JPH0332553A - Tool breakage detecting device - Google Patents

Tool breakage detecting device

Info

Publication number
JPH0332553A
JPH0332553A JP16745689A JP16745689A JPH0332553A JP H0332553 A JPH0332553 A JP H0332553A JP 16745689 A JP16745689 A JP 16745689A JP 16745689 A JP16745689 A JP 16745689A JP H0332553 A JPH0332553 A JP H0332553A
Authority
JP
Japan
Prior art keywords
tool
breakage
signal
drill
sensors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16745689A
Other languages
Japanese (ja)
Inventor
Norio Yoshikawa
典雄 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Omron Tateisi Electronics Co filed Critical Omron Corp
Priority to JP16745689A priority Critical patent/JPH0332553A/en
Publication of JPH0332553A publication Critical patent/JPH0332553A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Machine Tool Sensing Apparatuses (AREA)

Abstract

PURPOSE:To detect the breakage of a tool easily and positively by providing a circuit means, performing data processing on the basis of detection signals from AE sensors, with a fuzzy control part for performing the fuzzy inference of tool breakage using the data output. CONSTITUTION:Pseudo AE signals containing the frequency components of AE signals generated at the time of tool breakage are generated from a pseudo AE signal generator 34 and received at both AE sensors 8, 10 to be set in their receiving levels. The breakage of a drill 4 is then detected at a circuit means on the basis of the detection signals of both AE sensors 8, 10. In this case, this circuit means performs the fuzzy inference of the source of the AE signals at its fuzzy control part 28 on the basis of the frequency components and rising characteristics of the respective AE signals of both AE sensors 8, 10 using AE signals related to the tool breakage, the wave receiving time difference between the respective AE signals and the difference of distance from the tool to the respective AE sensors 8, 10. The estimating accuracy of the source, which is the source of the tool breakage, is thereby heightened so as to detect the breakage of the drill 4 more accurately.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、工作機械に取り付けられて駆動回転される、
ドリル、バイト、リーマなどの切削工具の折損を検出す
る工作機械における工具折損検出装置に係り、特にはそ
の折損をファジィ推論により検出することに関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention provides a machine tool that is attached to a machine tool and driven to rotate.
The present invention relates to a tool breakage detection device for a machine tool that detects breakage of a cutting tool such as a drill, a cutting tool, a reamer, etc., and particularly relates to detecting the breakage using fuzzy inference.

(従来の技術) 工作機械の工具例えばドリルで被加工物を切削加工中に
はその工作機械からはAE倍信号アコースティックエミ
ッション信号)と称する超音波周波数振動が生じている
が、そのドリルの折損時においてはそのAE倍信号振幅
が急激に立ち上がることを利用して当該ドリル等の工具
の折損を検出する従来技術か既に提案されている。
(Prior art) When a machine tool, such as a drill, is cutting a workpiece, the machine tool generates an ultrasonic frequency vibration called an AE multiplied signal (acoustic emission signal), but when the drill breaks, A conventional technique has already been proposed in which the breakage of a tool such as a drill is detected by utilizing the sudden rise in the amplitude of the AE multiplied signal.

特開昭61−82161号公報に記載のものはその従来
技術の1つである。この公報に記載の従来技術にあって
は、工作作業前に被加工物の工具位置に折損時の周波数
成分を含むAE倍信号疑似AE倍信号を発生できる疑似
AE信号発生器を設け、この疑似AE信号発生器から発
生した疑似AE倍信号被加工物の取り付は台に設けられ
たAEセンサで受けて当該AEセンサの受波レベルを設
定し、作業開始後にこのAEセンサで検出した工具折損
時のAE倍信号周波数成分と、その立ち上がり特性との
論理積に基づいて工具折損の検出を行うようにしている
The one described in Japanese Patent Application Laid-Open No. 61-82161 is one of the prior art techniques. In the prior art described in this publication, a pseudo AE signal generator capable of generating a pseudo AE multiplied signal including a frequency component at the time of breakage is provided at the tool position of the workpiece before machining work, and this pseudo AE signal generator The pseudo AE signal generated from the AE signal generator is received by the AE sensor installed on the table when the workpiece is mounted, and the receiving level of the AE sensor is set. Tool breakage is detected based on the logical product of the AE multiplied signal frequency component and its rise characteristic.

