced.

転炉中での融液の処理は3工程で、つまり脱炭、加熱及
び混合で行なう。加熱する際に同時K脱硫されかつ合金
される。ζの3工程では試料採取、温度測定並ひに金属
及び非金属固体の添加が行なわれ、かつこの3工程は経
時的には相互K分岐している。
Processing of the melt in the converter takes place in three steps: decarburization, heating and mixing. During heating, it is simultaneously K-desulfurized and alloyed. In the three steps of ζ, sample collection, temperature measurement, and addition of metal and nonmetallic solids are performed, and these three steps are mutually K-branched over time.

第1図Kは、合金鋼4 2CrMO 4を不活性ガスN
2及ひArで処理する方法過程を図示した。
Figure 1 K shows alloy steel 4 2CrMO 4 inert gas N
The method steps of treating with 2 and Ar are illustrated.

脱炭は範囲A、加熱祉範囲B及ひ混合は範囲CKより示
されている。時間経過を分で示す直線の下に湛度測定の
ための測定点I及び試料採取点yが記載されている。そ
の下には窒素及び硫黄並びK炭素(N,8,C)の濃度
変化、同様K温度変化Tが示されている。第1図の下の
部分にはプロセスガスの酸素並びに保饅−もしくは処理
ガスのアルゴン及び窒素の舒時的かつ量的使用が示され
ている。
Decarburization is indicated by range A, heating range B and mixing by range CK. Measurement point I and sampling point y for waterlogging measurement are indicated below a straight line indicating the passage of time in minutes. Below that are shown the changes in concentration of nitrogen and sulfur as well as K carbon (N, 8, C), as well as the change in K temperature T. The lower part of FIG. 1 shows the temporal and quantitative use of the process gas oxygen and the preservation or treatment gases argon and nitrogen.

発明が解決しようとする課題 本発明は、合金鋼の二次鋼精錬の際にががる固有のガス
コストを更K低}させるという課題をベースとする。
Problems to be Solved by the Invention The present invention is based on the problem of further reducing the inherent gas cost that occurs during secondary steel refining of alloy steel.

課題を解決するための手段 本発明Kよりこの課題は、特許請求の範囲の請求項1の
上位概念で考慮した技術水準から出発して、請求項1の
特徴部分K記載の特徴により解決される。
Means for Solving the Problem According to the present invention K, this problem is solved by the features described in the characteristic part K of claim 1 starting from the state of the art considered in the generic concept of claim 1 of the claims. .

本発明の有利な実施形は請求項2〜8に記載されている
Advantageous embodiments of the invention are described in claims 2 to 8.

本発明方法は不活性ガスN2及ひArを部分的だけでな
く、完全にCO2に換えることができる?いう驚異的な
観察から出発し、これKよって鋼を二次精錬する際K固
有のガスコストが著しく低滅する。単位時間当りに融液
中に吹入するC○2の量は、十分に高い混合エネルギー
を融液にもたらす程度にすべきである。その後、全反応
を平衡条件下K進行させることができる。本発明方法で
は鋼処理の3工程全部で、っまり脱炭、加熱及び混合の
際にN2及びArを完全にCO■に換える。
Can the method of the present invention not only partially but also completely replace inert gases N2 and Ar with CO2? Starting from this amazing observation, the gas cost inherent in K during secondary refining of steel is significantly reduced. The amount of C₂2 injected into the melt per unit time should be such as to provide a sufficiently high mixing energy to the melt. The entire reaction can then proceed under equilibrium conditions. In the method of the present invention, N2 and Ar are completely replaced by CO2 during all three steps of steel processing, including decarburization, heating and mixing.

本発明方法の経過を、第1図と同様K鋼42CrMo 
4に関して第2図に図示した。第2図から、基本的K同
じ処理結果が達成されることが直ちに明らかである。
The progress of the method of the present invention is shown in Fig. 1 for K steel 42CrMo.
4 is illustrated in FIG. From FIG. 2 it is immediately clear that the same basic process result is achieved.

CO2は各方法工程で種々の作用を有する。以下それを
記載する。
CO2 has different effects in each method step. It is described below.

