JPS63142328A - Liquid crystal display device - Google Patents

Liquid crystal display device

Info

Publication number
JPS63142328A
JPS63142328A JP29009986A JP29009986A JPS63142328A JP S63142328 A JPS63142328 A JP S63142328A JP 29009986 A JP29009986 A JP 29009986A JP 29009986 A JP29009986 A JP 29009986A JP S63142328 A JPS63142328 A JP S63142328A
Authority
JP
Japan
Prior art keywords
liquid crystal
thin film
substrates
crystal molecules
ferroelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29009986A
Other languages
Japanese (ja)
Other versions
JPH0792563B2 (en
Inventor
Akira Mase
晃 間瀬
Toshimitsu Konuma
利光 小沼
Hiroyuki Sakayori
坂寄 寛幸
Shunpei Yamazaki
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP61290099A priority Critical patent/JPH0792563B2/en
Publication of JPS63142328A publication Critical patent/JPS63142328A/en
Publication of JPH0792563B2 publication Critical patent/JPH0792563B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To reduce the cost of a liquid crystal display device by sandwiching ferroelectric liquid crystal molecules by using a 2nd substrate which has a ferroelectric thin film, and setting dielectric thin films on 1st and 2nd substrates orthogonally to the 1st and 2nd substrates and providing self-polarization in the same direction. CONSTITUTION:The ferroelectric organic thin film is formed on an insulating substrate which has a light transmittable electrode and a lead to form the 1st substrate and a ferroelectric organic thin film is formed on an insulating substrate which has the light transmittable or non-light transmittable electrode and a lead to form the 2nd substrate. A display cell is so formed that the 1st and 2nd substrates are positioned in parallel to each other. At this point of time, the ferroelectric thin films in the display cell does not have self-polarization in a constant direction. Then when ferroelectric liquid crystal molecules are injected into the display cell, the spiral of the liquid crystal molecules is loosened by fixed charges that the cell has and the direction of the self-polarization that the liquid crystal molecules have coincides with the electric field direction that the display cell, so that the liquid crystal molecules have only one stable position. Consequently, an IC is simplified and the manufacture cost is reduced.

Description

【発明の詳細な説明】 この発明は強誘電性液晶を用いた表示装置の構造及び駆
動方法を提案するにある。
DETAILED DESCRIPTION OF THE INVENTION The present invention proposes a structure and a driving method for a display device using ferroelectric liquid crystal.

「従来の技術」 CRTに代わる固体表示装置は液晶材料を用いたもの、
エレクトロクロミック現象を利用したもの、ガス放電を
用いたもの等多種多様にわたって開発がなされてきた。
"Conventional technology" Solid-state display devices that replace CRT are those that use liquid crystal materials,
A wide variety of devices have been developed, including those that utilize electrochromic phenomena and those that use gas discharge.

取り分け、液晶表示装置は駆動ミノJの小さいことと応
答速度が速いことから、実用向きであり、特に開発が盛
んになった。
In particular, liquid crystal display devices are suitable for practical use due to their small drive size and fast response speed, and their development has been particularly active.

しかし、最近、情報量の増加に伴い、一画面中の画素数
は増加の一途を辿っている。少量画素の場合にはTN液
晶材料を用いた表示装置でも表示品質は確保できたが、
例えば640 x400画素程度の多量画素を持つマト
リクス液晶表示装置の場合にはクロストーク等による画
質低下を免れず、液晶材料として強誘電性液晶を用いた
り、TN液晶を用いた場合でもSBEモードを用いたり
、半導体素子を各画素のスイッチとして用いた駆動をす
ることで画質の改善がなされてきた。
However, recently, as the amount of information increases, the number of pixels in one screen continues to increase. In the case of a small number of pixels, display quality could be ensured even with display devices using TN liquid crystal materials, but
For example, in the case of a matrix liquid crystal display device that has a large number of pixels (about 640 x 400 pixels), image quality is inevitably degraded due to crosstalk, etc., and even if ferroelectric liquid crystal is used as the liquid crystal material or TN liquid crystal is used, SBE mode is not used. In addition, image quality has been improved by driving semiconductor elements as switches for each pixel.