しかしながら、この従来技術では折損時のAE倍信号周
波数成分の識別とか立ち上がり特性の検出をそれぞれ単
なる2値のレベル比較とか基準値とを比較して行ってい
たから、工具折損時にAEセンサに与えら打るAE倍信
号対して、この工具折損とは異なる原因でえられるAE
倍信号例えば被加工物の切り屑から発生する信号、ソレ
ノイドの開閉に伴う電気ノイズ、被加工物に物体が接触
したときの衝撃音等を正確に分離して信頼性の高い工具
折損検出を行うことができなかった。
However, in this conventional technology, the identification of the frequency component of the AE multiplied signal at the time of tool breakage and the detection of the rise characteristic were performed by simply comparing binary levels or comparing with a reference value, respectively. For the AE multiplied signal, AE caused by a cause different from this tool breakage.
Highly reliable tool breakage detection is performed by accurately separating multiple signals, such as signals generated from chips on the workpiece, electrical noise associated with the opening and closing of a solenoid, and impact sound when an object contacts the workpiece. I couldn't do that.

かかる従来技術に対して特開昭61−117449号公
報に記載の従来技術が提案されている。
In contrast to this conventional technique, a conventional technique described in Japanese Unexamined Patent Publication No. 117449/1983 has been proposed.

この従来技術にあっては、複数のAEセンサを設け、A
E倍信号検出時間差からAE倍信号発生源を推定し、そ
の推定から実際の工具の位置とを比較することにより、
工具折損によるAE倍信号他の原因によるAE倍信号を
識別可能にして工具折損検出の信頼性を高めるようにし
たものである。
In this conventional technology, a plurality of AE sensors are provided,
By estimating the source of the AE multiplied signal from the E multiplied signal detection time difference and comparing the estimation with the actual tool position,
The AE multiplied signal due to tool breakage and the AE multiplied signal due to other causes can be distinguished, thereby increasing the reliability of tool breakage detection.

(発明が解決しようとする課題) しかしながら、この従来技術にあってはその公報から明
らかなようにAEセンサの取り付は位置によってはその
プログラムの変更が必要となるうえ、AE信号発生源の
特定に複雑な演算が必要となるという課題があった。
(Problem to be Solved by the Invention) However, in this prior art, as is clear from the publication, it is necessary to change the program depending on the position when installing the AE sensor, and also to identify the source of the AE signal. The problem was that it required complex calculations.

本発明は、このような課題に鑑みてなされたものであっ
て、工具の折損によるAE倍信号それ以外の原因で得ら
れるAE倍信号を確実に区別できるようにして、AEセ
ンサの取り付は位置の相違による工具の種類とか切削条
件などの影響を受けることなく容易にかつ確実に工具の
折損を検出できる信頼性の高い工具折損検出装置を提供
することを目的としている。
The present invention has been made in view of these problems, and it is possible to reliably distinguish between the AE multiplied signal due to tool breakage and the AE multiplied signal obtained due to other causes, and the installation of the AE sensor is simplified. It is an object of the present invention to provide a highly reliable tool breakage detection device that can easily and reliably detect tool breakage without being affected by the type of tool or cutting conditions due to differences in position.

(課題を課題するための手段) このような目的を達成するために、本発明の工具折損検
出装置においては、ドリル等の工具折損時に発生するA
E倍信号周波数成分を含む疑似AE倍信号発生手段と、
被加工物を機械加工する工作機本体の当該被加工物近傍
に設けられてAE倍信号検出に対応した検出信号を出力
する少なくとも2つのAEセンサと、前記両AEセンサ
からの検出信号に基づいて当該AE信号の周波数成分、
立ち上がり特性、各AEセンサそれぞれでのAE倍信号
受波時間差、および工具から各AEセンサまでの距離差
をそれぞれデータ処理する回路手段とを含み、前記回路
手段は、それのデータ出力を用いて当該工具の折損をフ
ァジィ推論するファジィ制御部を備えたことを特徴とし
ている。
(Means for Achieving the Problem) In order to achieve such an object, the tool breakage detection device of the present invention detects A that occurs when a tool such as a drill breaks.
pseudo AE multiplied signal generation means including an E multiplied signal frequency component;
at least two AE sensors that are installed near the workpiece in a machine tool body that machine the workpiece and output detection signals corresponding to the AE multiplied signal detection; and based on the detection signals from both of the AE sensors. the frequency component of the AE signal,
circuit means for data processing the rise characteristics, the AE multiplied signal reception time difference in each AE sensor, and the distance difference from the tool to each AE sensor, and the circuit means uses the data output thereof to process the data. It is characterized by being equipped with a fuzzy control section that makes fuzzy inferences about tool breakage.

