JPS61159627A - Liquid crystal electrooptic device - Google Patents

Liquid crystal electrooptic device

Info

Publication number
JPS61159627A
JPS61159627A JP67985A JP67985A JPS61159627A JP S61159627 A JPS61159627 A JP S61159627A JP 67985 A JP67985 A JP 67985A JP 67985 A JP67985 A JP 67985A JP S61159627 A JPS61159627 A JP S61159627A
Authority
JP
Japan
Prior art keywords
liquid crystal
layer
ferroelectric
electric field
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP67985A
Other languages
Japanese (ja)
Other versions
JPH0731324B2 (en
Inventor
Yuzuru Sato
譲 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP60000679A priority Critical patent/JPH0731324B2/en
Publication of JPS61159627A publication Critical patent/JPS61159627A/en
Publication of JPH0731324B2 publication Critical patent/JPH0731324B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films

Landscapes

  • Physics & Mathematics (AREA)
  • Liquid Crystal (AREA)
  • Nonlinear Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To obtain an excellent memory effect even with a cell having several mum thickness at which mass production is possible by providing ferroelectric layers on electrodes so as to contact with a liquid crystal layer. CONSTITUTION:Transparent electrodes 17, metallic layers 18 and ferroelectric layers 19 are successively formed on glass substrates 14 and the liquid crystal 21 is sandwiched by such substrates via a spacer 20. The layers 19 contact with the liquid crystal 21. The surfaces of the layers 19 are rubbed if a high- polymer ferroelectric material is used for said layer. Parallel grooves are formed by rubbing or etching on the surfaces if an inorg. ferroelectric material is used for said layer. The layers are otherwise not treated in either case.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、記憶効果、高速応答、急峻なしきい特性を有
す°る強誘電性液晶を使用した液晶電気光学装置におけ
る基板表面処理法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a substrate surface treatment method in a liquid crystal electro-optical device using a ferroelectric liquid crystal having memory effect, high-speed response, and steep threshold characteristics. .

〔従来の技術〕[Conventional technology]

従来の液晶電気光学装置における基板表面処理法には、
上下の基板それぞれにポリイミド等の同種の表面処理層
を設ける方法、全く処理を施さない方法、第10回液晶
討論会予稿14A17のように上基板と下基板にそれぞ
れ表面の極性の異なる表面処理層を設ける方法、あるい
はネマチック液晶の配向処理と同様に基板表面にポリイ
ミドを塗布し、さらにラビング処理を施す方法がある。
Conventional substrate surface treatment methods for liquid crystal electro-optical devices include:
A method in which the same type of surface treatment layer such as polyimide is provided on each of the upper and lower substrates, a method in which no treatment is applied at all, a method in which surface treatment layers of the same type such as polyimide are provided on the upper and lower substrates, and a method in which the surface treatment layers have different polarities on the surfaces of the upper and lower substrates as shown in the 10th Liquid Crystal Symposium Proceedings 14A17. There is a method in which polyimide is applied to the surface of the substrate and then a rubbing treatment is performed in the same manner as in the alignment treatment of nematic liquid crystals.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

カイラルな分子からなるスメクチックbは強誘電性を示
し、第1図に示すように液晶分子11はz軸方向から常
にθ傾いた状態で円錐上に位置しており、液晶分子11
に対して垂直かつスメクチック層(X−Y平面)と平行
な方向に永久双極子12を持っている。したがって電界
を印加して永久双極子12の向きを変えることによって
液晶分子11の円錐上での位置(方位角φ)を制伺する
ことができる。ただし、13は液晶分子11のX−Y平
面への射影である。
Smectic b consisting of chiral molecules exhibits ferroelectricity, and as shown in Figure 1, the liquid crystal molecules 11 are always located on a cone with an angle of θ from the z-axis direction, and the liquid crystal molecules 11
It has a permanent dipole 12 in a direction perpendicular to the smectic layer and parallel to the smectic layer (X-Y plane). Therefore, by applying an electric field and changing the direction of the permanent dipole 12, the position (azimuth angle φ) of the liquid crystal molecules 11 on the cone can be controlled. However, 13 is a projection of the liquid crystal molecules 11 onto the XY plane.

厚さ数μ鴇のセルのX−Y断面における液晶分子の配向
は第2図のように表わされる。第2図(α)、(A)e
(C)はそれぞれ無電界時、下基板から上基板に向かっ
て電界十Eを印加した時および電界−Eを印加した時の
液晶分子の配向を示している。ただし、第2図は基板表
面にポリイミド15を塗布したセルにおける配向を示し
である。無電界時には永久双極子12が基板表面からセ
ルの内部に向かう配列をとっているが、基板表面の処理
剤の種類を変えることによって、無電界時の永久双極子
がセルの内部から基板に向かうような配向も得ることが
できる。記憶効果の良否は無電界時の配向状態によって
評価され、電界除去後も第2図(A)l(C)に示され
た電界印加時と同じ配向が保持されていれば、記憶効果
がすぐれていると評価される。
The orientation of liquid crystal molecules in the X-Y cross section of a cell several microns thick is shown in FIG. Figure 2 (α), (A)e
(C) shows the orientation of liquid crystal molecules when no electric field is applied, when an electric field of 10E is applied from the lower substrate to the upper substrate, and when an electric field -E is applied, respectively. However, FIG. 2 shows the orientation in a cell in which polyimide 15 is coated on the substrate surface. When there is no electric field, the permanent dipoles 12 are oriented from the substrate surface to the inside of the cell, but by changing the type of treatment agent on the substrate surface, the permanent dipoles 12 are oriented from the inside of the cell toward the substrate when there is no electric field. Such an orientation can also be obtained. The quality of the memory effect is evaluated by the orientation state in the absence of an electric field, and if the same orientation as shown in Figure 2 (A) and (C) is maintained even after the electric field is removed, the memory effect is excellent. It is evaluated that the