「発明が解決しようとする問題点J 半導体素子を用いたTNアクティブ・マトリックス表示
装置では、半導体素子形成のための生産コストが高く、
さらにその素子の製造歩留りが低いため表示装置そのも
のの価格を低減することが困難であった。しかし表示画
質そのものは良好であったが生産価格も多量生産等の努
力で低減可能であったが、液晶材料の応答速度が遅く、
高速性を必要とする表示内容には不向きであった。また
、強誘電性薄膜をその装置内に含まない強誘電性液晶表
示装置では、液晶分子のラセンをほどき、分子長軸を安
定な2状態をとらせるためにセル厚を狭くする必要があ
った。この安定な2状態をとらせるためにセル厚を狭く
することは現状の技術では非常に困難な作業であり、特
に大面積にわたって均一な狭いセル間隔を得ることは非
常にむづかしかった。
“Problem to be solved by the invention J: In a TN active matrix display device using semiconductor elements, the production cost for forming the semiconductor elements is high;
Furthermore, since the manufacturing yield of the device is low, it has been difficult to reduce the price of the display device itself. However, although the display image quality itself was good and the production price could be reduced through efforts such as mass production, the response speed of the liquid crystal material was slow,
It was unsuitable for displaying content that required high speed. Furthermore, in a ferroelectric liquid crystal display device that does not include a ferroelectric thin film within the device, it is necessary to reduce the cell thickness in order to unwind the helix of the liquid crystal molecules and make the long axis of the molecules take two stable states. Ta. Reducing the cell thickness to achieve these two stable states is a very difficult task with the current technology, and it is particularly difficult to obtain uniformly narrow cell spacing over a large area.

r問題を解決するための手段」 本発明では、かかる問題を解決するために下記のような
手段を用いた。
"Means for Solving the Problem" In the present invention, the following means were used to solve the problem.

透光性電極およびリードを有する絶縁基板上に強誘電性
を示す有機薄膜CP (VDF+TrFE) ;ビニリ
デンフロライドとトリフロロエチレンとの共重合体。
Organic thin film CP (VDF+TrFE) exhibiting ferroelectricity on an insulating substrate with transparent electrodes and leads; copolymer of vinylidene fluoride and trifluoroethylene.

P (VDF+TeFE) ;ビニリデンフロライドと
テトラフロロエチレンの共重合体,PVDF.ビニリデ
ンフロライド重合体,P(νDCN+VAc) : ビ
ニリデンシアナイドとじニリアセテートの共重合体等〕
を形成して第1の基板を形成する。又、透光性または非
透光性電極およびリードを有する絶縁基板上に、強誘電
性を示す有機薄膜を形成して第2の基板を形成する。
P (VDF+TeFE); copolymer of vinylidene fluoride and tetrafluoroethylene, PVDF. Vinylidene fluoride polymer, P(νDCN+VAc): Vinylidene cyanide binding nilia acetate copolymer, etc.]
A first substrate is formed by forming a first substrate. Further, a second substrate is formed by forming an organic thin film exhibiting ferroelectricity on an insulating substrate having light-transmitting or non-light-transmitting electrodes and leads.

この第1、第2の基板を相互平行に位置させるように表
示セルを形成する。この時点では表示セル中の強誘電性
薄膜は一定方向の自発分極を持たず、第1、第2の基板
に設けられた電極より表示セルに第1、第2の基板と垂
直な方向に電界を加えることで、該薄膜の自発分極の方
向を電界の方向に一致させ、外部よりの電界を取り除い
た状態でも該表示セルに固定電荷が生じるようにする。
A display cell is formed such that the first and second substrates are positioned parallel to each other. At this point, the ferroelectric thin film in the display cell does not have spontaneous polarization in a fixed direction, and an electric field is applied to the display cell from the electrodes provided on the first and second substrates in a direction perpendicular to the first and second substrates. By adding , the direction of spontaneous polarization of the thin film is made to match the direction of the electric field, so that a fixed charge is generated in the display cell even when the external electric field is removed.

(以下“セルの電界方向”と称する) 強誘電性液晶分子をこの表示セル中に注入すると、セル
の持つ固定電荷により液晶分子のラセンがほどかれ、液
晶分子の持つ自発分極の方向は表示セルの持つ電界方向
に一致し、液晶分子は唯一の安定位置を持つ。
(hereinafter referred to as the "cell electric field direction") When ferroelectric liquid crystal molecules are injected into this display cell, the fixed charge of the cell unwinds the helix of the liquid crystal molecules, and the direction of the spontaneous polarization of the liquid crystal molecules changes to the direction of the display cell. The liquid crystal molecules have only one stable position, matching the direction of the electric field.

