JPS61159353A - Detection of tool breakage - Google Patents

Detection of tool breakage

Info

Publication number
JPS61159353A
JPS61159353A JP59275076A JP27507684A JPS61159353A JP S61159353 A JPS61159353 A JP S61159353A JP 59275076 A JP59275076 A JP 59275076A JP 27507684 A JP27507684 A JP 27507684A JP S61159353 A JPS61159353 A JP S61159353A
Authority
JP
Japan
Prior art keywords
ratio
tool
moving average
value
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59275076A
Other languages
Japanese (ja)
Inventor
Tamotsu Nishikido
西木戸 保
Kanji Arimatsu
有松 寛次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP59275076A priority Critical patent/JPS61159353A/en
Publication of JPS61159353A publication Critical patent/JPS61159353A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/09Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool
    • B23Q17/0952Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool during machining
    • B23Q17/0957Detection of tool breakage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/09Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool
    • B23Q17/0904Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool before or after machining
    • B23Q17/0919Arrangements for measuring or adjusting cutting-tool geometry in presetting devices
    • B23Q17/0928Cutting angles of lathe tools

Abstract

PURPOSE:To detect breakage of various kinds of tools by sequentially detecting the peak value and effective value of the vibrational wave form in a plurality of pilot frequency bands set for each cutting process, and calculating and comparing the ratio between these values. CONSTITUTION:A piezoelectric acceleration sensor 13 is attached to the lower portion of a tool rest 12 of a lathe 11. The acceleration sensor 13 detects vibration of the tool rest 12 on cutting of a workpiece 8a. At this time, the peak value and effective value of the vibrational wave form in a plurality of pilot frequency bands set for each cutting process are sequentially detected and ratios between these values are calculated. Moving average process is performed on calculation of the ratios. Then, the ratios between the ratio obtained by the moving average process and said ratios before and after the time immediately after the data for the moving average process are calculated. Breakage of tool can be detected according to thus obtained ratio and the reference value set for each cutting process.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はバイト等の工具の破損検出方法に関し、具体的
には該工具の摩耗、欠損等の破損を正確に検出できる工
具破損検出方法を提案するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for detecting damage to tools such as cutting tools, and specifically, a method for detecting tool damage that can accurately detect damage such as wear and chipping of the tool. This is a proposal.

〔従来技術〕[Prior art]

生産性の向上、加工費の低減、加工精度の劣化防止等を
図る上で工具の破損状況を正確に検出することは重要で
ある。
It is important to accurately detect tool damage in order to improve productivity, reduce machining costs, and prevent deterioration of machining accuracy.

この種の工具破損検出方法としては、「機械技術」第3
2巻第25号58頁〜61頁記載の「大物旋削用スロー
アウェイチップの自動検出器」を用いた方法がある。
This type of tool damage detection method is described in "Mechanical Technology" No. 3.
There is a method using "Automatic detector for indexable tip for turning large objects" described in Vol. 2, No. 25, pp. 58-61.

即ち、第5図に示すように旋81の刃物台2には圧電型
の加速度センサ3が取付けられている。
That is, as shown in FIG. 5, a piezoelectric acceleration sensor 3 is attached to the tool rest 2 of the whirlpool 81.

加速度センサ3は旋盤1の切削時の振動を検出するため
のものであり、その検出振動波形はフィルタ4を介して
ピーク値検出回路5及び平均値検出回路6に入力される
。ピーク値検出回路5及び平均値検出回路6の検出結果
P、Rは除算器9に入力される。除算器9は下記(L)
式で示される演算を実行し、その結果をコンパレータ7
に与える。
The acceleration sensor 3 is for detecting vibrations of the lathe 1 during cutting, and the detected vibration waveform is inputted to a peak value detection circuit 5 and an average value detection circuit 6 via a filter 4. The detection results P and R of the peak value detection circuit 5 and the average value detection circuit 6 are input to the divider 9. Divider 9 is as below (L)
Executes the operation indicated by the formula and sends the result to comparator 7.
give to

Cツ □     ・・・(11 コンパレータ7はこのCと所定の判断基準値cbとを比
較し、c>cbなる場合は図示しない制御リレーを作動
せしめ旋ff1lを停止せしめる。
Ctsu □ ... (11 The comparator 7 compares this C with a predetermined judgment reference value cb, and if c>cb, it activates a control relay (not shown) to stop the rotation ff1l.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで第6図に示すように被切削材8の長手方向にお
ける加工寸法が異なる場合或いは材質の異なる被切削材
を切削する場合はこれらに応じて一切削条件(切削速度
、工具の送り速度、切込深さ)を変更する必要がある。
By the way, as shown in Fig. 6, when the machining dimensions in the longitudinal direction of the workpiece 8 are different, or when cutting workpieces of different materials, the cutting conditions (cutting speed, tool feed rate, cutting speed, etc.) depth).