無電界時の配向状態はセルの厚さに強く影響され、第3
図に示したようにセルの厚さによりて種々の配向をとる
と思われる。第3図(eL)〜(C]の配向状態はtw
1st状態と呼ばれ、第3図(d)はuntwiat状
態と呼ばれている。
The orientation state in the absence of an electric field is strongly influenced by the cell thickness, and the third
As shown in the figure, it seems that various orientations are taken depending on the thickness of the cell. The orientation states of FIG. 3 (eL) to (C) are tw
This state is called the 1st state, and the state shown in FIG. 3(d) is called the untwiat state.

ここで、セル厚によっては電界除去後に電圧印加時のu
ntwist状態を保持することができなくなる理由は
次のように考えられる。液晶分子が基板表面から受ける
力は2種類あり、液晶分子を基板表面に対して平行に保
持しようとする力(アンカリング力)と、液晶分子が持
っている永久双極子と基板表面の極性との間の相互作用
(クー党ンカ)がある。アンカリング力のみを考慮すれ
ば第4図(α)、(b)に示した2つの配向状態はいず
れも安定であり、電界除去後も電界印加時と同じunt
wiat状態が保持されるはずである。しかし、クーロ
ン力を考慮すれば、第4図(α)I(A)の配向が持つ
エネルギーは異なり、基板表面の極性が正ならば#!4
図(α)の配向が最も安定となる。したがりてこの場合
は電界印加によって第4図Cb)のように配向させた後
、電界を除去すれば、液晶分子は第4図(α)に示す配
向状態へ反転しようとする。
Here, depending on the cell thickness, u at the time of voltage application after the electric field is removed is
The reason why the ntwist state cannot be maintained is considered as follows. There are two types of forces that liquid crystal molecules receive from the substrate surface: the force that tries to hold the liquid crystal molecules parallel to the substrate surface (anchoring force), and the force that is caused by the permanent dipole of the liquid crystal molecules and the polarity of the substrate surface. There is an interaction between If only the anchoring force is considered, both of the two orientation states shown in Figure 4 (α) and (b) are stable, and even after the electric field is removed, the unt is the same as when the electric field is applied.
The wiat state should be preserved. However, if the Coulomb force is taken into account, the energies of the orientations shown in Figure 4 (α) I (A) are different, and if the polarity of the substrate surface is positive, #! 4
The orientation shown in figure (α) is the most stable. Therefore, in this case, after the liquid crystal molecules are oriented as shown in FIG. 4Cb) by applying an electric field, when the electric field is removed, the liquid crystal molecules tend to reverse to the alignment state shown in FIG. 4(α).

配向に及ぼすクーロン力の影響の大きさは分極反転電流
の測定によって推測することができる。
The magnitude of the effect of Coulomb force on orientation can be estimated by measuring polarization reversal current.

第5図に三角波状の電界を厚さ4μ鶏のセルに印加した
時の分極反転電流を示す。永久双極子の配向が電界に応
答して反転した時に分極反転電流が流れ、第5図<b>
のようにピークが現われるが、この図かられかるように
、電界の方向が逆転する以前から永久双極子の反転が始
まりている。すなわち、電界強度がある値より小さくな
ると、電界に逆らりて第4図(b)の状態から第4図(
α)のエネルギー的に有利な状態へ移るために永久双極
子の反転が始まるわけであり、永久双極子と基板表面あ
極性との相互作用は非常に強いものと考えられる。
FIG. 5 shows the polarization inversion current when a triangular electric field is applied to a 4 μm thick cell. When the orientation of the permanent dipole is reversed in response to an electric field, a polarization reversal current flows, as shown in Figure 5<b>.
A peak appears, but as you can see from this figure, the reversal of the permanent dipole begins even before the direction of the electric field is reversed. That is, when the electric field strength becomes smaller than a certain value, the state changes from the state shown in Fig. 4(b) to the state shown in Fig. 4(b) against the electric field.
In order to move to the energetically advantageous state α), the permanent dipole begins to reverse, and the interaction between the permanent dipole and the polarity of the substrate surface is considered to be very strong.