(作用) 機械工作前に疑似AE信号発生手段からドリル等の工具
折損時に発生するAE倍信号周波数成分を含む疑似AE
倍信号発生させるとともに、発生させた疑似AE倍信号
両AEセンサで受波させることで、当該両AEセンサの
受波レベルを設定することができる。そして、回路手段
でもって両AEセンサの検出信号に基づいて工具の折損
を検出する。この場合、この回路手段は、それに備えた
ファジィ制御部でもって前記両AEセンサそれぞれのA
E倍信号周波数成分と立ち上がり特性とで工具の折損に
関連したAE倍信号工具折損を発生源とするAE倍信号
と、工具の折損に基づ<AE倍信号はないが、これに近
似したAE倍信号他の原因を発生源とするAE倍信号も
検出できるが、各AEセンサそれぞれでのAE倍信号受
波時間差と、工具から各AEセンサまでの距離差とを用
いてAE倍信号発生源をファジィ推論で推定することか
ら、工具折損を発生源とする発生源の推定確度が高まる
結果、より正確に当該工具の折損を検出できる。その結
果、AE倍信号発生源の特定のための演算プログラムと
いった繁雑な手間をかけることなくして工具の折損を検
出することができる。
(Function) Before machining, the pseudo AE signal generation means generates a pseudo AE including the AE multiplied signal frequency component that occurs when a tool such as a drill breaks.
By generating the double signal and receiving the generated pseudo AE double signal with both AE sensors, the reception levels of the two AE sensors can be set. Then, the circuit means detects tool breakage based on the detection signals from both AE sensors. In this case, this circuit means has a fuzzy control unit provided therein to adjust the A of each of the two AE sensors.
AE multiplied signal related to tool breakage with frequency components and rise characteristics; AE multiplied signal whose source is tool breakage; and AE multiplied signal based on tool breakage, although there is no AE multiplied signal. Double SignalAlthough it is possible to detect the AE double signal that is generated from other sources, the source of the AE double signal can be detected by using the difference in reception time of the AE double signal at each AE sensor and the difference in distance from the tool to each AE sensor. is estimated by fuzzy inference, the accuracy of estimating the source of the tool breakage increases, and as a result, the breakage of the tool can be detected more accurately. As a result, tool breakage can be detected without the need for complicated calculation programs for identifying the source of the AE multiplied signal.

(実施例) 以下、本発明の実施例を図面を参照して詳細に説明する
(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図は、本発明の実施例に係る工具折損検出装置の構
成図であり、第2図はドリルで切削加工中のときの工作
機械本体としてのボール盤のベツドから得られるA、 
E信号の振幅波形図であり、第3図はドリルのFr損に
基づ<AE倍信号周波数帯域と、通常の切削加工に基づ
<AE倍信号周波数帯域とをそれぞれ示す周波数帯域図
である。第2図において、期間T1は通常の切削加工中
でのAE倍信号振幅、期間T2はドリルの折損によるA
E倍信号振幅をそれぞれ示している。また、第3図にお
いて、aはドリル折損時のAE倍信号bは通常切削加工
時のAE倍信号それぞれ示し、ドリル折損によるAE倍
信号最大パワーの周波数帯域は300kIz周辺、通常
の切削加工によるAE倍信号最大パワーの周波数帯域は
50kl(z周辺となっている。
FIG. 1 is a block diagram of a tool breakage detection device according to an embodiment of the present invention, and FIG. 2 shows A obtained from the bed of a drill press as a machine tool body during cutting with a drill,
Fig. 3 is an amplitude waveform diagram of the E signal, and Fig. 3 is a frequency band diagram showing the <AE multiplied signal frequency band based on the Fr loss of the drill and the <AE multiplied signal frequency band based on normal cutting processing. . In Fig. 2, the period T1 is the AE multiplied signal amplitude during normal cutting, and the period T2 is the A due to the breakage of the drill.
The E times signal amplitude is shown respectively. In addition, in Fig. 3, a indicates the AE multiplied signal when the drill is broken, b indicates the AE multiplied signal during normal cutting, and the frequency band of the maximum power of the AE multiplied signal due to the broken drill is around 300 kHz. The frequency band of the maximum power of the doubled signal is 50kl (around z).

