JPH05216034A - Ferroelectric liquid crystal element - Google Patents

Ferroelectric liquid crystal element

Info

Publication number
JPH05216034A
JPH05216034A JP4061992A JP4061992A JPH05216034A JP H05216034 A JPH05216034 A JP H05216034A JP 4061992 A JP4061992 A JP 4061992A JP 4061992 A JP4061992 A JP 4061992A JP H05216034 A JPH05216034 A JP H05216034A
Authority
JP
Japan
Prior art keywords
liquid crystal
ferroelectric liquid
angle
orientation state
orientation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4061992A
Other languages
Japanese (ja)
Inventor
Yukio Haniyu
由紀夫 羽生
Katsutoshi Nakamura
勝利 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP4061992A priority Critical patent/JPH05216034A/en
Publication of JPH05216034A publication Critical patent/JPH05216034A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the durability of a device by preventing the transfer of a liquid crystal and lessening the increase in the cell thickness at the ends of a cell. CONSTITUTION:This ferroelectric liquid crystal element has the ferroelectric liquid crystal 15 and a pair of substrates 11a, 11b which face each other by holding this ferroelectric liquid crystal 15 in-between, are formed with electrodes 12a, 12b for impressing a voltage to the ferroelectric liquid crystal on the respective opposite surfaces and are subjected to a uniaxial orientation treatment of the same direction in nearly parallel with each other for orienting the ferroelectric liquid crystal 15. The relation between the cone angle THETA of the ferroelectric liquid crystal 15 and the inclination angle delta of a chiral smectic layer has the orientation state expressed by delta/THETA>=0.80. In addition, the orientation state thereof exhibits at least two stable states and thetaa which is half the angle formed by these optical axes and the tilt angle theta of the ferroelectric liquid crystal have a relation theta/2<thetaa<theta.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、強誘電性液晶に適した
セル構造を有する液晶素子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal element having a cell structure suitable for a ferroelectric liquid crystal.

【0002】[0002]

【従来の技術】強誘電性液晶分子の屈折率異方性を利用
して偏光素子との組合わせにより透過光線を制御する型
の表示素子がクラーク(Clark)及びラガーウォル
(Lagerwall)により提案されている(特開昭
56−107216号公報、米国特許第4367924
号明細書等)。この強誘電性液晶は、一般に特定の温度
域において、カイラルスメクチックC相(SmC* )ま
たはH相(SmH* )を有し、この状態において、加え
られる電界に応答して第1の光学的安定状態と第2の光
学的安定状態のいずれかを取り、かつ電界の印加のない
ときはその状態を維持する性質、すなわち双安定性を有
し、また電界の変化に対する応答も速やかであり、高速
ならびに記憶型の表示素子としての広い利用が期待され
ている。
2. Description of the Related Art A display device of the type in which transmitted light rays are controlled by a combination with a polarizing device utilizing the refractive index anisotropy of ferroelectric liquid crystal molecules has been proposed by Clark and Lagerwall. (JP-A-56-107216, U.S. Pat. No. 4,367,924).
No. etc.). This ferroelectric liquid crystal generally has a chiral smectic C phase (SmC * ) or H phase (SmH * ) in a specific temperature range, and in this state, it has a first optical stability in response to an applied electric field. State or the second optically stable state, and has the property of maintaining that state when no electric field is applied, that is, bistability, and has a quick response to changes in the electric field, and high speed. In addition, it is expected to be widely used as a memory type display element.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の強誘電性液晶セルにおいては、長時間駆動し
続けると、セル端部のセル厚が次第に増加して行き、黄
色に色付いて見えてくるという問題が認められる。
However, in such a conventional ferroelectric liquid crystal cell, when it is continuously driven for a long time, the cell thickness at the cell edge gradually increases, and the cell appears to be colored yellow. The problem of coming is recognized.

【0004】本発明の目的は、強誘電性液晶を用いる高
コントラストな液晶素子において、セル端部でのセル厚
の増加を低減することにある。
An object of the present invention is to reduce an increase in cell thickness at a cell edge in a high contrast liquid crystal device using a ferroelectric liquid crystal.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
本発明の強誘電性液晶素子は、強誘電性液晶と、この強
誘電性液晶を間に保持して対向するとともにその対向面
にはそれぞれ強誘電性液晶に電圧を印加するための電極
が形成されかつ強誘電性液晶を配向するための相互にほ
ぼ平行で同一方向の一軸性配向処理が施された一対の基
板とを備え、強誘電性液晶のコーン角Θとカイラルスメ
クチック層の傾き角δとの関係が、δ/Θ>0.80、
好ましくはδ/Θ>0.90で表される配向状態を有
し、かつその配向状態が少なくとも2つの安定状態を示
し、それらの光学軸のなす角度の1/2であるθa と強
誘電性液晶のチルト角θとがθ/2<θa <θの関係を
有することを特徴とする。
In order to achieve the above object, a ferroelectric liquid crystal device of the present invention is provided with a ferroelectric liquid crystal and a ferroelectric liquid crystal which are opposed to each other while holding the ferroelectric liquid crystal therebetween. Electrodes for applying a voltage to the ferroelectric liquid crystal are formed respectively, and a pair of substrates, which are substantially parallel to each other for orienting the ferroelectric liquid crystal and are uniaxially oriented in the same direction, are provided. The relationship between the cone angle Θ of the dielectric liquid crystal and the tilt angle δ of the chiral smectic layer is δ / Θ> 0.80,
Preferably, it has an orientation state represented by δ / Θ> 0.90, and the orientation state exhibits at least two stable states, and θ a which is ½ of the angle formed by the optical axes thereof and the ferroelectric And the tilt angle θ of the liquid crystal has a relationship of θ / 2 <θ a <θ.