液晶分子が第4図Cb)から(α)の状態へ反転するた
めには、基板表面と平行な面内で反転するのではなく、
第1図に示した円錐上で2軸を中心にして回転して反転
するため、最初基板表面と平行に配向していた液晶分子
の一端が基板表面から浮き上がらなければならない。(
第5図参照)液晶分子の一端が基板表面から浮きあがる
ことのできる臘は、液晶分子が受けるアンカリング力と
クーロン力とのバランスで決まると考えられる。
In order for the liquid crystal molecules to reverse from the state shown in Figure 4 (Cb) to (α), they must not be reversed in a plane parallel to the substrate surface, but
In order to rotate and invert around two axes on the cone shown in FIG. 1, one end of the liquid crystal molecules, which was initially oriented parallel to the substrate surface, must rise from the substrate surface. (
(See FIG. 5) It is thought that the degree to which one end of a liquid crystal molecule can lift up from the substrate surface is determined by the balance between the anchoring force and Coulomb force that the liquid crystal molecule receives.

液晶分子が受けるアンカリング力は基板表面との距離が
長いほど小さく、セルが厚くなるにしたがって一方の基
板表面からある距趨に位置する液晶分子と他方の基板表
面との距離が長くなり、その液晶分子が双方の基板表面
から受けるアンカリング力は薄いセルの場合に比べて小
さくなる。したがりて、セルが厚くなると液晶分子が受
けるアンカリング力よりもクーロン力が優勢となって、
セルの厚さに応じて第5図に示したような種々のtw1
st状態が安定となる。
The anchoring force that liquid crystal molecules receive decreases as the distance from the substrate surface increases.As the cell becomes thicker, the distance between the liquid crystal molecules located at a certain distance from one substrate surface and the other substrate surface increases, and The anchoring force that liquid crystal molecules receive from both substrate surfaces is smaller than in the case of a thin cell. Therefore, as the cell becomes thicker, the Coulomb force becomes more dominant than the anchoring force exerted on the liquid crystal molecules.
Various tw1 as shown in FIG. 5 depending on the cell thickness.
The st state becomes stable.

ここまで、上下の基板に同種の表面を使用したセルにお
ける現象について説明したが、上基板と下基板に極性の
異なる表面を使用した場合は、第6図(cL)に示した
untWiat状態が安定となる。
Up to this point, we have explained the phenomenon in a cell where the same type of surface is used for the upper and lower substrates, but when surfaces with different polarities are used for the upper and lower substrates, the untWiat state shown in Figure 6 (cL) is stable. becomes.

たとえば、上基板表面には1910.層16を設け、下
基板表面にはポリイミド層15を設けたセルにおいては
、第6図(α)に示した配向状態の工ネルギーが最小で
あり最も安定となるが、第6図(A)に示した配向状態
は非常に不安定となる。
For example, 1910. In the cell in which the layer 16 is provided and the polyimide layer 15 is provided on the surface of the lower substrate, the orientation state shown in FIG. 6(α) has the minimum energy and is the most stable, but the orientation state shown in FIG. 6(A) The orientation state shown in is extremely unstable.

この他、基板表面にポリイミド層などを設け、さらにラ
ビング処理を施す処理方法がある。この場合1アンカリ
ングカとクーロン力の他に液晶分子の配向をラビング方
向に規制しようとする配向力が加わるため、記憶効果は
さらに得にくくなる従来の基板表面処理法を用いて電界
除去後もuntvigt状態が保持されるようにするた
めには、いずれの処理法においてもセル厚を十分薄くし
なければならない。電界除去後、tw1st状態が現わ
れなくなる臨界セル厚は基板表面処理法によって異なり
、上下基板とも同じ極性の表面処理層を設け、ラビング
処理は施さない場合が最も厚い。しかし、その種の表面
処理法においても臨界セル厚は非常に薄く1μm以下で
あるため、このような薄い均一性の良いセルを作成する
ことは実験室レベルでも非常に困難であり、量産性は極
めて之しいのが現状である。
In addition, there is a processing method in which a polyimide layer or the like is provided on the surface of the substrate and further a rubbing process is performed. In this case, in addition to the 1-anchoring force and Coulomb force, an alignment force that tries to regulate the alignment of liquid crystal molecules in the rubbing direction is added, making it even more difficult to obtain the memory effect. In either treatment method, the cell thickness must be made sufficiently thin in order to maintain the cell thickness. The critical cell thickness at which the tw1st state no longer appears after the electric field is removed varies depending on the substrate surface treatment method, and is thickest when surface treatment layers of the same polarity are provided on both the upper and lower substrates and no rubbing treatment is performed. However, even with this type of surface treatment method, the critical cell thickness is very thin, less than 1 μm, so it is extremely difficult to create such thin, highly uniform cells even at the laboratory level, and mass production is difficult. The current situation is extremely difficult.

そこで本発明はこのような問題を解決するもので、その
目的とするところは、量産的な数μmの厚さのセルにお
いてもすぐれた記憶効果を現わす基板表面処理法を提供
することにある。
The present invention is intended to solve these problems, and its purpose is to provide a substrate surface treatment method that exhibits an excellent memory effect even in mass-produced cells with a thickness of several μm. .