第1図において、2は工作機械本体としてのボール盤の
ベツド〔図示しない)に載置された被加工物、4はこの
被加工物2の加工位置上方に位置した工具としてのドリ
ル、6はドリル4の上下左右方向の動き、回転数などを
制御するドリル制御部、8.10はそれぞれ被加工物2
上の所定位置に取り付けられて受波したAE倍信号検出
し、そのAE倍信号対応した周波数の検出出力を出力す
るAEセンサである。この場合、説明の都合上、AEセ
ンサ8.IOそれぞれの検出出力をAE倍信号いうこと
にする。
In Fig. 1, 2 is a workpiece placed on the bed (not shown) of a drilling machine as the machine tool body, 4 is a drill as a tool located above the machining position of this workpiece 2, and 6 is a drill. 4, the drill control unit controls the vertical and horizontal movement, rotation speed, etc., and 8.10 each controls the workpiece 2.
The AE sensor is attached to a predetermined position above the sensor and detects the received AE multiplied signal, and outputs a detection output at a frequency corresponding to the AE multiplied signal. In this case, for convenience of explanation, the AE sensor 8. The detection output of each IO will be referred to as the AE multiplied signal.

12a、12bはそれぞれAEセンサ6.8それぞれの
出力を増幅する増幅器、14a、14bはそれぞれ増幅
器! 2a 、12bで増幅された各AE倍信号内、ド
リル4の折損に関連したAE倍信号300kIz/i!
!波数帯域戊分をXl!遇させる、ことを目的とした3
00kHzバンドパスフイルタ、16a、16bはそれ
ぞれ増幅器12a、12bで増幅された各AE倍信号内
、ドリル4で通常切削加工中のAE倍信号50kIz周
波数帯域成分を通過させることを目的とした50kI−
1zバンドパスフイルタ、18a−18dはそれぞれ検
波器、20a、20bはそれぞれ検波器[8a 、L 
8cそれぞれの出力を微分し第2図の期間TIの通常切
削加工中と期間T2のドリル4の折損どを区別するため
に期間T2におけるA、 E信号に対しては急激に立ち
上がる微分出力を出力する微分回路、22a、22bは
それぞれ微分回路20a、20bそれぞれの出力を受け
て各AEセンサ6.8それぞれで受波された300kI
−(zのAE倍信号受波時間を比較検出することでAE
センサ6.8に対する工具折損に関連したA E信号の
発生源を准定するためのデータを得ろための比較器、2
4は両比較2m22a、22bそれぞれの出力に基づい
てAEセンサ8で受波されたAE倍信号受波時間t !
とAEセンサ10で受波されたAE倍信号受波時間t2
との差(AE信号受波時間差t ! −t 2)を出力
することでAE倍信号発生源に関連したデータを出力す
るターrマである。このタイマ24は飼えば比較i?3
22aの出力でタイマ動作をスタートし、比較器22b
の出力でタイマ動作をストップし、そのスタートストッ
プの時間差を上記時間差tl−t2とする。26はドリ
ル制御部6の制御により被加工物2上をドリル4が移動
する場合に、そのドリル4の位置を特定し、これにより
AEセンサ6.8に対するA、 E信号の発生源を推定
するためのデータを出力するために当該ドリル4からA
Eセンサ6までの距@dlと、ドリル4からAEセンサ
8までの距離d2との各データに基づいてその距離の差
dl−d2を演算出力する演算部である。
12a and 12b are amplifiers that amplify the respective outputs of the AE sensor 6.8, and 14a and 14b are amplifiers! In each AE multiplied signal amplified by 2a and 12b, the AE multiplied signal related to the breakage of the drill 4 is 300 kIz/i!
! Wavenumber band fraction is Xl! 3 with the purpose of making people feel welcome
The 00kHz bandpass filters 16a and 16b are 50kI-bandpass filters intended to pass the 50kIz frequency band component of the AE multiplied signal during normal cutting with the drill 4 in each AE multiplied signal amplified by the amplifiers 12a and 12b, respectively.
1z band pass filter, 18a-18d are each a detector, 20a and 20b are each a detector [8a, L
Differentiate each output of 8c and output a differentiated output that rises rapidly for signals A and E in period T2 in order to distinguish between normal cutting during period TI in Fig. 2 and breakage of the drill 4 during period T2. The differentiating circuits 22a and 22b receive the outputs of the differentiating circuits 20a and 20b, respectively, and receive the 300 kI waves received by each AE sensor 6.8.
−(AE by comparing and detecting the AE times signal reception time of z)
Comparator for obtaining data for determining the source of the AE signal associated with tool breakage for sensor 6.8; 2;
4 is the reception time t! of the AE multiplied signal received by the AE sensor 8 based on the respective outputs of the comparison 2m22a and 22b.
and the AE multiplied signal reception time t2 received by the AE sensor 10
This is a termer that outputs data related to the AE multiplied signal generation source by outputting the difference (AE signal reception time difference t!-t2). If you keep this timer 24, can you compare it? 3
22a starts the timer operation, and the comparator 22b starts the timer operation.
The timer operation is stopped at the output of , and the time difference between the start and stop is defined as the above-mentioned time difference tl-t2. 26 specifies the position of the drill 4 when it moves over the workpiece 2 under the control of the drill control unit 6, and thereby estimates the source of the A and E signals for the AE sensor 6.8. To output the data for the drill 4 to A
This is a calculation unit that calculates and outputs the distance difference dl-d2 based on each data of the distance @dl to the E-sensor 6 and the distance d2 from the drill 4 to the AE sensor 8.