かかる方法によれば、液晶分子のラセンをほどく手段と
してセル厚を利用しないために、セル厚を液晶分子のピ
ッチ以下にする必要がなく、セル厚が厚くできるため使
用する絶縁基板の平坦精度の緩和ができ、生産原価の低
減ができただけではなく、表示セルを形成する際障害と
なっていた微小塵に対する工程管理のマージンを持つこ
とができ、生産の歩留まり向上になった。
According to this method, since the cell thickness is not used as a means of unwinding the helix of the liquid crystal molecules, the cell thickness does not need to be less than the pitch of the liquid crystal molecules, and since the cell thickness can be increased, the flatness accuracy of the insulating substrate used can be improved. Not only was it possible to reduce the production cost, but it also provided a margin for process control against fine dust, which had been an obstacle when forming display cells, and improved production yields.

次に表示装置としての駆動方法に関することを示す。Next, a description will be given of a method for driving the display device.

前記構造により液晶表示装置では第1図に示したように
、第1、第2の基板上に設けられた電極に電位がない状
態■,■°では液晶分子の持つ自発分極の方向は、“セ
ルの電界方向”と一敗する(Hの位置)。また、一方、
“セルの電界方向”とは逆の電界が生じるような電位を
電極にかけた場合■、■゛では断電界の大きさに従って
液晶分子の持つ自発分極の方向は電極より発生した電界
の向きと一致する(■の位置)。外部からの印加電圧を
加えない場合、“セルの電界方向”によって液晶分子は
唯一の安定位置を持つために(I[)の位置に戻る。こ
のため駆動のための電圧としては単一方向で良くなるた
め駆動ICを両極性出力タイプにする必要がなくなり、
従来の駆動方法に比べてICの簡略化ができ、生産コス
トの低減ができることが特徴となっている。
Due to the above structure, in the liquid crystal display device, as shown in FIG. The direction of the electric field in the cell is determined (position H). Also, on the other hand,
When a potential that generates an electric field opposite to the "electric field direction of the cell" is applied to the electrodes, the direction of spontaneous polarization of the liquid crystal molecules matches the direction of the electric field generated from the electrodes according to the magnitude of the interruption field in ■ and ■゛. (position ■). When no external voltage is applied, the liquid crystal molecules return to the (I[) position because they have the only stable position depending on the "cell electric field direction." For this reason, the driving voltage can be unidirectional, so there is no need to make the driving IC a bipolar output type.
Compared to conventional drive methods, this method is characterized by the ability to simplify the IC and reduce production costs.

また従来の強誘電性液晶を用いた表示装置で不可能とな
っていたコントラストの中間階調表示であるが、この方
法によれば、液晶分子は唯一の安定方向を持つために、
セルの電界方向と逆の電界方向を電極より印加するため
、その印加電界の大きさを調整することにより、中間階
調表示が可能となったことを特徴としている。
In addition, it is possible to display contrast between gray scales, which was impossible with conventional display devices using ferroelectric liquid crystals, but according to this method, since liquid crystal molecules have only one stable direction,
Since an electric field direction opposite to that of the cell is applied from the electrodes, an intermediate gradation display is possible by adjusting the magnitude of the applied electric field.

以下実施例により本発明を説明する。The present invention will be explained below with reference to Examples.

「実施例」 第2図は本発明において用いる基板の製造工程を示す。"Example" FIG. 2 shows the manufacturing process of the substrate used in the present invention.

図面(A)においてバターニングされた透明導電膜によ
る配線およびリード(2)を有する硝子基板(1)を洗
浄乾燥した後、有機配向膜材料(3)例えばポリイミド
溶液、Ny溶液中に強誘電性有機樹脂P (VDF+T
rFE)を有機配向膜用樹脂量に対して1:1に添加し
た溶液をスピン法によりコートした。別の実施例におい
てはP (VDF+TeFE) 、 PVDF 、 P
 (VDCN+VAC)単体による実験を行ったが、自
発分極の大きさの差こそあれ、使用できることがわかっ
た。その後溶媒を蒸発させるためにクリーンオーブン中
N!雰囲気、110℃で20分間のベータを行った。か
の方法により第1の基板を作製した。又、同様の方法に
より、第1の基板とは直交する電極及びリードを有する
第2の基板を作製した。
In drawing (A), after cleaning and drying a glass substrate (1) having wiring and leads (2) made of a patterned transparent conductive film, an organic alignment film material (3) such as a polyimide solution or a ferroelectric material is added to a Ny solution. Organic resin P (VDF+T
A solution in which rFE) was added at a ratio of 1:1 to the amount of resin for an organic alignment film was coated by a spin method. In another embodiment, P (VDF+TeFE), PVDF, P
We conducted an experiment using (VDCN+VAC) alone, and found that it could be used, although there was a difference in the magnitude of spontaneous polarization. Then N in a clean oven to evaporate the solvent! Beta was carried out for 20 minutes at an atmosphere of 110°C. A first substrate was produced by the above method. In addition, a second substrate having electrodes and leads orthogonal to the first substrate was manufactured by a similar method.