〔問題を解決するための手段〕[Means to solve the problem]

本発明の基板表面処理法は、強誘電体層を電極を設けた
上下のガラス基板表面ともに設け、強誘電体として高分
子強誘電体を使用する場合はその表面にラビング処理を
施し、無機強誘電体を使用する場合はその表面に平行な
溝をラビング又はエツチングによって作成するか、ある
いはいずれの場合も無処理のままとすることを特徴とす
る。
In the substrate surface treatment method of the present invention, a ferroelectric layer is provided on both the upper and lower glass substrate surfaces on which electrodes are provided, and when a polymer ferroelectric is used as the ferroelectric, a rubbing treatment is applied to the surface, and an inorganic When a dielectric material is used, it is characterized in that grooves parallel to its surface are created by rubbing or etching, or in either case it is left untreated.

〔作用〕[Effect]

従来の方法では電界除去後の基板表面の極性を任意に制
御することができないが、本発明の上記の構成によれば
、液晶分子が持つ永久双極子の、電界印加時の方向に応
じて基板表面の極性が反転し、しかも強誘電性であるた
めにその極性が電界除去後も保持されるため、量産性の
ある厚さ数μ鴇のセルにおいてもすぐれた記憶効果を得
ることができる。
In the conventional method, it is not possible to arbitrarily control the polarity of the substrate surface after the electric field is removed, but according to the above structure of the present invention, the polarity of the substrate surface is changed depending on the direction of the permanent dipole of the liquid crystal molecules when the electric field is applied. The polarity of the surface is reversed, and since it is ferroelectric, the polarity is maintained even after the electric field is removed, so it is possible to obtain an excellent memory effect even in cells with a thickness of several micrometers that can be mass-produced.

〔実施例〕〔Example〕

(実施例−1) 第7図に本実施例における液晶電気光学装置の断面図を
示す。17は透明電極、18は白金層、19は強誘電体
層、20はスペーサー、21は液晶層であり、強誘電体
19と液晶21は図示したように接している。強誘電性
液晶21としてP−decyloxybenzylid
en−p’ −amino−2−methylbuty
la−1nnamate (D OB A M B O
) を使用し、強誘電体19としてP I、 Z T 
(9/65155 )を使用し、その表面は無処理のま
まである。透明電極17は!1notである。液晶層2
1.強誘電体層19゜白金層18の厚さはそれぞれ4.
5μ鴇、155μ嘱5101μ鴨とした。
(Example-1) FIG. 7 shows a cross-sectional view of a liquid crystal electro-optical device in this example. 17 is a transparent electrode, 18 is a platinum layer, 19 is a ferroelectric layer, 20 is a spacer, and 21 is a liquid crystal layer, and the ferroelectric 19 and the liquid crystal 21 are in contact as shown. P-decyloxybenzylid as the ferroelectric liquid crystal 21
en-p'-amino-2-methylbuty
la-1nnamemate (DOB A MBO
) as the ferroelectric material 19, P I, Z T
(9/65155) and the surface remains untreated. The transparent electrode 17! 1not. liquid crystal layer 2
1. The thickness of the ferroelectric layer 19 and the platinum layer 18 are 4.
5 μm duck, 155 μm thickness and 5101 μm duck size.

PLZ’l!の薄膜は高周波スパッタによりて作製した
。基板温度は約500℃、スパッタガスは酸素とアルゴ
ンの /75混合ガス、ターゲットは’PbOを約8%
過剰に含むFLZ’l’粉末である。
PLZ'l! The thin film was fabricated by high frequency sputtering. The substrate temperature is approximately 500℃, the sputtering gas is a /75 mixed gas of oxygen and argon, and the target is approximately 8% PbO.
It is an excess amount of FLZ'l' powder.

この方法によりて作成した厚さα5μ渦のPLZT薄膜
のヒステリシス特性(6oag)を第8図に示す。横軸
は&5v/μs/ A i V  である。単結晶強誘
電体が持つヒステリシス特性と比較すると、薄膜の場合
、矩形性がやや劣りているが、それは強誘電体層19と
下地(白金層18)との境界における結晶性が悪いため
である。すなわち、境界層は強誘電性を示さず、電界強
度の変化に応じて分極の大きさが変化するために第8図
に示したような特性となる。しかし、本発明においては
、少なくとも強誘電体の表面層さえ強誘電性を示せばよ
いわけであるから、強誘電体の厚さを結晶性の悪い境界
層よりも厚くして強誘電体の表面層に強誘電体の厚さを
結晶性の悪い境界層よりも厚くして強誘電体の表面層に
強誘電性を持たせれば本発明の目的に使用することがで
きる。ただし、この境界層の厚さはスパッタする時の基
板温度に左右される。
FIG. 8 shows the hysteresis characteristics (6oag) of a PLZT thin film with a thickness α5μ vortex created by this method. The horizontal axis is &5v/μs/A i V . Compared to the hysteresis characteristic of a single crystal ferroelectric, the rectangularity of the thin film is slightly inferior, but this is due to poor crystallinity at the boundary between the ferroelectric layer 19 and the underlying layer (platinum layer 18). . That is, the boundary layer does not exhibit ferroelectricity, and the magnitude of polarization changes in response to changes in electric field strength, resulting in the characteristics shown in FIG. 8. However, in the present invention, since it is sufficient that at least the surface layer of the ferroelectric material exhibits ferroelectricity, the thickness of the ferroelectric material is made thicker than the boundary layer with poor crystallinity. If the thickness of the ferroelectric material in the layer is made thicker than the boundary layer with poor crystallinity so that the surface layer of the ferroelectric material has ferroelectricity, it can be used for the purpose of the present invention. However, the thickness of this boundary layer depends on the substrate temperature during sputtering.