28は検波器1.8aの出力■11、検波器I8bの出
力VI2、微分回路20aの出力VI3、検波器18c
の出力V21.険波)B l 8 dの出力V22、微
分回路20bの出力V23どでドリル4の折損に基づ<
AE倍信号池の原因に基づくAE倍信号の区別のための
ファジィ推論に加えて、タイマ24の出力T、と、演算
部26の出力りとでドリル4の折損に基づ< A E信
号の発生源の推定のためのファジィ推論をも行うことで
、ドリル4の折損を総合的にファジィ推論するファジィ
制御部、30はファジィ制御部28からの折損出力S1
を出力する出力回路、32はファジィ制御部28からの
異常出力S2を出力する出力回路である。
28 is the output ■11 of the detector 1.8a, the output VI2 of the detector I8b, the output VI3 of the differentiating circuit 20a, and the detector 18c.
Output V21. Based on the breakage of the drill 4 at the output V22 of Bl8d, the output V23 of the differential circuit 20b, etc.
In addition to the fuzzy inference for distinguishing the AE multiplied signal based on the cause of the AE multiplied signal, the output T of the timer 24 and the output of the arithmetic unit 26 are used to calculate A fuzzy control unit comprehensively infers the breakage of the drill 4 by also performing fuzzy inference for estimating the source, and 30 is a breakage output S1 from the fuzzy control unit 28.
An output circuit 32 outputs the abnormal output S2 from the fuzzy control section 28.

ファジィ制御部28は、条件部の変数の数8、結論部の
変数の数1の3人力1出力形のファジィ推論を行うため
に後記のフアジイラベル■〜■と第4図(a)〜第4図
(e)の条件部のメンバーシップ関数と第5図の結論部
のメンバーシップ関数とを記憶している。これらメンバ
ーシップ関数は機械工作作業前に被加工物2に疑似AE
信号発生器34を載置し、この疑似AE信号発生器34
をレベル設定器36で設定した値で駆動回路38を介し
て駆動することでドリル4の折損時および切削加工時と
同一パワースペクトルのAE倍信号疑似AE倍信号して
生威し、こに基づいて容易に作成することができる。
The fuzzy control unit 28 uses the fuzzy labels ■ to ■ shown below and the fuzzy labels shown in FIGS. The membership function of the condition part shown in FIG. 5(e) and the membership function of the conclusion part shown in FIG. 5 are stored. These membership functions are used to apply pseudo AE to workpiece 2 before machining work.
A signal generator 34 is mounted, and this pseudo AE signal generator 34
By driving through the drive circuit 38 with the value set by the level setting device 36, an AE multiplied signal and a pseudo AE multiplied signal of the same power spectrum as when the drill 4 breaks and during cutting are generated. can be easily created.