次にこれら第1と第2の基板を(B)に示すように硝子
基板の配線及びリードを有する面同士を相向かいあわせ
るように配置する。その後(C)に示すような回路を該
側基板上の電極およびリードに外部より直流電圧(4)
を印加することにより形成する。本実施では空気コンデ
ンサ厚みを3μmとし、外部印加電圧を80Vとした。
Next, these first and second substrates are arranged so that the surfaces of the glass substrates having wiring and leads face each other, as shown in FIG. 3B. After that, connect the circuit shown in (C) to the electrodes and leads on the side board using an external DC voltage (4).
Formed by applying . In this implementation, the thickness of the air capacitor was 3 μm, and the externally applied voltage was 80V.

印加電圧は使用する強誘電性有機樹脂の持つ自発分極の
大きさにより決定される値である。ここの外部電圧印加
の後に膜の形成を行うために、不活性ガス雰囲気中35
0℃で一時間のキュアを行った。
The applied voltage is a value determined by the magnitude of spontaneous polarization of the ferroelectric organic resin used. In order to form a film after applying an external voltage, the
Curing was performed at 0°C for one hour.

この外部電界印加によって、膜に含まれる強誘電性樹脂
の持つ自発分極は一定方向に整えられ、“セルの電界方
向”を持つことになる。その後に第1、第2の基板表面
に液晶分子長軸方向を揃えるための処理を行った後、第
1、第2の基板の周囲を接着剤により封止し、以降は公
知となっている液晶表示装置方法によりセル作製を行っ
た。
By applying this external electric field, the spontaneous polarization of the ferroelectric resin contained in the film is aligned in a certain direction, resulting in a "cell electric field direction." After that, the surfaces of the first and second substrates are treated to align the long axis directions of liquid crystal molecules, and then the peripheries of the first and second substrates are sealed with an adhesive, and the rest is known in the art. A cell was manufactured using a liquid crystal display method.

次にこのセルを用いた駆動例を第3図に示す。Next, an example of driving using this cell is shown in FIG.

ON部分では83μsec、巾のパルスを17nese
c、毎に“セルの電界方向”とは逆の電界が発生する方
向に電圧を印加した例であり、画素は明となる。OFF
部では信号を外部より加えず、セルの持つ唯一安定な方
向性(単安定性)のために画素は暗な状態を示す。この
際、別の実施例では“セルの電界方向”と同一方向の電
界を発生すべく、ON信号に対して175〜174程度
の電圧を印加したところ、暗へ変化する速度を高めるこ
とができた。
In the ON part, pulse of 83 μsec and width is 17 nes.
This is an example in which a voltage is applied in the direction in which an electric field is generated that is opposite to the "electric field direction of the cell" for each cell, and the pixel becomes bright. OFF
In this case, no external signals are applied, and the pixels exhibit a dark state due to the cell's only stable directionality (monostability). At this time, in another example, a voltage of about 175 to 174 was applied to the ON signal in order to generate an electric field in the same direction as the "electric field direction of the cell", and the speed of the change to darkness could be increased. Ta.

「効果」 一定方向に固定された自発分極を有する膜を設けたこと
により、“セルの電界方向”を作ることができ、液晶分
子のヘリカルピッチの長さよりもセル間隔の厚いセルで
も液晶分子の持つラセンをほどくことができ、基板の平
坦度等材料コストの低減につながるマージンを持てるよ
うになった。
``Effect'' By providing a film with spontaneous polarization fixed in a certain direction, it is possible to create the ``cell electric field direction'', and even in cells where the cell spacing is thicker than the helical pitch length of the liquid crystal molecules, the liquid crystal molecules can be The helix can now be unraveled, allowing margins for reducing material costs such as substrate flatness.

又、“セルの電界方向”を作ることで、液晶分子は唯一
安定な状態(単安定)を持つことができ駆動信号は単一
方向のみの電圧を加えるだけでよく、その結果、駆動I
Cの簡略化を図ることができた。
In addition, by creating the "cell electric field direction", the liquid crystal molecules can have only one stable state (monostability), and the drive signal only needs to be applied with a voltage in a single direction.As a result, the drive I
We were able to simplify C.