そして、切削条件が変化する場合はバイトの異常(摩耗
、切損)により振動が増大する周波数帯域は異なる。
When the cutting conditions change, the frequency band in which vibration increases due to abnormality (wear, cutting damage) of the cutting tool differs.

然るに、上述の如き従来方法にあっては、フィルタ4の
周波数帯域が固定されていたため、このように切削条件
の変化する被切削材8を切削する場合或いは外乱により
この周波数帯域内のレベル変動が発生した場合には対処
できないという難点があった。
However, in the conventional method as described above, the frequency band of the filter 4 is fixed, so when cutting the workpiece 8 where the cutting conditions change or due to external disturbances, the level fluctuation within this frequency band may occur. The problem was that it was impossible to deal with it if it occurred.

また、工具の異常の進行状況に応じて検出振動の周波数
帯域が異なる結果、多様な工具の異常を検出できないと
いう欠点もあった。
In addition, the frequency band of the detected vibration varies depending on the progress of tool abnormalities, resulting in the disadvantage that various tool abnormalities cannot be detected.

また、被切削材8に偏肉又は第7図(a)に示すような
曲り、真円度不良等が存在し、これらの偏肉。
In addition, the material to be cut 8 has uneven thickness, bending, poor roundness, etc. as shown in FIG. 7(a), and these uneven thicknesses occur.

曲り又は真円度不良部を切削する場合には、前記比Cの
レベルは第7図(e)に示すように被切削材8にこれら
が存在しない第7図中)に示す状態から大きく変動し、
図中に示す工具の異常発生時における値及び工具の正常
、異常の判断基準たる闇値cbよりも大きくなる事態を
まま生じ、これらを工具の異常発生として、誤検出を生
じる虞れがあるという問題点もあった。
When cutting a curved or out-of-round part, the level of the ratio C varies greatly from the state shown in FIG. 7 (inside of FIG. 7) where these are not present in the workpiece 8, as shown in FIG. 7(e). death,
The values shown in the figure when a tool abnormality occurs and the dark value cb, which is the criterion for determining whether the tool is normal or abnormal, will occur without fail, and these will be regarded as tool abnormalities, and there is a risk of erroneous detection. There were also problems.

C問題点を解決するための手段〕 本発明は斯かる事情に鑑みてなされたものであり、切削
工程ごとに−又は複数の監視周波数帯域を設定すること
として、この監視周波数帯域における振動波形のピーク
値及び実効値を逐次検出してこれらの比を求め、該比を
求める過程で移動平均処理を行い、これによって求めた
比と、当該移動平均処理に係るデータの直後の前記比と
の比を工具の異常検出の判断指標とすることにより、切
削工程ごとに加工寸法、材質が異なる場合、更には被切
削材に偏肉1曲り又は真円度不良等が存在し、同一の切
削条件にも拘わらず振動波形のレベルが変動するような
外乱を生じるときであっても、誤検出の虞れがなく多様
な工具の破損を検出でき、更には判断指標として前記移
動平均処理により求めた比自体を採用することにより、
ノイズが測定系に侵入する場合の影響をも排除できる工
具の破損検出方法を提供することを目的とする。
Means for Solving Problem C] The present invention has been made in view of the above circumstances, and by setting one or more monitoring frequency bands for each cutting process, the vibration waveform in this monitoring frequency band is determined. The peak value and the effective value are sequentially detected to find their ratio, and in the process of finding the ratio, moving average processing is performed, and the ratio of the ratio obtained by this to the ratio immediately after the data related to the moving average processing. By using this as a judgment index for tool abnormality detection, if the machining dimensions and materials differ for each cutting process, or even if the workpiece has uneven thickness, bending, or poor roundness, it can be detected that the same cutting conditions are used. Nevertheless, even when a disturbance occurs that causes the vibration waveform level to fluctuate, it is possible to detect various types of tool damage without the risk of false detection. By adopting itself,
It is an object of the present invention to provide a tool damage detection method that can eliminate the influence of noise entering a measurement system.

本発明に係る工具の破損検出方法は、工作機械に取付け
た振動検出器にて該工作機械の切削時における振動波形
を検出し、検出振動波形に基づき工具の破損を検出する
方法において、切削工程ごとに設定した一又は複数の監
視周波数帯域における振動波形のピーク値及び実効値を
逐次検出してこれらの比を求め、該比を求める過程で移
動平均処理を行い、移動平均処理によって求めた比と、
当該移動平均処理に係るデータの直後の前記比との比を
算出し、算出した比と各切削工程ごとに設定される基準
値とに基づき前記工具の破損を検出することを特徴とす
る。
A tool damage detection method according to the present invention detects a vibration waveform during cutting of the machine tool with a vibration detector attached to the machine tool, and detects tool damage based on the detected vibration waveform. The peak value and effective value of the vibration waveform in one or more monitoring frequency bands set for each frequency band are sequentially detected and their ratio is determined, and in the process of determining the ratio, moving average processing is performed, and the ratio determined by the moving average processing is and,
The present invention is characterized in that a ratio is calculated with the ratio immediately after the data related to the moving average processing, and damage to the tool is detected based on the calculated ratio and a reference value set for each cutting process.