【0006】ここで、強誘電性液晶のプレチルト角は1
0°以上が好ましい。また、強誘電性液晶の配向を制御
するための有機高分子の配向制御膜を備えるのが好まし
い。さらに、前記配向状態は、SmAからSm* Cに転
移する温度をT1 ℃とすると(T1 −5)℃から、(T
1 −10)℃あるいは(T1 −20)℃まで、より好ま
しくは(T1 −30)℃まで、さらに好ましくは(T1
−40)℃までの、全温度範囲で存在する。
Here, the pretilt angle of the ferroelectric liquid crystal is 1
It is preferably 0 ° or more. Further, it is preferable to provide an organic polymer alignment control film for controlling the alignment of the ferroelectric liquid crystal. Further, in the above-mentioned orientation state, when the temperature at which SmA is transformed into Sm * C is T 1 ° C, the temperature is (T 1 -5) ° C,
1 -10) to ° C. or (T 1 -20) ° C., more preferably up to (T 1 -30) ° C., more preferably (T 1
It exists in the whole temperature range up to -40 ° C.

【0007】[0007]

【作用】本発明者等の研究によれば、このような強誘電
性液晶を有する液晶セルにおいては、駆動により液晶自
身が液晶セル間の特定の方向へ移動することによって、
セル端部での圧力が増加し、その結果セル厚が増加して
いることが認められている。液晶分子が液晶セルの中を
移動する力の発生原因は不明だが、おそらく駆動パルス
による交流的な電界で、液晶分子の双極子モーメントが
揺らぐことにより発生する電気力学的効果であろうと推
定される。また、本発明者等の実験によれば、図2
(A)に示すように、液晶の移動の方向22はラビング
方向20と液晶分子の平均分子軸方向21,21′によ
り決まっている。液晶分子の移動方向がこのようにラビ
ングの方向に依存することから、その現象は基板界面で
のプレチルトの状態に依存していることが推測される。
平均分子軸方向21,21′は強誘電性液晶分子の双安
定状態における平均的な分子位置を示している。ここで
例えば、平均分子軸方向が21で示した状態で液晶がス
イッチングしない程度の適当な交流電界を印加すると、
矢印22方向に液晶分子が移動する。ただし、ここでは
自発分極の向きが負である液晶材料を用いた場合につい
て述べている。さらにこの液晶移動現象は、次に説明す
るようなセルの配向状態に依存している。
According to the research conducted by the present inventors, in a liquid crystal cell having such a ferroelectric liquid crystal, the liquid crystal itself moves in a specific direction between the liquid crystal cells by driving,
It has been observed that the pressure at the cell edges has increased, resulting in an increase in cell thickness. The cause of the force that the liquid crystal molecules move in the liquid crystal cell is unknown, but it is presumed that it is probably an electrodynamic effect caused by the fluctuation of the dipole moment of the liquid crystal molecules in the alternating electric field due to the driving pulse. .. Further, according to an experiment by the present inventors, FIG.
As shown in (A), the moving direction 22 of the liquid crystal is determined by the rubbing direction 20 and the average molecular axis directions 21, 21 'of the liquid crystal molecules. Since the moving direction of the liquid crystal molecules depends on the rubbing direction as described above, it is presumed that the phenomenon depends on the pretilt state at the substrate interface.
The average molecular axis directions 21 and 21 'indicate average molecular positions in the bistable state of the ferroelectric liquid crystal molecules. Here, for example, when an appropriate AC electric field that does not cause switching of the liquid crystal is applied in a state where the average molecular axis direction is 21,
Liquid crystal molecules move in the direction of arrow 22. However, here, a case where a liquid crystal material having a negative spontaneous polarization direction is used is described. Furthermore, this liquid crystal movement phenomenon depends on the alignment state of the cell as described below.