処理法を開始する際に転炉を横方向から吹き位1K立て
る際に、ノズルに不活性ガスを吹付けて融液が侵入しな
いようにする。吹き位置に達したときには初めは安全性
の理由で02を供給することができる。再び転炉を傾け
る際K相応する手段が必要である。転炉をこのように動
かしている間にノズルに負荷するガス量は安全量といわ
れる。
When starting the treatment method, when raising the converter from the side to a blowing level of 1K, inert gas is blown into the nozzle to prevent the melt from entering. 02 can initially be supplied for safety reasons when the blowing position is reached. When tilting the converter again, corresponding means are required. The amount of gas loaded onto the nozzle while the converter is operating in this manner is said to be a safe amount.

融液を酸素Kより脱炭する際K、転炉を吹き位置に立て
る間CO,が安全ガス量を供給する。
When the melt is decarburized with oxygen, K, and CO, a safe gas amount is supplied while the converter is in the blowing position.

その後、中心ノズルを通して酸素を吹入れかつその際に
リングノズルを通して絶えずco2により冷却する。こ
のように酸素とCO2とを組合せて装入することにより
、脱炭工程でN2一及びH2一分圧は低下する。これは
融液の排ガスをもたらす。これと同時に、ガスN2及び
H2による融液の負荷が回避され、それ故N2及ひH2
が著しく少ない鋼が得られる。
Thereafter, oxygen is blown in through the central nozzle, while cooling is constantly performed with CO2 through the ring nozzle. By charging oxygen and CO2 in combination in this manner, the partial pressures of N2 and H2 are reduced in the decarburization process. This results in off-gassing of the melt. At the same time, loading of the melt with gases N2 and H2 is avoided and therefore N2 and H2
This results in steel with significantly less

反応co2+ C − 2 0o Kより、付加的にc
o2は融液の脱炭に使われ、即ち脱炭工程ではco2は
付加的な酸素キャリアである。
From the reaction co2+ C-20o K, additionally c
The O2 is used to decarburize the melt, ie the CO2 is an additional oxygen carrier in the decarburization process.

引続く加熱工程では、CO2の使用は脱硫及び合金の際
に他の作用を及ぼす。この際に融液は、添加されるアル
ミニウム、珪素又はアルミニウム/珪素一混合物と酸素
との発熱反応によ9所望の温度に加熱される。従来は加
熱工程においてアルゴンだけが処理ガスとして使われた
。それというのも窒素は融液中K溶解しかつ不所望にも
融液が窒素によね負荷されてしまうからである。
In the subsequent heating step, the use of CO2 has other effects during desulfurization and alloying. In this case, the melt is heated to the desired temperature by an exothermic reaction of the added aluminum, silicon or aluminum/silicon mixture with oxygen. Traditionally, argon was the only processing gas used in the heating process. This is because nitrogen dissolves in the melt and the melt is undesirably overloaded with nitrogen.

本発明によりアルがンを002で代える際には次の反応
を考慮すべきである: ? co2+4 Al冨2 A12Cl,, + 3 
c   (1)3 CO2 +2Al −  A120
!5 + 3 CO  (2)又は CO2+ 81 − 810■+C(3)CO2+ 8
1 − 810  + CO        (4)加
熱工程では融液中のアルミニウム濃度K相応して両方の
反応が行なわれる。式(1)又は(6)に相応して、融
液は加熱工程で炭化され、CO2はアルミニウムにより
完全K還元されかつ炭素原子は遊離する。同時に反応(
2)又は(4)即ちCO2の部分還元が進行し、これら
の反応は融液の炭化を惹起しない。
The following reaction should be considered when replacing argon with 002 according to the present invention: ? co2+4 Alto2 A12Cl,, + 3
c (1)3 CO2 +2Al − A120
! 5 + 3 CO (2) or CO2+ 81 - 810 ■ + C (3) CO2+ 8
1 - 810 + CO (4) In the heating step, both reactions take place depending on the aluminum concentration K in the melt. Corresponding to formula (1) or (6), the melt is carbonized in the heating step, the CO2 is completely reduced to K by the aluminum and the carbon atoms are liberated. Simultaneously react (
2) or (4), that is, partial reduction of CO2 proceeds, and these reactions do not cause carbonization of the melt.