〔第1実施例〕 以下本発明をその実施例を示す図面に基づいて詳述する
。第1図は本発明に係る工具破損検出方法の実施状態を
その信号処理系と共に示す模式図である。
[First Embodiment] The present invention will be described in detail below based on drawings showing embodiments thereof. FIG. 1 is a schematic diagram showing the implementation state of the tool damage detection method according to the present invention together with its signal processing system.

旋盤11の刃物台12の下部には圧電型の加速度センサ
13を取付けである。加速度センサ13は被切削材8の
切削時の刃物台12の振動を検出する。加速度センサ1
3の検出信号はプリアンプ31にて増幅され、プリアン
プ31出力は3チヤンネルの信号処理系A、B、Cに与
えられ、また、端子りから監視用に取出せるようにしで
ある。信号処理系A、B。
A piezoelectric acceleration sensor 13 is attached to the lower part of the tool rest 12 of the lathe 11. The acceleration sensor 13 detects vibrations of the tool post 12 during cutting of the material 8 to be cut. Acceleration sensor 1
The detection signal No. 3 is amplified by a preamplifier 31, and the output of the preamplifier 31 is given to three channels of signal processing systems A, B, and C, and can also be taken out from a terminal for monitoring. Signal processing system A, B.

Cは同様の回路構成を有し、プリアンプ31出力を後述
する制御装置30から与えられるスイッチ制御信号によ
り開閉される切離し用スイッチ70a、70b。
C is a disconnection switch 70a, 70b which has a similar circuit configuration and is opened and closed by a switch control signal given from a control device 30 which will be described later regarding the output of the preamplifier 31.

70cを介して受けとるようになっており、プリアンプ
31出力を減衰器32a 、32b、32c、及び増幅
器10a。
70c, and receives the output of the preamplifier 31 through the attenuators 32a, 32b, 32c, and the amplifier 10a.

10b、 10cを介してフィルタ4a、4b+ 4c
に与え、その通過周波数帯域内にある入力信号のピーク
値を逐次検出し、また、実効値を所定のサンプリング周
期で検出し、検出結果の比をその都度求め、次いでこの
時系列データの所定個数分光たりの移動平均値を求め゛
、該移動平均値と当該移動平均処理に係るデータの直後
の前記比との比、換言すれば当該検出時におけるピーク
値と実効値との比と、この比の1つ前のデータ塩の移動
平均値との比を算出し、この算出した比と基準値とを比
較することによりバイトの破損の有無を検出する構成と
している。減衰器32a、32b、32c及び増幅器1
0a、 10b。
Filter 4a, 4b+4c via 10b, 10c
, the peak value of the input signal within the pass frequency band is sequentially detected, the effective value is detected at a predetermined sampling period, the ratio of the detection results is determined each time, and then a predetermined number of pieces of this time series data are detected. Calculate the moving average value for each spectrum, and calculate the ratio between the moving average value and the ratio immediately after the data related to the moving average processing, in other words, the ratio between the peak value and the effective value at the time of detection, and this ratio. By calculating the ratio of the moving average value of the previous data salt and comparing this calculated ratio with a reference value, it is possible to detect whether or not a byte is damaged. Attenuators 32a, 32b, 32c and amplifier 1
0a, 10b.

10cは各チャンネルの信号のレベル調整のためのもの
である。33は較正用発振器であって、プリアンプ31
出力に換えてその出力を減衰器32a 、32b。
10c is for adjusting the level of each channel signal. 33 is a calibration oscillator, and a preamplifier 31
Attenuators 32a and 32b convert the output into outputs.

32cに与え、減衰器32a 、32b、32c、増幅
器10al 10b110cの関整等を行なわせるため
のものである。
32c, and performs adjustment of the attenuators 32a, 32b, 32c, amplifiers 10al, 10b, and 110c.

信号処理系A、B、Cの回路構成は同様であるので、以
下信号処理系Aについて説明する。
Since the circuit configurations of signal processing systems A, B, and C are similar, signal processing system A will be described below.

増幅器10a出力はバイパス用スイッチ42aを介して
バイパスフィルタ40aに与えられ、また、バイパスフ
ィルタ40a出力はバイパス用スイッチ43aを介して
ローパスフィルタ41aに与えられ、ローパスフィルタ
41a出力はピーク値検出回路15a。
The output of the amplifier 10a is applied to a bypass filter 40a via a bypass switch 42a, the output of the bypass filter 40a is applied to a low-pass filter 41a via a bypass switch 43a, and the output of the low-pass filter 41a is applied to a peak value detection circuit 15a.