【0008】スメクチック層のシェブロン構造を含む配
向はC1およびC2の2種類の配向モデルで説明するこ
とができる。図3において、31はスメクチック層、3
2はC1配向の領域、33はC2配向の領域を表わす。
スメクチック液晶は一般に層構造をもつが、SA相から
SC相またはSC*相に転移すると層間隔が縮むので図
3のように層が上下基板14a,14bの中央で折れ曲
った構造(シェブロン構造)をとる。折れ曲る方向は図
に示すようにC1とC2の2つ有り得るが、よく知られ
ているようにラビングによって基板界面の液晶分子は基
板に対して角度をなし(プレチルト)、その方向はラビ
ング方向Aに向かって液晶分子が頭をもたげる(先端が
浮いた格好になる)向きである。このプレチルトのため
にC1配向とC2配向は弾性エネルギー的に等価でな
く、上述のように、ある温度で転移が起こる。また、機
械的な歪みで転移が起こることもある。図3の層構造を
平面的にみると、ラビング方向Aに向ってC1配向から
C2配向に移るときの境界34はジグザグの稲妻状でラ
イトニング欠陥と呼ばれ、C2からC1に移るときの境
界35は幅の広い、ゆるやかな曲線状でヘアピン欠陥と
呼ばれる。
The orientation including the chevron structure of the smectic layer can be explained by two types of orientation models, C1 and C2. In FIG. 3, 31 is a smectic layer, 3
Reference numeral 2 represents a C1-oriented region, and 33 represents a C2-oriented region.
Smectic liquid crystals generally have a layered structure, but when the SA phase transitions to the SC phase or SC * phase, the layer spacing shrinks, so that the layers are bent at the center of the upper and lower substrates 14a and 14b (chevron structure) as shown in FIG. Take As shown in the figure, there can be two bending directions C1 and C2, but as is well known, the liquid crystal molecules at the substrate interface form an angle (pretilt) with the substrate by rubbing, and that direction is the rubbing direction. The direction is such that the liquid crystal molecules lift their heads toward A (the tip becomes floating). Due to this pretilt, the C1 orientation and the C2 orientation are not elastically energy-equivalent, and a transition occurs at a certain temperature as described above. Further, mechanical strain may cause dislocation. When the layered structure of FIG. 3 is viewed in a plan view, the boundary 34 when the C1 orientation shifts to the C2 orientation in the rubbing direction A is a zigzag lightning bolt-like lightning defect, and the boundary 35 when the C2 orientation shifts to C1. Has a wide, gentle curve and is called a hairpin defect.

【0009】強誘電性液晶を配向するための相互にほぼ
平行で同一方向の一軸性配向処理が施された一対の基板
を備え、強誘電性液晶が、そのプレチルト角をα、チル
ト角(コーン角の1/2)をθ、Sm*C層の傾斜角を
δとすれば、数1式で表わされる配向状態を有するよう
にすると、C1配向状態においてさらにシェブロン構造
を有する4つの状態が存在する。
The ferroelectric liquid crystal is provided with a pair of substrates that are substantially parallel to each other and are uniaxially aligned in the same direction. The ferroelectric liquid crystal has a pretilt angle of α and a tilt angle (cone). (1/2 of the angle) is θ, and the tilt angle of the Sm * C layer is δ, and when the orientation state represented by the formula 1 is provided, there are four states having a chevron structure in the C1 orientation state. To do.

【0010】[0010]

【数1】 この4つのC1配向状態は、従来のC1配向状態とは異
なっており、なかでも4つのC1配向状態のうちの2つ
の状態は、双安定状態(ユニフォーム状態)を形成して
いる。ここで、無電界時のみかけのチルト角をθa とす
れば、C1配向状態における4つの状態のうち、数2式
の関係を示す状態をユニフォーム状態という。
[Equation 1] These four C1 orientation states are different from the conventional C1 orientation states, and among them, two of the four C1 orientation states form a bistable state (uniform state). Here, assuming that the apparent tilt angle when there is no electric field is θ a , of the four states in the C1 orientation state, the state showing the relationship of the equation 2 is called the uniform state.

【0011】[0011]

【数2】 ユニフォーム状態においては、その光学的性質からみて
ダイレクタが上下基板間でねじれていないと考えられ
る。図4(A)はC1配向の各状態における基板間の各
位置でのダイレクタの配置を示す模式図である。図中5
1〜54は各状態においてダイレクタをコーンの底面に
投影し、これを底面方向から見た様子を示しており、5
1および52がスプレイ状態、53および54がユニフ
ォーム状態と考えられるダイレクタの配置である。同図
から分かるとおり、ユニフォームの2状態53と54に
おいては、上下いずれかの基板界面の液晶分子の位置が
スプレイ状態の位置と入れ替わっている。図4(B)は
C2配向を示しており、界面のスイッチングはなく内部
のスイッチングで2状態55と56がある。このC1配
向のユニフォーム状態は、従来用いていたC2配向にお
ける双安定状態よりも大きなチルト角θa を生じ、輝度
が大きくしかもコントラストが高い。
[Equation 2] In the uniform state, it is considered that the director is not twisted between the upper and lower substrates in view of its optical properties. FIG. 4A is a schematic view showing the arrangement of directors at respective positions between the substrates in each state of C1 orientation. 5 in the figure
1 to 54 show the state in which the director is projected on the bottom surface of the cone in each state and viewed from the bottom surface direction.
1 and 52 are splayed states, and 53 and 54 are director arrangements considered to be uniform states. As can be seen from the figure, in the two states 53 and 54 of the uniform, the positions of the liquid crystal molecules on either the upper or lower substrate interface are replaced with the positions in the splay state. FIG. 4B shows the C2 orientation, and there are two states 55 and 56 due to internal switching without interface switching. The uniform state of the C1 orientation produces a larger tilt angle θ a than the conventionally used bistable state of the C2 orientation, and has a large luminance and a high contrast.