第9図に本実施例における各電界強度に対する液晶分子
の配向モデルを示す。1Bは白金層、19は強誘電体層
であり、矢印22は強誘電体表面層の永久双極子を表わ
している。第9図(α)〜(−)はそれぞれ電界強度が
+51!i、O,−E、−511f、Oに対応している
。第9図より、強誘電体層19を上下基板上に設けたこ
とによって電界除去後も電界印加時と同じ2つのunt
vist状態(第9vA(α)、(d))が安定となる
ことがわかる。
FIG. 9 shows an alignment model of liquid crystal molecules for each electric field strength in this example. 1B is a platinum layer, 19 is a ferroelectric layer, and arrow 22 represents a permanent dipole of the ferroelectric surface layer. In Fig. 9 (α) to (-), the electric field strength is +51! It corresponds to i, O, -E, -511f, and O. From FIG. 9, it can be seen that by providing the ferroelectric layer 19 on the upper and lower substrates, the two unts remain the same even after the electric field is removed as when the electric field is applied.
It can be seen that the vist state (9th vA(α), (d)) is stable.

第10図は記憶効果の良否を表わす図である。FIG. 10 is a diagram showing whether the memory effect is good or bad.

第10図(α)は印加パルス電圧、(h)*(C)はい
ずれも印加パルス電圧に対する透過光強度の変化である
。印加パルス電圧の波高値vtsvxはいずれも第9図
(α)、(41に示した2つのuntviat状態の間
を完全にスイッチすることができる値である。記憶効果
の良否はパルス電圧印加時と電圧除去後の明るさの差よ
り一より’、II−よりlによりて評価することができ
、工p−工0/、工3−エ鄭′の値が小さいほど記憶効
果がすぐれている。
FIG. 10 (α) shows the applied pulse voltage, and (h)*(C) shows the change in transmitted light intensity with respect to the applied pulse voltage. The peak value vtsvx of the applied pulse voltage is a value that can completely switch between the two untviat states shown in FIG. 9 (α) and (41). The difference in brightness after removing the voltage can be evaluated by 1' and II- by l, and the smaller the values of p-p0/ and p3-dzheng, the better the memory effect.

第10図(b’Jは本実施例における透過光強度の変化
で、あり、比較のために第10図(C)に従来の方法に
よって作成した厚さ1.5μ溝のセルにおける透過光強
度の変化を示した。両者を比較すれば、本実施例におい
て得られた記憶効果が非常にすぐれていることがわかる
Figure 10 (b'J is the change in transmitted light intensity in this example. For comparison, Figure 10 (C) shows the transmitted light intensity in a cell with a 1.5 μm thick groove created by the conventional method. Comparing the two, it can be seen that the memory effect obtained in this example is very excellent.

パルス幅100μ武のパルス電圧に対するしきい特性は
非常に急峻であり790/V10 = 1−1 (Vα
:透過光強度がα%変化するために必要な電圧)であり
、従来技術による急峻性と同程度であった。またコント
ラスト(工Of SIR/ )は白色光を用いて1:2
0が得られた。
The threshold characteristic for a pulse voltage with a pulse width of 100μ is very steep, and 790/V10 = 1-1 (Vα
: the voltage required for the transmitted light intensity to change by α%), and the steepness was comparable to that of the conventional technology. Also, the contrast (of SIR/ ) is 1:2 using white light.
0 was obtained.

(実施例−2) 第1の実施例と同じ構成とし、液晶層と強誘電体層の厚
さをそれぞれ五〇μWLIrL8μ溪とした。本実施例
においても記憶効果がすぐれており、790/’V 1
0 = 1.2 m コントラストは1:23が得られ
た。
(Example 2) The structure was the same as that of the first example, and the thickness of the liquid crystal layer and the ferroelectric layer were each 50 μWLIrL8μ. This example also has an excellent memory effect, with 790/'V 1
0 = 1.2 m A contrast of 1:23 was obtained.

(実施例−5) 第1の実施例と同じ構成とし、液晶層と強誘電体層の厚
さをそれぞれ1.5μ’a l 1.0μ鴇とした。本
実施においても記憶効果がすぐれており、V90/V1
0=1.1 、:’/)ラストは1:35が得られた。
(Example 5) The structure was the same as that of the first example, and the thicknesses of the liquid crystal layer and the ferroelectric layer were each 1.5 μ'a l and 1.0 μm. The memory effect was also excellent in this implementation, with V90/V1
0=1.1, :'/) The last time was 1:35.