実効値検出回路16aに与えられる。バイパス用スイッ
チ42a 、 43aをバイパス側に切換えた場合はバ
イパスフィルタ40a、ローパスフィルタ41aは夫々
回路が閉鎖される。バイパスフィルタ40a。
It is applied to the effective value detection circuit 16a. When the bypass switches 42a and 43a are switched to the bypass side, the circuits of the bypass filter 40a and the low-pass filter 41a are closed, respectively. Bypass filter 40a.

ローパスフィルタ41aの遮断周波数即ち、バンドパス
フィルタ4aとして通過帯域周波数は可変となっている
The cut-off frequency of the low-pass filter 41a, that is, the passband frequency of the band-pass filter 4a is variable.

ピーク値検出回路15aは通過周波数帯域にあるビーク
4diPaを逐次検出し、検出結果を除算器50aに与
える。同様に実効値検出回路16aは実効値Raを所定
のサンプリング周期で検出し、検出結果を除算器50a
に与える。除算器50aは下記(2)式に示す演算を実
行する。
The peak value detection circuit 15a sequentially detects a peak of 4 diPa in the pass frequency band, and provides the detection result to the divider 50a. Similarly, the effective value detection circuit 16a detects the effective value Ra at a predetermined sampling period, and sends the detection result to the divider 50a.
give to The divider 50a executes the operation shown in equation (2) below.

a C=□  ・・・(2) a 除算器5(laの演算結果は移動平均処理袋fi52a
及び除算器51aに夫々与えられるようになしである。
a C=□ ...(2) a Divider 5 (the calculation result of la is the moving average processing bag fi52a
and none as given to divider 51a, respectively.

移動平均処理装置52aは除算器50a出力Cを所定個
数にだけ順次読込んでは、この時系列データC+  (
i =n−に+Ln−に+2−n )の移動平均値Cn
なお、移動平均処理に要する時間は被切削材8 ゛の各
切削工程α〜δ夫々に要する切削時間よりも充分短かく
定めである。この移動平均値Cnは除算器51aに与え
られる。
The moving average processing device 52a sequentially reads only a predetermined number of the output C of the divider 50a, and calculates this time series data C+ (
i = n- to +Ln- to +2-n) moving average value Cn
The time required for the moving average processing is set to be sufficiently shorter than the cutting time required for each of the cutting steps α to δ of the workpiece 8. This moving average value Cn is given to the divider 51a.

除算器51aは除算器50a出力Cの当該検出時におけ
るデータCnや、を待って、このCn+1とその直前迄
の移動平均値τnとに基づき下記(3)式に示す演算を
実行し、その結果をコンパレータ17aに与える。
The divider 51a waits for the data Cn of the output C of the divider 50a at the time of the detection, and executes the calculation shown in the following equation (3) based on this Cn+1 and the moving average value τn up to the point immediately before, and calculates the result. is given to the comparator 17a.

算出のために移動平均処理装置52aにも与えられる。It is also provided to the moving average processing device 52a for calculation.

C叶2検出時における除算器51a出力は下記(4)式
で示される。
The output of the divider 51a when detecting the C leaf 2 is expressed by the following equation (4).

除算器51a出力はコンパレータ17aに与えられる。The output of the divider 51a is given to the comparator 17a.

コンパレータ17aには所要の基準値sbが設定されて
おり、Sn>Sbなる場合にはタイマ23aを起動し、
その状態がタイマ23aに設定した時間継続した場合は
警報ランプ24aを点灯すると共にWl器27も鳴動さ
せる。そして、端子26aからタイマ23a出力を取出
せるようにしである。コンパレータ17a出力が上記タ
イマ23aの設定時間より短かい場合はタイマ23aは
零復帰する。コンパレータ17aの基準値sbは切削条
件の変化等に応じて制御装置30により適宜の値に設定
される。
A required reference value sb is set in the comparator 17a, and when Sn>Sb, the timer 23a is activated.
If this condition continues for the time set in the timer 23a, the alarm lamp 24a is turned on and the Wl device 27 is also made to sound. The output of the timer 23a can be taken out from the terminal 26a. If the output of the comparator 17a is shorter than the set time of the timer 23a, the timer 23a returns to zero. The reference value sb of the comparator 17a is set to an appropriate value by the control device 30 in accordance with changes in cutting conditions and the like.

信号処理系B、Cには信号処理系Aと同様の番号の末尾
にす、cを付して説明を省略する。
Signal processing systems B and C are given the same numbers as signal processing system A, with suffixes ``c'' and ``c'' added thereto, and the explanation thereof will be omitted.

なお、信号処理系は4チャンネル以上としてもよいこと
は勿論である。
It goes without saying that the signal processing system may have four or more channels.

而して本発明方法の実施に際しては、切離しスイッチ7
0a 、 70b 、 70cの開閉、各フィルタ4a
Therefore, when implementing the method of the present invention, the disconnection switch 7
Opening/closing of 0a, 70b, 70c, each filter 4a
.