【0012】前述した液晶分子の移動は、実際の液晶セ
ルでは、図2に示すように、例えばセル全体で液晶分子
位置が矢印21で示した状態にあったとすると、セル内
部で図の紙面の右から左へ液晶の移動が生じる。その結
果、図2(B)に示すように領域23のセル厚が経時的
に厚くなり、色付きを生じてくることになる。液晶分子
が矢印21′で示した状態にあるときには、交流電界下
での移動方向は逆になるが、いずれにせよ、ラビング方
向20に対して垂直な方向、すなわちスメクチク層内に
おいて液晶の移動が生じる。このような液晶の移動は、
液晶素子の長時間にわたる連続駆動における耐久性に悪
影響を与えることが明白である。
In the actual liquid crystal cell, if the liquid crystal molecule position is in the state shown by the arrow 21 in the whole cell as shown in FIG. The liquid crystal moves from right to left. As a result, as shown in FIG. 2 (B), the cell thickness of the region 23 becomes thicker with time, and coloring occurs. When the liquid crystal molecules are in the state shown by the arrow 21 ', the movement direction under the AC electric field is opposite, but in any case, the movement of the liquid crystal in the direction perpendicular to the rubbing direction 20, that is, in the smectic layer. Occurs. Such liquid crystal movement is
It is obvious that the durability of the liquid crystal element in continuous driving for a long time is adversely affected.

【0013】しかし、本発明においては、強誘電性液晶
のコーン角Θとカイラルスメクチック層の傾き角δとの
関係が、δ/Θ≧0.80好ましくはδ/Θ>0.90
となるようにしたため、以下の実施例において示される
ように、前記液晶の移動が防止され、長時間にわたる連
続駆動における耐久性が改善される。
However, in the present invention, the relationship between the cone angle Θ of the ferroelectric liquid crystal and the tilt angle δ of the chiral smectic layer is δ / Θ ≧ 0.80, preferably δ / Θ> 0.90.
Therefore, as shown in the following examples, the movement of the liquid crystal is prevented and the durability in continuous driving for a long time is improved.

【0014】[0014]

【実施例】以下、図面を用いて本発明の実施例を説明す
る。図1は本発明の一実施例に係る強誘電性液晶(FL
C)素子の液晶セルを模式的に示す断面図である。同図
に示すようにこの液晶セルは、平行に配置した上基板1
1aおよび下基板11b、ならびに、これら基板の対向
面上に形成した、厚さが例えば約400〜3000Åの
透明電極12aおよび12bを備える。上基板11aと
下基板11bとの間には非らせん構造の強誘電性液晶1
5が配置される。透明電極12aおよび12b上には、
厚さが例えば100〜3000Åの絶縁膜13aおよび
13bが形成されている。この絶縁膜としては、塗布、
焼成タイプの無機酸化物、スパッタ膜等が使える。ま
た、2層構成以上の多層膜でもよい。絶縁膜13aおよ
び13bの上には、配向制御膜14aおよび14bが5
0〜1000Åの膜厚で形成されている。この配向制御
膜の材料としては、通常、高分子ポリマが用いられる
が、この発明における素子では、フッソ含有ポリイミド
等の高いプレチルト角を与える配向制御膜が好ましい。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a ferroelectric liquid crystal (FL) according to an embodiment of the present invention.
It is sectional drawing which shows the liquid crystal cell of a C) element typically. As shown in the figure, this liquid crystal cell has an upper substrate 1 arranged in parallel.
1a and a lower substrate 11b, and transparent electrodes 12a and 12b formed on the opposing surfaces of these substrates and having a thickness of, for example, about 400 to 3000 Å. Between the upper substrate 11a and the lower substrate 11b, a ferroelectric liquid crystal 1 having a non-helical structure is provided.
5 are arranged. On the transparent electrodes 12a and 12b,
Insulating films 13a and 13b having a thickness of 100 to 3000 Å are formed. As this insulating film, coating,
Baking type inorganic oxide, sputtered film, etc. can be used. Further, a multilayer film having a two-layer structure or more may be used. Alignment control films 14a and 14b are formed on the insulating films 13a and 13b.
It is formed with a film thickness of 0 to 1000Å. As a material for the alignment control film, a polymer is usually used, but in the device of the present invention, an alignment control film that gives a high pretilt angle such as a fluorine-containing polyimide is preferable.

【0015】強誘電性液晶15としては、カイラルスメ
クチック相状態のものを用いることができ、具体的には
カイラルスメクチックC相(SmC* )、H相(SmH
* )、I相(SmI* )やG相(SmG* )の液晶を用
いることができる。そして、特に好ましい強誘電性液晶
としては、これより高温側でコレステリック相を示すも
のを用いることができ、例えば化1に示す相転移温度を
示すピリミジン系混合液晶を用いることができる。
As the ferroelectric liquid crystal 15, one having a chiral smectic phase state can be used, and specifically, a chiral smectic C phase (SmC * ) and an H phase (SmH).
* ), I-phase (SmI * ) and G-phase (SmG * ) liquid crystals can be used. As a particularly preferable ferroelectric liquid crystal, a liquid crystal exhibiting a cholesteric phase on the higher temperature side can be used, and for example, a pyrimidine-based mixed liquid crystal exhibiting the phase transition temperature shown in Chemical formula 1 can be used.