第1図及び第2図から明らかなように、加熱工程中に融
液の炭化が行なわれる。この炭化は次式により計算する
ことができる: G 〔式中dCは炭化速度Cppm /分であり、QはCO
2保護ガス流量m3/分であり、Cfは炭化係数0.6
〜0.5であり、かつGは融液の重爺tである〕 保静ガス量CO22?F+3/分では炭化速度は10t
転炉中で脚化係数 Cf − Q.5で次の通りである
: ac − 5 3 6 X 2 X O.5 / 1 
0 − C 5 6.6 ppm/、分 本発明により脱炭一及ひ加熱工程でcozを使用して得
られる作用は楡々の鋼に関して次の表1及ひ2に記載す
る。融液の排ガスを窒素含量について測定して示す表1
には、窒素及ひアルがンを用いる従来の方法の作動結果
並ひに本発明方法の結果を記載する。
As is clear from FIGS. 1 and 2, the melt is carbonized during the heating process. This carbonization can be calculated by the following formula: G [where dC is the carbonization rate Cppm/min and Q is the CO
2 Protective gas flow rate m3/min, Cf is carbonization coefficient 0.6
~0.5, and G is the weight of the melt] Holding gas amount CO22? At F+3/min, carbonization rate is 10t
In the converter, the legging factor Cf − Q. 5 and is as follows: ac - 5 3 6 X 2 X O. 5/1
0 - C 5 6.6 ppm/, min The effects obtained using coz in the decarburization and heating steps according to the present invention are set forth in Tables 1 and 2 below for elm steel. Table 1 showing the nitrogen content measured in the exhaust gas of the melt
describes the results of the operation of conventional methods using nitrogen and argon as well as the results of the method of the present invention.

?に加熱工程中の本発明方状の有効性にとって重要なの
はCO2の純度である。アルミニウムKよる融液の遼元
は鋼中の9素の溶解度をより高くする。それ故、coz
中の穿素一及び水素不純物は融液中に採取されかつもは
や除去することができない。これを回避するために、本
発明による鋼の冶金学的処即にはN2最高s o o 
vpm及びH20 #高5 0 vpmを含有する工業
的K純粋なc(’12を使用すべきである。この純度は
CO2を液相から蒸発させることにより得られる。
? Important to the effectiveness of the squares of the present invention during the heating process is the purity of the CO2. Liaoyuan of the melt with aluminum K makes the solubility of 9 elements in steel higher. Therefore, coz
The hydrogen and hydrogen impurities inside are collected in the melt and can no longer be removed. In order to avoid this, the metallurgical treatment of the steel according to the invention requires N2 maximum so o
Industrial K-pure c('12) containing vpm and H20 #high 50 vpm should be used. This purity is obtained by evaporating the CO2 from the liquid phase.

混合工程でも本発明によりアルゴンを完全にCO2に代
える。技術水準によ9融液を出銑直前にアルゴンと約1
〜2分間温度調整のために混合する。この際にアルコ9
ンをCO2に代える際K1出鋏の直前に、加熱工程の記
載で羊けた反応により融液の酸化が行なわれる。CO■
1,3当りfit約1.0時の化学1tlla的添加に
より、この分析変化を調整する。同時に行なわれる炭化
は、最高で5 0 ppmに過ぎず、従って分析許容範
囲内K含まれるので無視することができる。
Also in the mixing step, according to the present invention, argon is completely replaced with CO2. Depending on the technical level, the melt should be heated with argon for about 1 minute before tapping.
Mix for ~2 minutes to adjust temperature. At this time, Arco 9
When replacing the gas with CO2, the melt is oxidized by the reaction described in the heating step immediately before the K1 extraction. CO■
A chemical addition of about 1.0 times per fit adjusts for this analytical variation. The concomitant carbonization can be ignored since it amounts to only 50 ppm at most and therefore falls within the analytical tolerance range.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は技術水珈Kより合金鋼4 2 CrMo 4を
不活性ガスN2及びArで処即する方法過程を示す図、
t#2図は本発明Kより第1図と同様に合金鋼4 2 
CrMO 4をCO2で処理する方法過程を示す図であ
る。
FIG. 1 is a diagram showing the process of treating alloy steel 4 2 CrMo 4 with inert gas N2 and Ar from the technical water chain K;
Figure t#2 is alloy steel 4 2 from Invention K, similar to Figure 1.
FIG. 3 illustrates a method step for treating CrMO 4 with CO 2 .