4b、 4cの通過帯域周波数の設定、(つまりバイパ
ス用スイッチ42a 、 43a 、 42b 、 4
3b 、 42c 、 43cの切換位置設定、バイパ
スフィルタ40a 、 40b 。
4b, 4c passband frequency settings (that is, bypass switches 42a, 43a, 42b, 4
3b, 42c, 43c switching position settings, bypass filters 40a, 40b.

40c 、 O−バスフィルタ41a 、 41b 、
 41cの遮断周波数G設定)、コンパレータ17aの
基準値設定を制御装置30により切−1工程の進行に応
じて順次制御していく。
40c, O-bus filters 41a, 41b,
41c (cutoff frequency G setting) and reference value setting of the comparator 17a are sequentially controlled by the control device 30 as the cut-off-1 process progresses.

〔作用〕[Effect]

次に第2図に示すフローチャートに基づき制御装置30
の制御内容について説明する。今、第5図に示す被切削
材8につき各切削工程α、β、T。
Next, the control device 30 based on the flowchart shown in FIG.
The following describes the control details. Now, each cutting process α, β, and T is performed for the workpiece 8 shown in FIG.

δの夫々について使用チャンネル、遮断周波数帯域、コ
ンパレータの基準値等の監視条件を制御装置30に設定
する。
Monitoring conditions such as the used channel, cutoff frequency band, and comparator reference value are set in the control device 30 for each of δ.

切削が開始されると制御装置30はまず工程を判断し、
α工程における使用チャンネル等の監視条件を設定する
。使用チャンネル数は単一でも複数でもよい、そして、
端子26a出力を監視してこれらに出力が得られる場合
、つまりコンパレータの入力信号がその基準値よりも大
となる状態が使用チャンネルのいずれかでタイマに設定
した時間継続した場合に旋盤11を停止させる。このと
き警報ランプ24a 、 24b 、又は24cは点灯
し、警報器27は鳴動する0点灯ランプによって何れの
チャンネルの異常が検出されたかを判定できる。
When cutting starts, the control device 30 first determines the process,
Set monitoring conditions such as channels used in the α process. The number of channels used may be single or multiple, and
The lathe 11 is stopped when the terminal 26a output is monitored and an output is obtained from these, that is, when the input signal of the comparator continues to be larger than its reference value for the time set on the timer in any of the channels used. let At this time, the alarm lamp 24a, 24b, or 24c lights up, and the alarm 27 can determine which channel the abnormality has been detected by the 0 lighting lamp that sounds.

次にβ工程に入るとその場合の使用チャンネルに応じて
スイッチ70a 、 70b又は70cを閉路する。
Next, when entering the β step, the switch 70a, 70b or 70c is closed depending on the channel used in that case.

この場合において、α工程に使用したチャンネルを再度
使用する場合であって、遮断周波数帯域。
In this case, when the channel used in the α process is used again, the cutoff frequency band.

コンパレータの基準値及びタイマの限時等を変更する必
要がある場合はα工程からβ工程に移るに際し、これら
の設定変更を必要とする。そしてβ工程の監視を実行し
、異常を生じていない場合はδ工程名の監視を行う。
If it is necessary to change the reference value of the comparator, the time limit of the timer, etc., it is necessary to change these settings when moving from the α process to the β process. Then, the β process is monitored, and if no abnormality has occurred, the δ process name is monitored.

この様な本発明による場合は切削工程等に応じて信号処
理系A、B、Cのチャンネル数、その監視周波数帯域を
夫々独立的に定め、コンパレータの基準値及びタイマの
限時等を定めるものであるので、予め実績等によりこれ
らの監視条件を適宜に設定する場合には、多様な工具の
破損を検出出来、また、切削条件が変化する被切削材8
についても工具の破損を正確に検出できる。
According to the present invention, the number of channels of signal processing systems A, B, and C and their monitoring frequency bands are independently determined according to the cutting process, etc., and the reference value of the comparator and the time limit of the timer are determined. Therefore, if these monitoring conditions are set appropriately in advance based on actual results, etc., it is possible to detect a variety of tool breakages, and also to detect the damage of the workpiece 8 whose cutting conditions change.
It is also possible to accurately detect tool damage.

更にピーク値Paと実効値Raとの比Ciの移動平均値
でnを算出し、このτnとCnヤ1との比Snを工具の
異常検出の判断指標とするものであるので、被切削材8
に偏肉1曲り又は真円度不良等が存在する場合であって
も、前述の従来法とは異なり誤検出の虞れがなく工具の
異常を正確に検出することができる。
Furthermore, n is calculated using the moving average value of the ratio Ci between the peak value Pa and the effective value Ra, and the ratio Sn between this τn and CnY1 is used as a judgment index for tool abnormality detection. 8
Even if there is a deviation in thickness or a defect in roundness, the abnormality of the tool can be accurately detected without the risk of false detection, unlike the above-mentioned conventional method.