【0016】[0016]

【化1】 強誘電性液晶15のコーン角Θとカイラルスメクチック
層の傾き角δとの関係は、δ/Θ≧0.80好ましくは
δ/Θ>0.90で表される配向状態を有し、かつその
配向状態が少なくとも2つの安定状態を示し、それらの
光学軸のなす角度の1/2であるθa と強誘電性液晶の
チルト角θとがθ/2<θa <θの関係を有する。強誘
電性液晶のチルト角θ、みかけのチルト角θa 、層の傾
き角δ、およびプレチルト角αの測定は、次のようにし
て行うことができる。
[Chemical 1] The relationship between the cone angle Θ of the ferroelectric liquid crystal 15 and the tilt angle δ of the chiral smectic layer has an orientation state represented by δ / Θ ≧ 0.80, preferably δ / Θ> 0.90, and The orientation state exhibits at least two stable states, and θ a , which is ½ of the angle formed by the optical axes thereof, and the tilt angle θ of the ferroelectric liquid crystal have a relation of θ / 2 <θ a <θ. The tilt angle θ, the apparent tilt angle θ a , the layer tilt angle δ, and the pretilt angle α of the ferroelectric liquid crystal can be measured as follows.

【0017】チルト角θの測定 10〜30VのDCをFLC素子の上下基板間に印加し
ながら直交クロスニコル下において、その間に配置され
たFLC素子を偏光板と水平に回転させて第1の消光位
(透過率が最も低くなる位置)をさがし、次に上記と逆
極性のDCを印加しながら第2の消光位をさがす。この
ときの第1の消光位から第2の消光位までの角度の1/
2をチルト角θとする。
Measurement of Tilt Angle θ While applying DC of 10 to 30 V between the upper and lower substrates of the FLC element, the FLC element arranged between them is horizontally rotated with the polarizing plate under the orthogonal crossed Nicols to make the first extinction. Position (the position where the transmittance is the lowest) is searched for, and then the second extinction position is searched for while applying DC of the opposite polarity to the above. 1 / the angle from the first extinction position to the second extinction position at this time
Let 2 be the tilt angle θ.

【0018】みかけのチルト角θa の測定 液晶のしきい値の単発パルスを印加し、その後、無電界
下かつ直行クロスニコル下において、その間に配置され
たFLC素子を偏光板と水平に回転させて第1の消光位
をさがし、次に上記の単発パルスと逆極性のパルスを印
加し、その後、無電界下において第2の消光位をさが
す。このときの第1の消光位から第2の消光位までの角
度の1/2をみかけのチルト角θa とする。
Measurement of apparent tilt angle θ a A single pulse having a threshold value of the liquid crystal was applied, and thereafter, the FLC element disposed between them was rotated horizontally with the polarizing plate under no electric field and under orthogonal crossed Nicols. Then, the first extinction position is searched for, then a pulse having a polarity opposite to that of the above-mentioned single pulse is applied, and then the second extinction position is searched under no electric field. The apparent tilt angle θ a is ½ of the angle from the first extinction position to the second extinction position at this time.

【0019】層の傾き角δの測定 X線解析装置RAD−IIB(45KV,30mA)を用
い、X線解析法により層の傾き角δを測定する。
Measurement of layer inclination angle δ The layer inclination angle δ is measured by an X-ray analysis method using an X-ray analyzer RAD-IIB (45 KV, 30 mA).

【0020】プレチルト角αの測定 『Jpn. J. Appl. Phys. vol19(1980) NO. 10, Short No
tes 2013』に記載されている方法(クリスタルローテー
ション法)に従って求める。つまり、平行かつ反対方向
にラビングした基板を貼り合せてセル厚20μmのセル
を作成し、これに0〜60℃の範囲でSmA相を有する
液晶を封入し、そして、この液晶セルを上下基板に垂直
かつ配向処理軸を含む面で回転させながら回転軸と45
°の角度をなす偏光面を有するヘリウム・ネオン・レー
ザ光を回転軸に垂直な方向から照射し、その反対側で入
射偏光面と平行な透過軸を有する偏光板を通してフォト
ダイオードで透過光強度を測定する。そして、干渉によ
って生じた透過光強度の双曲線群の中心となる角と液晶
セルに垂直な線とがなす角度をφX とすれば、数1式に
よってプレチルト角αを求めることができる。
Measurement of pretilt angle α “Jpn. J. Appl. Phys. Vol19 (1980) NO. 10, Short No.
tes 2013 ”and obtain according to the method (crystal rotation method). That is, substrates rubbed in parallel and in opposite directions are bonded to each other to form a cell having a cell thickness of 20 μm, liquid crystal having an SmA phase is enclosed in the cell in the range of 0 to 60 ° C., and this liquid crystal cell is used as upper and lower substrates. While rotating on a plane that is vertical and includes the alignment treatment axis,
Helium-neon laser light with a polarization plane that makes an angle of ° is irradiated from a direction perpendicular to the rotation axis, and the intensity of the transmitted light is increased by a photodiode through a polarizing plate that has a transmission axis parallel to the incident polarization plane on the opposite side. taking measurement. The pretilt angle α can be calculated by the formula 1 below, where φ X is the angle formed by the center line of the hyperbola group of transmitted light intensity caused by interference and the line perpendicular to the liquid crystal cell.