(実施例−4) 本実施例では、液晶層の厚さを&2μ19,1強誘電体
層として厚さ1・0μ淋のBaT103スパツタ薄膜を
使用した。液晶材料はB−4−0−(2−methyl
 ) butyl −resoroylil@no −
4’ −allC−yLaniline (M B R
ム−8)である。B a T i O@薄膜は基板温度
約650℃でスパッタし、約850℃で4時間熱処理し
た。本実施例においても記憶効果がすぐれており、79
0/710:1.15 。
(Example 4) In this example, a BaT103 sputtered thin film with a thickness of 1.0 μm was used, with the liquid crystal layer having a thickness of &2 μm and 1 ferroelectric layer. The liquid crystal material is B-4-0-(2-methyl
) butyl -resoroyil@no-
4'-allC-yLaniline (M B R
Mu-8). The B a T i O@ thin film was sputtered at a substrate temperature of about 650° C. and heat-treated at about 850° C. for 4 hours. This example also has an excellent memory effect, with 79
0/710:1.15.

コントラストは1:23が得られた。A contrast of 1:23 was obtained.

(実施例−5) 本実施例では液晶材料としてp −aecyloxyb
e−ngyliiene −p ’ −amino −
1−methylbutylc−1nnamate (
D OBム−1−MBC)を使用し、強誘電体として7
ツ化ビ千リデン/三フッ化エチD1P レン(/]共重合体を使用した。厚さ ?r7K VD? はそれぞれ&5μm、15μ鴇である。  /Tram
の薄膜は組成74/26の共重合体をメチルエチルケト
ンに溶解し、スピンツー卜することによりて作成した。
(Example-5) In this example, p-aecyloxyb was used as the liquid crystal material.
e-ngyliiene -p' -amino-
1-methylbutylc-1nnamate (
7 as a ferroelectric material.
Bithenidene tsulfide/ethylidene trifluoride D1P (/) copolymer was used.Thickness ?r7K VD? is &5μm and 15μm, respectively. /Tram
The thin film was prepared by dissolving a copolymer having a composition of 74/26 in methyl ethyl ketone and spinning the solution.

成膜後、ラビング処理を施し、さらに100℃で1 s
 OMY/、Il の電界を印加して≠−リングを行な
った。第11図に本実施例で使用したV D IF /
 T r 7111薄膜のヒステリシス特性(601i
z)を示す。横軸は40v/μm/ (L i W  
である。本実施例においても記憶効果がすぐれており、
T90/”I 1 G ” 1−1 eコントラストは
1:25が得られた。
After film formation, rubbing treatment was performed, and further heating at 100°C for 1 s
≠-ring was performed by applying an electric field of OMY/, Il. FIG. 11 shows the V D IF /
Hysteresis characteristics of T r 7111 thin film (601i
z). The horizontal axis is 40v/μm/(L i W
It is. This example also has an excellent memory effect,
A T90/"I 1 G" 1-1 e contrast of 1:25 was obtained.

以上述べたように、1μ淋以上の厚いセルにおいてもす
ぐれた記憶効果が得られた。強誘電体材料はP Xs 
Z T e B & T i Os  * V D I
F / T r IPBに限定されず、その他の強誘電
体材料を用いても同様な結果が得られ、その膜厚も限定
されない。
As described above, excellent memory effects were obtained even in cells as thick as 1 μm or more. Ferroelectric material is P Xs
Z T e B & T i Os * V D I
The present invention is not limited to F/Tr IPB, and similar results can be obtained using other ferroelectric materials, and the film thickness is not limited.

強誘電体薄膜を作成する時、基板温度が低すぎると生成
した薄膜が強誘電性を示さないが、その臨界温度は下地
基板の種類に左右され、下地基板として白金を使用すれ
ば、臨界温度は比較的低くなる。したがって上記実施例
では第7図に示したように白金層18を設けであるが、
白金層は必ずしも必要ではない。また、マトリクスアド
レス装置として応用する場合、電極はストライプ状とな
りているが、強誘電体層を電極と同じ形状にパターン化
する必要はなく、第7図に示したように上下の基板全面
に設ければよい。
When creating a ferroelectric thin film, if the substrate temperature is too low, the resulting thin film will not exhibit ferroelectricity, but the critical temperature depends on the type of underlying substrate, and if platinum is used as the underlying substrate, the critical temperature will be will be relatively low. Therefore, in the above embodiment, the platinum layer 18 is provided as shown in FIG.
A platinum layer is not necessarily required. In addition, when applied as a matrix addressing device, the electrodes are striped, but there is no need to pattern the ferroelectric layer in the same shape as the electrodes, and the ferroelectric layer is patterned over the entire surface of the upper and lower substrates as shown in Figure 7. That's fine.

〔効果〕〔effect〕

以上述べたように本発明によれば、従来約1μ罵以下の
薄いセルにおいてのみ得られていた記憶効果が厚さ数μ
mのセルにおいても得られるので、従来技術では不可能
であった強誘電性液晶を用いた大面積の液晶電気光学装
置を容易に作製することができるという効果を有する。
As described above, according to the present invention, the memory effect, which was conventionally obtained only in thin cells of about 1 μm or less, can be achieved with a thickness of several μm.
Since it can be obtained even in a cell with a size of 1.5 m, it has the effect that a large-area liquid crystal electro-optical device using ferroelectric liquid crystal, which was impossible with conventional techniques, can be easily manufactured.