Claims (1)

【特許請求の範囲】 1、脱炭、加熱及び混合の工程より成る方法過程の間、
転炉の底部に設けたノズルを通して一時的にプロセスガ
スとしての酸素及び/又は処理ガスを吹入れる二次鋼精
錬転炉中で、種々の非合金鋼及び合金元素10%までを
含有する合金鋼を製造する方法において、処理ガスがガ
ス状CO_2であることを特徴とする、種々の非合金−
及び合金鋼の製法。 2、CO_2を単独で供給する時間ではCO_2をリン
グノズルを通してかつまた中心ノズルを通して吹入する
ことを特徴とする、酸素及び処理ガスを金属周壁ガスノ
ズルを通して吹入れる請求項1記載の方法。 3、CO_2がN_2最高500vpm及びH_2O最
高50vpmを含有することを特徴とする、請求項1又
は2記載の方法。 4、ガス状CO_2を液相からの蒸発により取得するこ
とを特徴とする、請求項1から3までのいずれか1項記
載の方法。 5、鋼1t当りCO_20.2〜1.0m^3/分を吹
入れることを特徴とする、請求項1から4までのいずれ
か1項記載の方法。 6、加熱工程で、Al又はSiの必要な添加により融液
の炭化を惹起することを特徴とする、請求項1から5ま
でのいずれか1項記載の方法。 7、炭化速度dCは式: dC=(536×Q×Cf)/G 〔式中dCは炭化速度Cppm/分であり、QはCO_
2流量m^3/分であり、 Cfは炭化係数0.3〜0.5であり、かつGは融液の
重量をである〕 により算定することを特徴とする、請求項6記載の方法
。 8、純粋なCO_2による混合工程中の融液の再酸化に
よる分析の変動を、Al1.0kg/CO_2m^3の
化学量論的添加により阻止することを特徴とする請求項
1から7までのいずれか1項記載の方法。
[Claims] 1. During the process steps consisting of decarburization, heating and mixing steps,
Various non-alloyed steels and alloyed steels containing up to 10% of alloying elements are processed in secondary steel refining converters in which oxygen and/or process gases are temporarily injected through a nozzle located at the bottom of the converter. in which the process gas is gaseous CO_2.
and the manufacturing method of alloy steel. 2. Process according to claim 1, characterized in that during times when CO_2 is supplied alone, CO_2 is injected through a ring nozzle and also through a central nozzle, and the oxygen and process gases are injected through a metal peripheral gas nozzle. 3. Process according to claim 1 or 2, characterized in that the CO_2 contains up to 500 vpm of N_2 and up to 50 vpm of H_2O. 4. Process according to claim 1, characterized in that the gaseous CO_2 is obtained by evaporation from a liquid phase. 5. The method according to any one of claims 1 to 4, characterized in that CO_20.2 to 1.0 m^3/min is injected per ton of steel. 6. The method according to any one of claims 1 to 5, characterized in that in the heating step carbonization of the melt is induced by necessary addition of Al or Si. 7. Carbonization rate dC is calculated using the formula: dC = (536 x Q x Cf)/G [In the formula, dC is carbonization rate Cppm/min, and Q is CO_
2 flow rate m^3/min, Cf is a carbonization coefficient of 0.3 to 0.5, and G is the weight of the melt. . 8. Any of claims 1 to 7, characterized in that fluctuations in the analysis due to reoxidation of the melt during the mixing step with pure CO_2 are prevented by the stoichiometric addition of 1.0 kg Al/CO_2 m^3. or the method described in item 1.
JP2096632A 1989-04-13 1990-04-13 Production of miscellaneous unalloyed and alloyed steels Pending JPH02294421A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3912061.9 1989-04-13
DE3912061A DE3912061A1 (en) 1989-04-13 1989-04-13 METHOD FOR PRODUCING ALLOY STEEL BRANDS