以下この理由を第3図に基づき説明する。第3図は縦軸
に比c1 〔第3図(Jl))、比Sn  (第35山
)〕を、また、横軸に時間を示すグラフである。
The reason for this will be explained below based on FIG. FIG. 3 is a graph in which the vertical axis shows the ratio c1 [FIG. 3 (Jl)) and the ratio Sn (35th peak)], and the horizontal axis shows time.

さて、上述した如く被切削材8に偏肉1曲り又は真円度
不良等が存在すると、比C2のレベルは大きく変動する
。しカルながら、移動平均値τnについてみると、比C
,の平滑化というそれ自体の性質により第3viIJ(
a)に破線で示すようにその時間的推移は概ね一定であ
る。
Now, as described above, if the workpiece 8 has an uneven thickness, a bend, or a defect in roundness, the level of the ratio C2 changes greatly. However, when looking at the moving average value τn, the ratio C
, due to its own property of smoothing, the 3rd viIJ (
As shown by the broken line in a), the time course is generally constant.

然るに、比Snはclの値が急峻な立上り、立下り状態
となる工具の異常発生時〔第3図(a)ではデータCn
+ 1が相当する〕にあっては分子Cn+ 1がその前
後のデータよりも著しく増大するので、第3図〜)に示
すようにその値Snが著しく増大し、その基準値Sbを
超える。従って、基準値sb1また、移動平均処理に要
する時間を適宜の値に選定する場合は、被切削材8に偏
肉2曲り又は真円度不良等が存在するときでも、これら
と工具の異常発生とを弁別し得て正確な検出が行える。
However, the ratio Sn is determined when an abnormality occurs in the tool in which the value of cl rises and falls sharply [in Fig. 3 (a), the data Cn
+ 1), the molecule Cn+ 1 increases significantly more than the data before and after it, so its value Sn increases significantly and exceeds its reference value Sb, as shown in FIGS. Therefore, when selecting the standard value sb1 and the time required for the moving average processing to an appropriate value, even when the workpiece 8 has uneven thickness 2, bends, poor roundness, etc., these and tool abnormalities will occur. It is possible to discriminate between the two and perform accurate detection.

〔第2実施例〕 上述の第1実施例では工具の異常検出の判断指標として
、比snを用いたが、第2実施例では比C1の移動平均
値τn自体を判断指標とする。
[Second Embodiment] In the first embodiment described above, the ratio sn was used as a judgment index for tool abnormality detection, but in the second embodiment, the moving average value τn of the ratio C1 itself is used as a judgment index.

即ち、移動平均処理装置52a出力Cnをコンパレータ
17aに与え、百〇とその基準値でbとを比較し、τn
>τbなる場合は同様にタイマ23aに出力し、工具の
異常を検出する構成とするのである。
That is, the moving average processing device 52a output Cn is given to the comparator 17a, 100 is compared with b using its reference value, and τn
>τb, the configuration is such that the output is similarly output to the timer 23a to detect an abnormality in the tool.

このような構成による場合は、上述した如く移動平均値
τnは被切削材8に偏肉9曲り又は真円度不良等が存在
するときでも概ね一定であるのに対し、工具に異常が発
生するときはそのレベルが増大するので、基準値τbを
適宜な値に選定することにより、上述の実施例と同様、
両者を弁別し得て、正確な検出が行えることは勿論、以
下の効果をも奏する。
In the case of such a configuration, as described above, the moving average value τn remains approximately constant even when the workpiece 8 has uneven thickness 9 bending or poor roundness, but an abnormality occurs in the tool. Since the level increases when
Not only can the two be discriminated and accurate detection can be performed, but the following effects can also be achieved.

即ち、周波数が監視周波数帯域にあるノイズが測定系に
侵入し、これをピーク値Paとして取込んだ場合は、ピ
ーク値が急激に増大し、この結果C1が増大し、第4図
(alに示すように閾値cbを超える事態を生じる虞れ
がある。斯かる場合に上述の従来方法にあっては、これ
を工具の異常発生として誤検出を生じる。然るに、移動
平均値cnを判断指標とし、処理対象のデータの個数k
を、また、基準値τbを適宜の値に選定する場合は、上
記ピーク値Paの急激な増加にも拘わらず、Cnの値は
平滑化されるので、つまり第4図中)に示すように移動
平均値でnの時間的推移は滑らかな曲線になるので基準
値cbを超える虞れがない。
In other words, when noise whose frequency is in the monitoring frequency band enters the measurement system and is taken in as the peak value Pa, the peak value increases rapidly, resulting in an increase in C1, as shown in Figure 4 (al). As shown, there is a possibility that the threshold value cb may be exceeded.In such a case, in the conventional method described above, this will be erroneously detected as a tool abnormality.However, if the moving average value cn is used as a judgment index, , the number of data to be processed k
In addition, when the reference value τb is selected as an appropriate value, the value of Cn is smoothed despite the sudden increase in the peak value Pa, as shown in Fig. 4). Since the temporal change of n in the moving average value is a smooth curve, there is no risk of exceeding the reference value cb.