【0021】[0021]

【数1】 実施例1〜5および比較例1〜3 1000Å厚のITO膜が設けられている1.1mmの
厚さのガラス板を2枚用意し、それらの上に塗布型絶縁
層(Ti−Si=1:1;東京応化社製)を塗布し、3
00℃で焼成することにより1200Åの厚さの絶縁膜
を形成した。
[Equation 1] Examples 1 to 5 and Comparative Examples 1 to 2 Two glass plates having a thickness of 1.1 mm provided with an ITO film having a thickness of 1000 Å were prepared, and a coating type insulating layer (Ti-Si = 1) was provided thereon. : 1; manufactured by Tokyo Ohka Co., Ltd., and applied 3
By firing at 00 ° C., an insulating film having a thickness of 1200 Å was formed.

【0022】次に、この絶縁膜の上に、含フッ素ポリア
ミック酸をNMPおよびn−ブチルセロソルブの4%溶
液として印刷し、その後、270℃で焼成して200Å
の膜厚とした。
Next, a fluorine-containing polyamic acid was printed on this insulating film as a 4% solution of NMP and n-butyl cellosolve, and then baked at 270 ° C. to 200Å.
Of the film thickness.

【0023】次に、これら2枚の基板をナイロン布で平
行かつ同一方向にラビングし、その後、これらを1.2
μmのシリカビーズを用いて対向させ、前記のような液
晶セルを作成した。
Next, these two substrates were rubbed with a nylon cloth in parallel and in the same direction, and then they were rubbed with 1.2.
The liquid crystal cell as described above was prepared by facing each other using silica beads of μm.

【0024】次に、このようにして作成した液晶セル
に、それぞれ、表1の実施例1〜5および比較例1〜3
に示すコーン角Θ、カイラルスメクチック層の傾き角
δ、これらの比δ/Θおよび誘電分極PS を有する強誘
電性液晶組成物を注入して液晶セル全体の配向を図2
(A)に示す平均分子軸方向21に揃え、それぞれパル
ス幅Δt=25μs、電圧振幅VPP=40V、1/2デ
ューティの矩形波を約7時間印加してから、図2(B)
に示す領域23におけるセル厚を測定するとともに、液
晶セルをクロスニコルの偏光板間に配置し、目視により
色付きを観察した。
Next, the liquid crystal cells thus produced were respectively subjected to Examples 1 to 5 and Comparative Examples 1 to 3 in Table 1.
The orientation of the entire liquid crystal cell is shown in FIG. 2 by injecting a ferroelectric liquid crystal composition having the cone angle Θ, the inclination angle δ of the chiral smectic layer, the ratio δ / Θ and the dielectric polarization P S shown in FIG.
A rectangular wave having a pulse width Δt = 25 μs, a voltage amplitude V PP = 40 V, and a ½ duty is applied for about 7 hours and aligned in the average molecular axis direction 21 shown in FIG.
In addition to measuring the cell thickness in the region 23 shown in (1), the liquid crystal cell was arranged between the crossed Nicols polarizing plates, and the coloring was visually observed.

【0025】[0025]

【表1】 この測定結果により得られた、δ/Θに対するセル厚の
変化を示すグラフを図5に示す。また、目視観察によれ
ば、δ/Θ>0.90である実施例2および3の場合は
色付きはまったくみられず、セル厚の増加した領域はま
ったく認識されなかった。また、δ/Θ≧0.80であ
る実施例1、4および5の場合は、かすかに黄色を呈す
る領域がみられたが、ほとんど気にならなかった。
[Table 1] FIG. 5 is a graph showing the change in cell thickness with respect to δ / Θ obtained from the measurement results. Further, according to visual observation, in the cases of Examples 2 and 3 where δ / Θ> 0.90, no coloring was observed and no region where the cell thickness was increased was recognized at all. Further, in the case of Examples 1, 4 and 5 where δ / Θ ≧ 0.80, a slightly yellow area was observed, but it was hardly noticeable.

【0026】これに対し、δ/Θ<0.80である比較
例1〜3の場合は、セル厚が厚くなったために黄色に変
化した領域がはっきりと認識され、画質を劣化させてい
るのが確認された。
On the other hand, in the case of Comparative Examples 1 to 3 in which δ / Θ <0.80, the area changed to yellow due to the increased cell thickness is clearly recognized, and the image quality is deteriorated. Was confirmed.