【図面の簡単な説明】[Brief explanation of drawings]

第1g:iは液晶分子、永久双極子と2軸の位置関係を
示す図、第2図(g)〜(c)は厚さ数μ犠のセルのX
−Y断面における液晶分子配向を示す図、第5図(α)
〜(d)は種々の厚さのセルにおける液晶分子の配向を
示す図、第4図(a)。 Cb)は液晶分子が持つ永久双極子と基板表面の極性と
の相互作用を示す図、第5図(a)、(b)は三角波状
電界を印加した時の分極反転電流を示す図、第6図(α
)*Cb)は上基板と下基板に極性の異なる表面を使用
した時の配向状態を示す図、第7図は本発明による液晶
セルの構成を示す図、第8図はスパッタによって作成し
たPLZT薄膜のヒステリシス特性を示す図、第9図(
α)〜Cg)は強誘電体層を使用した場合の各印加電界
に対する液晶分子および強誘電体の分極の配向状態を示
す図、第10図(a)〜(C)は印加パルス電圧に対す
る液晶の透過光強度の変化を示す図、第11図はフッ化
ビニリデン/三7フ化エチレン共重合体のヒステリシス
特性を示す図である。 11・・・・・・液晶分子 12−−−−一永久双極子 15・・・・・・液晶分子のX−Y平面への射影14・
・・・・・ガラス基板 15−・・・・・ポリイミド 16・・・・−f910 ! 17・・・・・・透明電極 −18・・・・・・白 金 19・・・・・・強誘電体 20・・・・・・スペーサー 21・・・・・・液 晶 22・・・・・・強誘電体表面層の分極以上
Figure 1g: i is a diagram showing the positional relationship between liquid crystal molecules, permanent dipoles, and two axes, Figures 2 (g) to (c) are X of a sacrificial cell with a thickness of several μ
-A diagram showing liquid crystal molecule orientation in the Y cross section, Figure 5 (α)
-(d) are diagrams showing the orientation of liquid crystal molecules in cells of various thicknesses, and FIG. 4(a). Cb) is a diagram showing the interaction between the permanent dipoles of liquid crystal molecules and the polarity of the substrate surface; Figures 5(a) and 5(b) are diagrams showing polarization reversal current when a triangular wave electric field is applied; Figure 6 (α
)*Cb) is a diagram showing the orientation state when surfaces with different polarities are used for the upper and lower substrates, Figure 7 is a diagram showing the configuration of a liquid crystal cell according to the present invention, and Figure 8 is a diagram showing the PLZT fabricated by sputtering. A diagram showing the hysteresis characteristics of thin films, Figure 9 (
α) to Cg) are diagrams showing the orientation state of polarization of liquid crystal molecules and ferroelectric material for each applied electric field when a ferroelectric layer is used, and FIGS. FIG. 11 is a diagram showing the hysteresis characteristics of vinylidene fluoride/ethylene trifluoride copolymer. 11...Liquid crystal molecule 12---One permanent dipole 15...Projection of liquid crystal molecule onto the X-Y plane 14.
...Glass substrate 15--Polyimide 16--f910! 17...Transparent electrode-18...Platinum 19...Ferroelectric material 20...Spacer 21...Liquid crystal 22... ...More than the polarization of the ferroelectric surface layer

Claims (2)

【特許請求の範囲】[Claims] (1)電極を設けた2枚のガラス基板の間に強誘電性液
晶を封入し、前記2枚のガラス基板の上方および下方に
、互いに偏光軸がほぼ直交する様に偏光板を設けた液晶
電気光学装置において、液晶層と接する様に強誘電体層
を前記電極上に設けたことを特徴とする液晶電気光学装
置。
(1) A liquid crystal in which a ferroelectric liquid crystal is sealed between two glass substrates provided with electrodes, and polarizing plates are provided above and below the two glass substrates so that the polarization axes are substantially perpendicular to each other. 1. A liquid crystal electro-optical device, characterized in that a ferroelectric layer is provided on the electrode so as to be in contact with a liquid crystal layer.
(2)前記強誘電体層は、必ず前記2枚のガラス基板上
ともに設けることを特徴とする特許請求の範囲第1項記
載の液晶電気光学装置。
(2) The liquid crystal electro-optical device according to claim 1, wherein the ferroelectric layer is always provided on both of the two glass substrates.
JP60000679A 1985-01-07 1985-01-07 Liquid crystal electro-optical device Expired - Lifetime JPH0731324B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60000679A JPH0731324B2 (en) 1985-01-07 1985-01-07 Liquid crystal electro-optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60000679A JPH0731324B2 (en) 1985-01-07 1985-01-07 Liquid crystal electro-optical device

Publications (2)

Publication Number Publication Date
JPS61159627A true JPS61159627A (en) 1986-07-19
JPH0731324B2 JPH0731324B2 (en) 1995-04-10