また、このセルは単安定であるため、外部よりの印加電
圧の大きさにより中間階調を得ることができた。
Furthermore, since this cell is monostable, it was possible to obtain intermediate gray levels depending on the magnitude of the externally applied voltage.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の液晶表示装置の概略と内部の液晶分子
の状態を示す。 第2図は本発明の液晶表示装置の基板の作製方法を示す
。 第3図は本発明の液晶表示装置の駆動時の電気光学効果
の様子を示す。
FIG. 1 shows an outline of the liquid crystal display device of the present invention and the state of internal liquid crystal molecules. FIG. 2 shows a method for manufacturing a substrate for a liquid crystal display device of the present invention. FIG. 3 shows the electro-optic effect during driving of the liquid crystal display device of the present invention.

Claims (1)

【特許請求の範囲】 1、透光性電極及びリードを設けた絶縁基板上に強誘電
性を示す薄膜を有する第1の基板と、透光性又は非透光
性電極及びリードを設けた絶縁基板上に、強誘電性を示
す薄膜を有する第2の基板によって強誘電性液晶分子を
挟み込み、第1、第2の基板上の強誘電性を示す薄膜は
共に第1、第2の基板に対して垂直であり、かつ同一方
向の自発分極を持つことを特徴とする液晶表示装置。 2、特許請求の範囲第1項において、第1、第2の基板
の間に存在する強誘電性液晶分子は第1、第2の基板上
の強誘電性を示す薄膜の自発分極から発生した第1、第
2の基板に垂直な電界により液晶分子の持つ自発分極の
向きを一定方向にそろえることを特徴とする液晶表示装
置。 3、特許請求の範囲第1項において、第1、第2の基板
上の強誘電性を示す薄膜上に、又は該薄膜上に新たに設
けた薄膜上に、液晶分子の長軸を一定方向に揃えるため
の配向処理を施したことを特徴とする液晶表示装置。 4、特許請求の範囲第1項において、第1、第2の基板
上に設けた電極及びリードより発生する電界を加えない
時には液晶分子の持つ自発分極の方向は第1、第2の基
板上の強誘電性薄膜の持つ自発分極の方向と一致し、唯
一安定な状態(単安定)を持つ該電極及びリードより発
生する電界を該強誘電性薄膜より生じる自発分極電界と
は逆の方向に加えた時には液晶分子の持つ自発分極の方
向は該強誘電性薄膜より生じる自発分極電界方向とは異
なることを特徴とする液晶表示装置。 5、特許請求の範囲第1項において、第1、第2の基板
の少なくとも一方に強誘電性を示す薄膜を有することを
特徴とする液晶表示装置。
[Scope of Claims] 1. A first substrate having a thin film exhibiting ferroelectricity on an insulating substrate provided with translucent electrodes and leads, and an insulating substrate provided with translucent or non-transparent electrodes and leads. Ferroelectric liquid crystal molecules are sandwiched between a second substrate having a thin film exhibiting ferroelectricity on the substrate, and the thin films exhibiting ferroelectricity on the first and second substrates are both attached to the first and second substrates. 1. A liquid crystal display device characterized by having spontaneous polarization perpendicular to and in the same direction. 2. In claim 1, the ferroelectric liquid crystal molecules existing between the first and second substrates are generated from spontaneous polarization of a thin film exhibiting ferroelectricity on the first and second substrates. A liquid crystal display device characterized in that the direction of spontaneous polarization of liquid crystal molecules is aligned in a certain direction by an electric field perpendicular to first and second substrates. 3. In claim 1, the long axes of liquid crystal molecules are arranged in a certain direction on a thin film exhibiting ferroelectricity on the first and second substrates, or on a thin film newly provided on the thin film. 1. A liquid crystal display device characterized by being subjected to an alignment treatment for aligning the images. 4. In claim 1, when no electric field is applied from the electrodes and leads provided on the first and second substrates, the direction of spontaneous polarization of the liquid crystal molecules is the same as that on the first and second substrates. The electric field generated by the electrode and lead, which is in the only stable state (monostable) and coincides with the direction of spontaneous polarization of the ferroelectric thin film, is directed in the opposite direction to the spontaneous polarization electric field generated by the ferroelectric thin film. 1. A liquid crystal display device characterized in that the direction of spontaneous polarization of liquid crystal molecules when applied is different from the direction of a spontaneous polarization electric field generated by the ferroelectric thin film. 5. A liquid crystal display device according to claim 1, comprising a thin film exhibiting ferroelectricity on at least one of the first and second substrates.
JP61290099A 1986-12-04 1986-12-04 Liquid crystal display Expired - Lifetime JPH0792563B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61290099A JPH0792563B2 (en) 1986-12-04 1986-12-04 Liquid crystal display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61290099A JPH0792563B2 (en) 1986-12-04 1986-12-04 Liquid crystal display