これに対して工具に異常が発生する場合は、移動平均処
理〇が著しく増大し、基準値τbを超えるので、両者の
弁別が行える。従って、ノイズが測定系に侵入する場合
でも、工具の異常を正確に検出できる。
On the other hand, when an abnormality occurs in the tool, the moving average process 〇 increases significantly and exceeds the reference value τb, so that it is possible to distinguish between the two. Therefore, even if noise enters the measurement system, tool abnormalities can be accurately detected.

〔効果〕〔effect〕

以上詳述した如く、本発明に係る工具の破損検出方法は
、工具の破損及びその進行状況に応して−又は複数の最
適の監視周波数帯域を設定し、監視周波数帯域における
ピーク値及び実効値を検出してこれらの比を求め、該比
を求める過程で移動平均処理を行い、これによって求め
た比自体又はこれと当該移動平均処理に係る直後の前記
比との比を工具の異常検出の判断指標とするものである
ので、多様な工具の破損を、被切削材の切削条件が変化
する場合であうでも、また、被切削材に偏肉1曲り又は
真円度不良等が存在する場合であっても、更にはノイズ
が測定系に侵入する場合であっても、誤検出の虞れがな
く工具の異常を正確に検出することができる等、本発明
は優れた効果を奏する。
As detailed above, the tool damage detection method according to the present invention sets one or more optimal monitoring frequency bands depending on the tool damage and its progress, and sets a peak value and an effective value in the monitoring frequency band. is detected to determine these ratios, and in the process of determining the ratio, moving average processing is performed, and the ratio itself or the ratio between this and the ratio immediately after the moving average processing is used for tool abnormality detection. Since it is used as a judgment index, it can be used to detect various types of tool damage, even when the cutting conditions of the workpiece material change, or when the workpiece material has uneven thickness, bending, or poor roundness. The present invention has excellent effects, such as being able to accurately detect tool abnormalities without the risk of erroneous detection even when noise enters the measurement system.

なお、上述の実施例ではCiの移動平均値を算出するこ
ととしたが、Pa、Ra夫々の移動平均値を求め、然る
後その比を算出することとしてもよい。
Note that in the above embodiment, the moving average value of Ci is calculated, but it is also possible to calculate the moving average values of each of Pa and Ra, and then calculate the ratio thereof.

また、上述の実施例では本発明をバイトの破損検出に適
用したが、フライスカッタ等の他の工具の破損検出及び
摩耗検出にも適用できることは勿論である。また上述の
実施例では工程ごとの監視条件を自動変更するようにし
たが、一部又は全部を手動設定で行うようにしてもよい
Further, in the above-described embodiments, the present invention was applied to detecting breakage of a cutting tool, but it is of course applicable to detecting breakage and wear of other tools such as a milling cutter. Further, in the above-described embodiment, the monitoring conditions for each process are automatically changed, but some or all of the monitoring conditions may be changed manually.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の実施状態をその信号処理系と共に
示す模式図、第2図は制御装置のフローチャート、第3
図、第4図は本発明の効果説明のためのグラフ、第5図
は従来方法の実施状態を示す模式図、第6図は被切削材
を示す模式図、第7図は従来方法の問題点を示すグラフ
である。
FIG. 1 is a schematic diagram showing the implementation state of the method of the present invention together with its signal processing system, FIG. 2 is a flowchart of the control device, and FIG.
Figure 4 is a graph for explaining the effects of the present invention, Figure 5 is a schematic diagram showing the implementation state of the conventional method, Figure 6 is a schematic diagram showing the material to be cut, and Figure 7 is a problem with the conventional method. It is a graph showing points.

Claims (1)