【0027】[0027]

【発明の効果】以上説明したように本発明によれば、強
誘電性液晶のコーン角Θとカイラルスメクチック層の傾
き角δとの関係が、δ/Θ≧0.80好ましくはδ/Θ
>0.90で表される配向状態を有するようにしたた
め、液晶の移動を防止し、装置の耐久性を向上させるこ
とができる。
As described above, according to the present invention, the relationship between the cone angle Θ of the ferroelectric liquid crystal and the tilt angle δ of the chiral smectic layer is δ / Θ ≧ 0.80, preferably δ / Θ.
Since the alignment state represented by> 0.90 is provided, the movement of the liquid crystal can be prevented and the durability of the device can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例に係る強誘電性液晶(FL
C)素子の液晶セルを模式的に示す断面図である。
FIG. 1 shows a ferroelectric liquid crystal (FL) according to an embodiment of the present invention.
It is sectional drawing which shows the liquid crystal cell of a C) element typically.

【図2】 液晶の移動の様子を示す説明図である。FIG. 2 is an explanatory diagram showing how liquid crystal moves.

【図3】 C1配向とC2配向の層構造を示す説明図で
ある。
FIG. 3 is an explanatory diagram showing a layer structure of C1 orientation and C2 orientation.

【図4】 C1配向およびC2配向の各状態における基
板間の各位置でのダイレクタの配置を示す模式図であ
る。
FIG. 4 is a schematic diagram showing an arrangement of directors at respective positions between substrates in respective states of C1 orientation and C2 orientation.

【図5】 実施例および比較例におけるδ/Θに対する
セル厚の変化を示すグラフである。
FIG. 5 is a graph showing changes in cell thickness with respect to δ / Θ in Examples and Comparative Examples.

【符号の説明】[Explanation of symbols]

11a,14a:上基板、11b,14b:下基板、1
2a,12b:透明電極、15:強誘電性液晶、12
a,12b:透明電極、13a,13b:絶縁膜、14
a,14b:配向制御膜、17a,17b:偏光板、2
0:ラビング方向、22:液晶移動方向、23:31:
スメクチック層、32:C1配向の領域、33:C2配
向の領域、51,52:スプレイ状態のダイレクタ配
置、53,54:ユニフォーム状態のダイレクタ配置
11a, 14a: upper substrate, 11b, 14b: lower substrate, 1
2a, 12b: transparent electrode, 15: ferroelectric liquid crystal, 12
a, 12b: transparent electrode, 13a, 13b: insulating film, 14
a, 14b: orientation control film, 17a, 17b: polarizing plate, 2
0: rubbing direction, 22: liquid crystal moving direction, 23:31:
Smectic layer, 32: C1 oriented region, 33: C2 oriented region, 51, 52: splayed director arrangement, 53, 54: uniformed director arrangement