Publications (2)

Publication Number Publication Date
JPS63142328A true JPS63142328A (en) 1988-06-14
JPH0792563B2 JPH0792563B2 (en) 1995-10-09

Family

ID=17751778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61290099A Expired - Lifetime JPH0792563B2 (en) 1986-12-04 1986-12-04 Liquid crystal display

Country Status (1)

Country Link
JP (1) JPH0792563B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5465168A (en) * 1992-01-29 1995-11-07 Sharp Kabushiki Kaisha Gradation driving method for bistable ferroelectric liquid crystal using effective cone angle in both states

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5134694A (en) * 1974-09-19 1976-03-24 Fujitsu Ltd GAZOCHI KUSEKI HYOJISOCHI
JPS53110545A (en) * 1977-03-08 1978-09-27 Matsushima Kogyo Kk Liquid crystal cell
JPS54155795A (en) * 1978-05-30 1979-12-08 Seiko Instr & Electronics Ltd Electro-optical display unit
JPS61159627A (en) * 1985-01-07 1986-07-19 Seiko Epson Corp Liquid crystal electrooptic device
JPS62124525A (en) * 1985-11-25 1987-06-05 Semiconductor Energy Lab Co Ltd Liquid crystal device
JPS62153836A (en) * 1985-12-26 1987-07-08 Nippon Kogaku Kk <Nikon> Liquid crystal display device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5134694A (en) * 1974-09-19 1976-03-24 Fujitsu Ltd GAZOCHI KUSEKI HYOJISOCHI
JPS53110545A (en) * 1977-03-08 1978-09-27 Matsushima Kogyo Kk Liquid crystal cell
JPS54155795A (en) * 1978-05-30 1979-12-08 Seiko Instr & Electronics Ltd Electro-optical display unit
JPS61159627A (en) * 1985-01-07 1986-07-19 Seiko Epson Corp Liquid crystal electrooptic device
JPS62124525A (en) * 1985-11-25 1987-06-05 Semiconductor Energy Lab Co Ltd Liquid crystal device
JPS62153836A (en) * 1985-12-26 1987-07-08 Nippon Kogaku Kk <Nikon> Liquid crystal display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5465168A (en) * 1992-01-29 1995-11-07 Sharp Kabushiki Kaisha Gradation driving method for bistable ferroelectric liquid crystal using effective cone angle in both states

Also Published As

Publication number Publication date
JPH0792563B2 (en) 1995-10-09

Similar Documents

Publication Publication Date Title
JPH05265016A (en) Liquid crystal device
JPS62279392A (en) Electrooptic display and manufacture thereof
JPS63142328A (en) Liquid crystal display device
JPS63158521A (en) Liquid crystal display device
JPH0289030A (en) Thin film transistor matrix
JPH02304532A (en) Active matrix type liquid crystal display device
JP2868758B1 (en) Liquid crystal display
JP2620066B2 (en) Liquid crystal device
JPS62121424A (en) Liquid crystal cell
JP2761581B2 (en) Liquid crystal device
JPS62100739A (en) Liquid crystal display device
JPH0337626A (en) Liquid crystal display device
JP2794502B2 (en) Liquid crystal electro-optical device
JP2843861B2 (en) Driving method of liquid crystal electro-optical device
JPH0720482A (en) Liquid crystal display device and driving method therefor
JP3064340B2 (en) Driving method of active matrix display
JPH06130420A (en) Liquid crystal display device
JP2739147B2 (en) Liquid crystal electro-optical device
JP3290550B2 (en) Nonlinear element substrate and electro-optical device
JP3169319B2 (en) Manufacturing method of nonlinear element
JPH03122618A (en) Thin film two-terminal type active matrix liquid crystal display device
JPH06148648A (en) Feproelectric liquid crystal display element
JPH08106078A (en) Liquid crystal display device
JPH0534666A (en) Optical modulation element
JPH11119192A (en) Aging method and device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term