ここで、ファジィ制御部28に記憶されているファジィ
ルールについて下記■〜■に示す。
Here, the fuzzy rules stored in the fuzzy control unit 28 are shown below.

■ if Vll= PS、Vt2= PL、Vt3=
 PL、V21= PS。
■ if Vll= PS, Vt2= PL, Vt3=
PL, V21=PS.

V22= PL、 V23= PL、T= PL、L=
 NLthen折損 ■ if Vt1= PS、Vt2= PL、Vt3=
 PL、V21= PS。
V22= PL, V23= PL, T= PL, L=
NLthen breakage ■ if Vt1= PS, Vt2= PL, Vt3=
PL, V21=PS.

V22= PL、 V23= PL T= NL、L=
 PLthen折損 ■ if Vll−PS、Vt2=PL、Vt3=PL
J21=PS。
V22= PL, V23= PL T= NL, L=
PLthen breakage ■ if Vll-PS, Vt2=PL, Vt3=PL
J21=PS.

Vt2=PL、  Vt3=PL、T=ZR,L=zR
then折損 ■ HVt1= PL、Vt2= PL、Vt3= P
L、V21= PL。
Vt2=PL, Vt3=PL, T=ZR, L=zR
Then breakage ■ HVt1= PL, Vt2= PL, Vt3= P
L, V21 = PL.

V22= PL、  V23= PL、T= PL、L
= NLthen異常 ■ HVt1= PL、Vt2= PL、Vt3= P
L V21= PLV22=PL、  Vt3=PL、
T=NL、L=PLthen異常 ■ H’V11=PL、V12=PL、V13=PL、
Vt1=PL。
V22= PL, V23= PL, T= PL, L
= NLthen abnormality■ HVt1= PL, Vt2= PL, Vt3= P
L V21=PLV22=PL, Vt3=PL,
T=NL, L=PLthen abnormality■ H'V11=PL, V12=PL, V13=PL,
Vt1=PL.

Vt2=PL、 Vt3=PL、T=ZR,L=ZRt
hen異常 ここで、irは条件部、t h e nは結論部であり
、V 11 、V21i;!300k Hz帯域のAE
倍信号V12.V22は50kHz帯域のAE倍信号V
I3、V23は300kHz帯域のAE倍信号微分出力
、Tはタイマ24出力、Lは演$126出力である。ま
たNL、・・・PLはそれぞれ各変数が属するファジィ
ラベル名である。
Vt2=PL, Vt3=PL, T=ZR, L=ZRt
hen abnormality Here, ir is the conditional part, t h e n is the conclusion part, and V 11 , V21i;! 300kHz band AE
Double signal V12. V22 is the AE multiplied signal V in the 50kHz band
I3 and V23 are AE multiplied signal differential outputs in the 300 kHz band, T is the timer 24 output, and L is the $126 output. Further, NL, . . . PL are fuzzy label names to which each variable belongs.

動作について説明すると、ファジィ制御部28は各検波
器18a−18dと、微分回路20a。
To explain the operation, the fuzzy control section 28 includes each of the detectors 18a to 18d and a differentiating circuit 20a.

20bと、タイマ24と、演算部26とからそれぞれ与
えられる変数V l 1〜V f 3.V21−V23
T、Lに基づいて第4図(a) 〜(e)からそれぞれ
各ファジィルールの対応するメンバーシップ関数に適合
するメンバーシップ値を求める。そして、各ファジィル
ール毎に、各条件部それぞれの変数のンバーシップ値の
小さい方を選択しくMIN演算)、この選択したメンバ
ーシップ値によって第5図から各ファジィルールのドリ
ル4の折損または異常に関する各メンバーシップ関数を
裁断し、裁断したすべてのファジィルールそれぞれに関
する各メンバーシップ関数を重ね合わせて(MAX演算
)、最終的なドリル4の折損または異常に関する重ね合
わせメンバーシップ関数を得る。
20b, timer 24, and arithmetic unit 26, respectively, variables V l 1 to V f 3. V21-V23
Based on T and L, membership values that match the membership functions corresponding to each fuzzy rule are determined from FIGS. 4(a) to 4(e), respectively. Then, for each fuzzy rule, select the smaller membership value of the variable of each condition part (MIN calculation), and use this selected membership value to determine each fuzzy rule's breakage or abnormality of the drill 4 from FIG. The membership functions are cut and the membership functions related to all the cut fuzzy rules are superimposed (MAX calculation) to obtain the final superposed membership function regarding breakage or abnormality of the drill 4.