【特許請求の範囲】 1、工作機械に取付けた振動検出器にて該工作機械の切
削時における振動波形を検出し、検出振動波形に基づき
工具の破損を検出する方法において、 切削工程ごとに設定した一又は複数の監視 周波数帯域における振動波形のピーク値及び実効値を逐
次検出してこれらの比を求め、該比を求める過程で移動
平均処理を行い、移動平均処理によって求めた比と、当
該移動平均処理に係るデータの直後の前記比との比を算
出し、算出した比と各切削工程ごとに設定される基準値
とに基づき前記工具の破損を検出することを特徴とする
工具の破損検出方法。 2、工作機械に取付けた振動検出器にて該工作機械の切
削時における振動波形を検出し、検出振動波形に基づき
工具の破損を検出する方法において、 切削工程ごとに設定した一又は複数の監視 周波数帯域における振動波形のピーク値及び実効値を逐
次検出してこれらの比を求め、該比を求める過程で移動
平均処理を行い、移動平均処理によって求めた比と、各
切削工程ごとに設定される基準値とに基づき前記工具の
破損を検出することを特徴とする工具の破損検出方法。
[Scope of Claims] 1. A method for detecting vibration waveforms during cutting of the machine tool using a vibration detector attached to the machine tool, and detecting damage to the tool based on the detected vibration waveforms, comprising: setting for each cutting process. The peak value and effective value of the vibration waveform in one or more monitored frequency bands are sequentially detected and their ratio is determined. In the process of determining the ratio, moving average processing is performed, and the ratio determined by the moving average processing and the relevant Tool damage is characterized in that a ratio of the data related to moving average processing to the ratio immediately after the data is calculated, and damage to the tool is detected based on the calculated ratio and a reference value set for each cutting process. Detection method. 2. In a method of detecting vibration waveforms during cutting of the machine tool with a vibration detector attached to the machine tool and detecting damage to the tool based on the detected vibration waveforms, one or more monitors set for each cutting process are used. The peak value and effective value of the vibration waveform in the frequency band are sequentially detected and their ratio is determined. In the process of determining the ratio, moving average processing is performed, and the ratio determined by the moving average processing is compared with the ratio set for each cutting process. A method for detecting damage to a tool, characterized in that damage to the tool is detected based on a reference value.
JP59275076A 1984-12-29 1984-12-29 Detection of tool breakage Pending JPS61159353A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59275076A JPS61159353A (en) 1984-12-29 1984-12-29 Detection of tool breakage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59275076A JPS61159353A (en) 1984-12-29 1984-12-29 Detection of tool breakage

Publications (1)

Publication Number Publication Date
JPS61159353A true JPS61159353A (en) 1986-07-19

Family

ID=17550488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59275076A Pending JPS61159353A (en) 1984-12-29 1984-12-29 Detection of tool breakage

Country Status (1)

Country Link
JP (1) JPS61159353A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04500481A (en) * 1988-09-02 1992-01-30 フラウンホーファー―ゲゼルシャフト・ツア・フェルデルンク・デル・アンゲバンテン・フォルシュンク・エー・ファウ Method and apparatus for monitoring cutting process of base material
CN111300145A (en) * 2019-11-29 2020-06-19 重庆大学 Time-varying cutting condition cutter damage detection system and method suitable for milling complex curved surface
CN112077670A (en) * 2020-09-16 2020-12-15 重庆大学 Real-time monitoring method for wear state of numerical control machine tool cutter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04500481A (en) * 1988-09-02 1992-01-30 フラウンホーファー―ゲゼルシャフト・ツア・フェルデルンク・デル・アンゲバンテン・フォルシュンク・エー・ファウ Method and apparatus for monitoring cutting process of base material
CN111300145A (en) * 2019-11-29 2020-06-19 重庆大学 Time-varying cutting condition cutter damage detection system and method suitable for milling complex curved surface
CN111300145B (en) * 2019-11-29 2021-04-06 重庆大学 Time-varying cutting condition cutter damage detection method for milling complex curved surface
CN112077670A (en) * 2020-09-16 2020-12-15 重庆大学 Real-time monitoring method for wear state of numerical control machine tool cutter

Similar Documents

Publication Publication Date Title
Jiang et al. In-process monitoring of tool wear stage by the frequency band-energy method
US4724524A (en) Vibration-sensing tool break and touch detector optimized for machining conditions
US4942387A (en) Apparatus and method for tool break and wear detection
JP2549312B2 (en) Machining state detection device for machine tools
US4894644A (en) Tool break/wear detection using a tracking minimum of detected vibrational signal
JPS61159353A (en) Detection of tool breakage
Jemielniak et al. Detection of cutting edge breakage in turning
JP2001205545A (en) Tool replacement timing judging system
JPS61142054A (en) Tool breakage detecting means
JPH06218655A (en) Monitoring of tool fault and device therefor
JPS6121787B2 (en)
JPS58108420A (en) Monitor for chaterring generation of machine tool
JPH0215823B2 (en)
JPH04269153A (en) Monitoring method for cutting load by data extract mean method
JPH11179636A (en) Replacement timing decision system for tool
JPH05329669A (en) Working controller for laser beam machine
JPS60207744A (en) Detection of breakage of tool
US20180039252A1 (en) Method and device for controlling a milling machine
JPH0215954A (en) Tool abnormality monitoring method
JPH0332553A (en) Tool breakage detecting device
JPH01177950A (en) Method for detecting wear of cutting tool
JP2023184022A (en) Abnormality sensing device and abnormality sensing method for cutting tool
RU2169641C2 (en) Monitoring and measuring complex for controlling wear degree of cutting tool
JPH06260946A (en) Reflected power sensor circuit
JPH0132027B2 (en)