Publications (1)

Publication Number Publication Date
JPH02294421A true JPH02294421A (en) 1990-12-05

Family

ID=6378545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2096632A Pending JPH02294421A (en) 1989-04-13 1990-04-13 Production of miscellaneous unalloyed and alloyed steels

Country Status (5)

Country Link
EP (1) EP0392239A1 (en)
JP (1) JPH02294421A (en)
CA (1) CA2014265A1 (en)
DE (1) DE3912061A1 (en)
ZA (1) ZA902827B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19608530C2 (en) * 1996-02-09 1999-01-14 Eisenbau Essen Gmbh Use of pure CO¶2¶ gas or a gas essentially containing CO¶2¶ as a carrier gas in the treatment of steel in an electric arc furnace
US9045805B2 (en) 2013-03-12 2015-06-02 Ati Properties, Inc. Alloy refining methods
DE102014011231A1 (en) * 2014-07-23 2016-01-28 Sms Group Gmbh Process for Nickel Pig Iron (NPI) decarburization in the AOD converter

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB809407A (en) * 1956-10-09 1959-02-25 Union Carbide Corp Process for alloying steel
US3861888A (en) * 1973-06-28 1975-01-21 Union Carbide Corp Use of CO{HD 2 {B in argon-oxygen refining of molten metal
FR2394610A1 (en) * 1977-06-13 1979-01-12 Siderurgie Fse Inst Rech Cooling converter tuyeres or lances - using liq. carbon di:oxide fed from reservoir by volumetric pump
DE2820555A1 (en) * 1978-05-11 1979-11-15 Basf Ag PROCESSES FOR THE TREATMENT OF PIG IRON AND STEEL MELT RESPECTIVELY. ALLOYS
DE3071404D1 (en) * 1979-06-29 1986-03-20 William H Moore Method of recycling steel scrap
HU196632B (en) * 1984-08-01 1988-12-28 Vasipari Kutato Fejleszto Process for producing high-purity steels

Also Published As

Publication number Publication date
ZA902827B (en) 1991-01-30
CA2014265A1 (en) 1990-10-13
DE3912061A1 (en) 1990-10-18
EP0392239A1 (en) 1990-10-17

Similar Documents

Publication Publication Date Title
RU2007118927A (en) AISI 4xx FERRITE STEEL GROUP STAINLESS STEEL PRODUCTION IN ACP CONVERTER
US4004920A (en) Method of producing low nitrogen steel
JPH02294421A (en) Production of miscellaneous unalloyed and alloyed steels
CA2559154C (en) Method for a direct steel alloying
FI67094B (en) FOERFARANDE FOER ATT FOERHINDRA ATT SLAGGMETALL VAELLER UPP ID PNEUMATISK UNDER YTAN SKEENDE RAFFINERING AV STAOL
SU648118A3 (en) Method of producing alloy steel
US5085691A (en) Method of producing general-purpose steel
RU2219249C1 (en) Off-furnace steel treatment in ladle
US5139569A (en) Process for the production of alloy steel grades using treatment gas consisting of CO2
KR100270109B1 (en) The denitriding method of molten metal
JPH0324220A (en) Decarbonization of molten steel containing chlorum
JPS6211044B2 (en)
JPH0346527B2 (en)
RU2233339C1 (en) Method of making steel
US4436553A (en) Process to produce low hydrogen steel
KR890003928B1 (en) Steel making process using calcium carbide as fuel
CA1043571A (en) Method of producing low nitrogen steel
KR970005199B1 (en) The making method of low carbon and low nitrogen molten metal
JPS63143216A (en) Melting method for extremely low carbon and low nitrogen steel
JP2002533566A (en) A method for denitrifying molten steel during its production.
RU2124569C1 (en) Method of producing carbon steel
RU1786109C (en) Process for producing titanium steel
JPH02225615A (en) Method for refining high-nitrogen and low-oxygen steel
SU1013489A1 (en) Method for smelting steel in converter
SU1073291A1 (en) Stainless steel melting method