この重ね合わせメンバーシップ関数の例えば重心を求め
ることにより確定したドリル4の折損または異常に関す
るデータSl、S2を対応する出力回路30.32にそ
れぞれ出力する。
Data Sl and S2 regarding the breakage or abnormality of the drill 4 determined by determining, for example, the center of gravity of this superposition membership function are outputted to the corresponding output circuits 30 and 32, respectively.

なお、上記ファジィルールの具体的な適用説明は周知で
あるので省略する。
Note that a detailed explanation of the application of the above fuzzy rules is well known and will therefore be omitted.

(発明の効果) 以上説明したことから明らかなように、本発明によれば
、AE倍信号周波数成分を識別した値と急激に立ち上が
る信号の検出値と、各AEセンサで受波されるAE倍信
号受波時間差と、各AEセンナに対する工具の位置とを
条件部の入力変数とし、これを用いてファジィ推論によ
りドリルの折損または異常を推論するように構成したか
ら、工具の折損以外で得られるAE倍信号AEセンサの
取り付は位置の相違による工具の種類とか切削条件など
の影響を受けることなく確実に工具の折損を検出できる
信頼性の高い工具折損検出装置を提供することができる
(Effects of the Invention) As is clear from the above explanation, according to the present invention, the value of the identified AE multiplied signal frequency component, the detected value of the rapidly rising signal, and the AE multiplied signal received by each AE sensor The signal reception time difference and the position of the tool with respect to each AE sensor are used as input variables of the condition section, and this is used to infer breakage or abnormality of the drill by fuzzy inference. By installing the AE double signal AE sensor, it is possible to provide a highly reliable tool breakage detection device that can reliably detect tool breakage without being affected by the type of tool or cutting conditions due to differences in position.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の実施例に係り、第1図は本発明の実施例に
係る工具折損検出装置の構成図、第2図はドリルで通常
の切削加工中とその折損に基づくAE倍信号振幅を示す
波形図、第3図はドリルの折損によるパワー出力と通常
の切削加工でのパワー出力との周波数帯域を示す図、第
4図(a)〜第4図(e)は第1図のファジィ制御部に
記憶されている条件部の変数のメンバーシップ関数を示
す図、第5図は同じく第1図のファジィ制御部に記憶さ
れている結論部の変数のメンバーシップ関数を示す図で
ある。 2・・・被加工物、4・・・ドリル、s、io・・・A
Eセンサ、28・・・ファジィ制御部。
The figures relate to an embodiment of the present invention. Fig. 1 is a block diagram of a tool breakage detection device according to an embodiment of the present invention, and Fig. 2 shows the AE multiplied signal amplitude during normal cutting with a drill and due to the breakage. Figure 3 is a diagram showing the frequency bands of the power output due to drill breakage and the power output during normal cutting, and Figures 4(a) to 4(e) are the fuzzy waveform diagrams shown in Figure 1. FIG. 5 is a diagram showing the membership function of the variables of the condition part stored in the control part, and FIG. 5 is a diagram showing the membership function of the variables of the conclusion part stored in the fuzzy control part of FIG. 2...Workpiece, 4...Drill, s, io...A
E sensor, 28... fuzzy control section.