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 強誘電性液晶と、この強誘電性液晶を間
に保持して対向するとともにその対向面にはそれぞれ強
誘電性液晶に電圧を印加するための電極が形成されかつ
強誘電性液晶を配向するための相互にほぼ平行で同一方
向の一軸性配向処理が施された一対の基板とを備え、強
誘電性液晶のコーン角Θとカイラルスメクチック層の傾
き角δとの関係が、δ/Θ≧0.80で表される配向状
態を有し、かつその配向状態が少なくとも2つの安定状
態を示し、それらの光学軸のなす角度の1/2であるθ
a と強誘電性液晶のチルト角θとがθ/2<θa <θの
関係を有することを特徴とする強誘電性液晶素子。
1. A ferroelectric liquid crystal and a ferroelectric liquid crystal which face each other with the ferroelectric liquid crystal held therebetween, and electrodes for applying a voltage to the ferroelectric liquid crystal are formed on the opposing surfaces, respectively. A pair of substrates that are substantially parallel to each other and are subjected to uniaxial alignment treatment in the same direction for aligning the liquid crystal, and the relationship between the cone angle Θ of the ferroelectric liquid crystal and the tilt angle δ of the chiral smectic layer, θ, which has an orientation state represented by δ / Θ ≧ 0.80, exhibits at least two stable states, and is 1/2 of an angle formed by the optical axes thereof.
A ferroelectric liquid crystal device, wherein a and the tilt angle θ of the ferroelectric liquid crystal have a relationship of θ / 2 <θ a <θ.
【請求項2】 前記コーン角Θおよび傾き角δとの関係
は、δ/Θ>0.90であることを特徴とする請求項1
記載の強誘電性液晶素子。
2. The relationship between the cone angle Θ and the tilt angle δ is δ / Θ> 0.90.
The ferroelectric liquid crystal device described.
【請求項3】 前記強誘電性液晶のプレチルト角は10
°以上であることを特徴とする請求項1または2記載の
強誘電性液晶素子。
3. The pretilt angle of the ferroelectric liquid crystal is 10
3. The ferroelectric liquid crystal element according to claim 1, wherein the ferroelectric liquid crystal element has an angle of at least °.
【請求項4】 前記強誘電性液晶の配向を制御するため
の有機高分子の配向制御膜を備える、請求項2記載の強
誘電性液晶素子。
4. The ferroelectric liquid crystal device according to claim 2, further comprising an alignment control film of an organic polymer for controlling the alignment of the ferroelectric liquid crystal.
【請求項5】 前記配向状態が、SmAからSm* Cに
転移する温度をT1℃とすると(T1 −5)℃から(T1
−10)℃までの、全温度範囲で存在する請求項1〜
3いずれかに記載の強誘電性液晶素子。
Wherein said orientation state is a temperature at which the transition to the Sm * C When T 1 ℃ (T 1 -5) from ° C. from SmA (T 1
It exists in the whole temperature range up to -10) ° C.
3. The ferroelectric liquid crystal device according to any one of 3 above.
【請求項6】 前記配向状態が、SmAからSm* Cに
転移する温度をT1℃とすると(T1 −5)℃から(T1
−20)℃までの、全温度範囲で存在する請求項1〜
3いずれかに記載の強誘電性液晶素子。
Wherein said orientation state is a temperature at which the transition to the Sm * C When T 1 ℃ (T 1 -5) from ° C. from SmA (T 1
It exists in the whole temperature range up to -20) ° C.
3. The ferroelectric liquid crystal device according to any one of 3 above.
【請求項7】 前記配向状態が、SmAからSm* Cに
転移する温度をT1℃とすると(T1 −5)℃から(T1
−30)℃までの、全温度範囲で存在する請求項1〜
3いずれかに記載の強誘電性液晶素子。
7. When the temperature at which the above-mentioned orientation state transitions from SmA to Sm * C is T 1 ° C., (T 1 −5) ° C. to (T 1
It exists in the whole temperature range up to -30) ° C.
3. The ferroelectric liquid crystal device according to any one of 3 above.
【請求項8】 前記配向状態が、SmAからSm* Cに
転移する温度をT1℃とすると(T1 −5)℃から(T1
−40)℃までの、全温度範囲で存在する請求項1〜
3いずれかに記載の強誘電性液晶素子。
Wherein said orientation state is a temperature at which the transition to the Sm * C When T 1 ℃ (T 1 -5) from ° C. from SmA (T 1
It exists in the whole temperature range up to -40) ° C.
3. The ferroelectric liquid crystal device according to any one of 3 above.
JP4061992A 1992-01-31 1992-01-31 Ferroelectric liquid crystal element Pending JPH05216034A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4061992A JPH05216034A (en) 1992-01-31 1992-01-31 Ferroelectric liquid crystal element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4061992A JPH05216034A (en) 1992-01-31 1992-01-31 Ferroelectric liquid crystal element

Publications (1)

Publication Number Publication Date
JPH05216034A true JPH05216034A (en) 1993-08-27

Family

ID=12585551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4061992A Pending JPH05216034A (en) 1992-01-31 1992-01-31 Ferroelectric liquid crystal element

Country Status (1)

Country Link
JP (1) JPH05216034A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001007535A1 (en) * 1999-07-28 2001-02-01 Clariant International Ltd. Smectic liquid crystal high-contrast control or display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001007535A1 (en) * 1999-07-28 2001-02-01 Clariant International Ltd. Smectic liquid crystal high-contrast control or display device

Similar Documents

Publication Publication Date Title
US4932758A (en) Ferroelectric smectic liquid crystal device having a bistable alignment state providing two stable orientation states
EP0550846B1 (en) Ferroelectric liquid crystal device and process for production thereof
US5543943A (en) Chiral smectic device subjected to a simultaneous thermal and AC field treatment
JP2942161B2 (en) Liquid crystal alignment treatment method, liquid crystal element manufacturing method using the method, and liquid crystal element
JP2612503B2 (en) Liquid crystal element
EP0539992A1 (en) Liquid crystal device
US5568295A (en) Chiral smetic LCD with small pretilt angle, substrate rubbed in two opposing directions, and no cholesteric phase or tilt angle &gt; the pretilt plus inclination angles
JPH0448368B2 (en)
JPH05203961A (en) Ferroelectric liquid crystal element
JPH05216034A (en) Ferroelectric liquid crystal element
JPH05203933A (en) Ferroelectric liquid crystal element
JP3080123B2 (en) Manufacturing method of ferroelectric liquid crystal device
JP3083016B2 (en) Liquid crystal alignment treatment method and liquid crystal element manufacturing method
JP2614347B2 (en) Liquid crystal element and liquid crystal display
JP2681779B2 (en) Liquid crystal cell
JP2582309B2 (en) Liquid crystal element
JP2715209B2 (en) Ferroelectric liquid crystal device
JPH05203964A (en) Ferroelectric liquid crystal element
JPH06186569A (en) Ferroelectric liquid crystal device
JP3062978B2 (en) Ferroelectric liquid crystal device
JPH06214236A (en) Liquid crystal device and information transmitter using the same
JPH07181495A (en) Ferroelectric liquid crystal element
JPH06186565A (en) Ferroelectric liquid crystal device
JPH06186567A (en) Ferroelectric liquid crystal device
JPH0446410B2 (en)