Family

ID=11480438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60000679A Expired - Lifetime JPH0731324B2 (en) 1985-01-07 1985-01-07 Liquid crystal electro-optical device

Country Status (1)

Country Link
JP (1) JPH0731324B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61282882A (en) * 1985-06-07 1986-12-13 日本電気株式会社 Liquid crystal element
JPS62124525A (en) * 1985-11-25 1987-06-05 Semiconductor Energy Lab Co Ltd Liquid crystal device
JPS6340120A (en) * 1986-08-06 1988-02-20 Ulvac Corp Formation of liquid crystal orientation film
JPS63141024A (en) * 1986-12-02 1988-06-13 Semiconductor Energy Lab Co Ltd Production of liquid crystal device
JPS63142328A (en) * 1986-12-04 1988-06-14 Semiconductor Energy Lab Co Ltd Liquid crystal display device
JPS63301024A (en) * 1987-05-30 1988-12-08 Ricoh Co Ltd Liquid crystal element
JPH01267516A (en) * 1988-04-20 1989-10-25 Idemitsu Kosan Co Ltd Liquid crystal optical element and its production
JPH0271225A (en) * 1987-10-06 1990-03-09 Canon Inc Ferroelectric liquid crystal cell
JPH05249469A (en) * 1992-12-04 1993-09-28 Semiconductor Energy Lab Co Ltd Liquid crystal device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54155795A (en) * 1978-05-30 1979-12-08 Seiko Instr & Electronics Ltd Electro-optical display unit
JPS59214824A (en) * 1983-05-20 1984-12-04 Seiko Epson Corp Liquid-crystal electrooptic device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54155795A (en) * 1978-05-30 1979-12-08 Seiko Instr & Electronics Ltd Electro-optical display unit
JPS59214824A (en) * 1983-05-20 1984-12-04 Seiko Epson Corp Liquid-crystal electrooptic device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61282882A (en) * 1985-06-07 1986-12-13 日本電気株式会社 Liquid crystal element
JPH0564798B2 (en) * 1985-06-07 1993-09-16 Nippon Electric Co
JPS62124525A (en) * 1985-11-25 1987-06-05 Semiconductor Energy Lab Co Ltd Liquid crystal device
JPH052209B2 (en) * 1985-11-25 1993-01-12 Handotai Energy Kenkyusho
JPS6340120A (en) * 1986-08-06 1988-02-20 Ulvac Corp Formation of liquid crystal orientation film
JPS63141024A (en) * 1986-12-02 1988-06-13 Semiconductor Energy Lab Co Ltd Production of liquid crystal device
JPS63142328A (en) * 1986-12-04 1988-06-14 Semiconductor Energy Lab Co Ltd Liquid crystal display device
JPS63301024A (en) * 1987-05-30 1988-12-08 Ricoh Co Ltd Liquid crystal element
JPH0271225A (en) * 1987-10-06 1990-03-09 Canon Inc Ferroelectric liquid crystal cell
JPH01267516A (en) * 1988-04-20 1989-10-25 Idemitsu Kosan Co Ltd Liquid crystal optical element and its production
JPH05249469A (en) * 1992-12-04 1993-09-28 Semiconductor Energy Lab Co Ltd Liquid crystal device

Also Published As

Publication number Publication date
JPH0731324B2 (en) 1995-04-10

Similar Documents

Publication Publication Date Title
US5790223A (en) Ferroelectric liquid crystal device and treatment method therefor
KR0161240B1 (en) Method of aligning liquid crystals, method of manufacturing liquid crystal device employing the aligning method, and liquid crystal device manufactured employing the aligning method
JPS61159627A (en) Liquid crystal electrooptic device
JPH03177819A (en) Liquid crystal element
JP2568574B2 (en) Liquid crystal cell manufacturing method
JP2647828B2 (en) Liquid crystal device manufacturing method
US4601542A (en) Nematic liquid crystal storage display device
JPH04284423A (en) Orientation controlling film and liquid crystal element
JP2548592B2 (en) Ferroelectric liquid crystal element
JP2568575B2 (en) Liquid crystal cell manufacturing method
JPS62237431A (en) Liquid crystal element
JPS63124030A (en) Ferroelectric liquid crystal element
JP2548390B2 (en) Method for manufacturing ferroelectric liquid crystal panel
JP2699999B2 (en) Liquid crystal element
JPS62291622A (en) Liquid crystal element
JPS62295021A (en) Liquid crystal element and its production
JPH0731325B2 (en) Liquid crystal display
JPH05216034A (en) Ferroelectric liquid crystal element
JPS62244017A (en) Method for orienting ferroelectric liquid crystal
JPH03288826A (en) Liquid crystal electrooptical device
JPH0756176A (en) Ferroelectric liquid crystal element
JPH0695612A (en) Voltage applying and driving method for ferroelectric liquid crystal element
JPH06186569A (en) Ferroelectric liquid crystal device
JPH06186567A (en) Ferroelectric liquid crystal device
JPH05333341A (en) Production of ferroelectric liquid crystal element