Claims (1)

【特許請求の範囲】[Claims] (1)ドリル等の工具折損時に発生するAE信号の周波
数成分を含む疑似AE信号の発生手段と、被加工物を機
械加工する工作機本体の当該被加工物近傍に設けられて
AE信号を検出する少なくとも2つのAEセンサと、 前記両AEセンサからの検出信号に基づいて当該AE信
号の周波数成分、立ち上がり特性、各AEセンサそれぞ
れでのAE信号の受波時間差、および工具から各AEセ
ンサまでの距離差をそれぞれデータ処理する回路手段と
を含み、 前記回路手段は、それのデータ出力を用いて当該工具の
折損をファジィ推論するファジィ制御部を備えたことを
特徴とする工具折損検出装置。
(1) A means for generating a pseudo AE signal containing the frequency component of the AE signal generated when a tool such as a drill breaks, and a means for detecting the AE signal provided near the workpiece in the main body of the machine tool for machining the workpiece. at least two AE sensors, and based on the detection signals from both AE sensors, the frequency component of the AE signal, the rise characteristic, the reception time difference of the AE signal at each AE sensor, and the distance from the tool to each AE sensor. A tool breakage detection device, comprising circuit means for data processing each distance difference, and wherein the circuit means is equipped with a fuzzy control section that fuzzy infers breakage of the tool using the data output of the circuit means.
JP16745689A 1989-06-29 1989-06-29 Tool breakage detecting device Pending JPH0332553A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16745689A JPH0332553A (en) 1989-06-29 1989-06-29 Tool breakage detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16745689A JPH0332553A (en) 1989-06-29 1989-06-29 Tool breakage detecting device

Publications (1)

Publication Number Publication Date
JPH0332553A true JPH0332553A (en) 1991-02-13

Family

ID=15850022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16745689A Pending JPH0332553A (en) 1989-06-29 1989-06-29 Tool breakage detecting device

Country Status (1)

Country Link
JP (1) JPH0332553A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7361759B2 (en) 2004-12-27 2008-04-22 Shiratori Pharmaceutical Co., Ltd Method for producing L-biopterin
US8178670B2 (en) 2008-01-07 2012-05-15 Biomarin Pharmaceutical Inc. Method of synthesizing tetrahydrobiopterin
CN102692450A (en) * 2012-05-02 2012-09-26 江苏大学 Method for identifying state of shaped crack of metal drawing part based on fuzzy comprehensive evaluation
CN109856241A (en) * 2019-02-15 2019-06-07 中国铁道科学研究院集团有限公司 The steel rail ultrasonic flaw detecting method and system automatically controlled based on threshold value

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7361759B2 (en) 2004-12-27 2008-04-22 Shiratori Pharmaceutical Co., Ltd Method for producing L-biopterin
US8178670B2 (en) 2008-01-07 2012-05-15 Biomarin Pharmaceutical Inc. Method of synthesizing tetrahydrobiopterin
CN102692450A (en) * 2012-05-02 2012-09-26 江苏大学 Method for identifying state of shaped crack of metal drawing part based on fuzzy comprehensive evaluation
CN102692450B (en) * 2012-05-02 2014-05-28 江苏大学 Method for identifying state of shaped crack of metal drawing part based on fuzzy comprehensive evaluation
CN109856241A (en) * 2019-02-15 2019-06-07 中国铁道科学研究院集团有限公司 The steel rail ultrasonic flaw detecting method and system automatically controlled based on threshold value

Similar Documents

Publication Publication Date Title
Huang et al. Tool wear detection and fault diagnosis based on cutting force monitoring
JP7101952B2 (en) Multi-tasking machine with failure prediction function
Tansel et al. Micro-end-milling—III. Wear estimation and tool breakage detection using acoustic emission signals
US4918616A (en) Tool monitoring system
JP2008137102A (en) Machine tool observation device
JPH0332553A (en) Tool breakage detecting device
JPH06344246A (en) Abrasion detecting method for cutting tool
EP0165482B1 (en) Tool monitoring system
JPH0215823B2 (en)
JPS61132858A (en) Tool breakage detecting device
JPH0558855B2 (en)
JPH0423216B2 (en)
JPS63212447A (en) Monitoring device in cutting machine
JPS58108420A (en) Monitor for chaterring generation of machine tool
JPH066253B2 (en) Tool breakage detector
JPH0295544A (en) Detection device for breakdown of tool
JPS61187650A (en) Apparatus for detecting breakage of tool
Xiaoli et al. Identification of tool wear states with fuzzy classification
JPS6317581B2 (en)
JPS61198059A (en) Tool breakage detecting device
JPH03189082A (en) Monitoring method for laser beam machining
JPS61132862A (en) Tool breakage detecting device
JPS61117051A (en) Tool breakage detecting apparatus
JPS61112962A (en) Apparatus for detecting breakage of tool
JPH055624B2 (en)