JPH0215823B2 - - Google Patents

Info

Publication number
JPH0215823B2
JPH0215823B2 JP58185952A JP18595283A JPH0215823B2 JP H0215823 B2 JPH0215823 B2 JP H0215823B2 JP 58185952 A JP58185952 A JP 58185952A JP 18595283 A JP18595283 A JP 18595283A JP H0215823 B2 JPH0215823 B2 JP H0215823B2
Authority
JP
Japan
Prior art keywords
signal
level
circuit
comparator
outputs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58185952A
Other languages
Japanese (ja)
Other versions
JPS6079261A (en
Inventor
Masaru Sakai
Ichiro Inazaki
Takeshi Oomya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nachi Fujikoshi Corp
Original Assignee
Fujikoshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikoshi KK filed Critical Fujikoshi KK
Priority to JP58185952A priority Critical patent/JPS6079261A/en
Publication of JPS6079261A publication Critical patent/JPS6079261A/en
Publication of JPH0215823B2 publication Critical patent/JPH0215823B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/14Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object using acoustic emission techniques

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Machine Tool Sensing Apparatuses (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はAE信号を利用して、切削加工中の工
具の異常を検出する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a device that uses AE signals to detect abnormalities in a tool during cutting.

(従来の技術) 従来のAE信号を利用して工具の異常を検出す
る装置としては突発型AE信号のピーク値が一定
閾値を越えたときに異常信号を出力するものが一
般的であつた。しかしながら、機械振動や切り屑
の衝突、切削油の飛沫等によつて生ずるノイズに
よつて誤動作することがあるなどで性能が十分で
なく、また装置が複雑で高価であるなどの問題が
あり、小径工具の破損を確実にしかも経済的に検
出することはできなかつた。即ち第1図は正常切
削時と工具異常時におけるAE信号の周波数分析
結果を示しているが、従来の一般的な装置では
AE信号をフイルタに通し、高い周波数成分(例
えば150KHz以上)のみを取出し、そのレベルが
設定閾値を越えると異常と判定していた。第1図
では明らかに正常時よりも異常時の方がレベルが
高いが、機械振動や切屑により発生される信号で
もレベルの大きいノイズも観測され、誤つた判定
を下すことがあつた。又周波数比率を検出する装
置もあつたが、やはりノイズで誤つた判定を下す
こともあつた。
(Prior Art) Conventional devices that use AE signals to detect tool abnormalities have generally output an abnormality signal when the peak value of a sudden AE signal exceeds a certain threshold. However, there are problems such as insufficient performance, such as malfunctions caused by noise caused by machine vibration, collision of chips, splashing of cutting oil, etc., and the equipment is complex and expensive. It has not been possible to reliably and economically detect damage to small diameter tools. In other words, Fig. 1 shows the frequency analysis results of the AE signal during normal cutting and when the tool is abnormal.
The AE signal was passed through a filter to extract only high frequency components (for example, 150KHz or higher), and if the level exceeded a set threshold, it was determined to be abnormal. In Fig. 1, the level is clearly higher in abnormal conditions than in normal conditions, but high-level noise was also observed in signals generated by mechanical vibrations and chips, which could lead to incorrect judgments. There were also devices that detected frequency ratios, but they sometimes made incorrect decisions due to noise.

かかる課題を解決するために、例えば特開昭57
−205049号公報に示すように、切削加工中に発生
するAE信号のうち特定の周波数領域の信号成分
とそれ以外の周波数領域の信号成分との振幅の比
を検出し、かかる割算器出力が連続して大きい値
を示すときは工具の摩耗を判定するものが提案さ
れた。
In order to solve this problem, for example,
As shown in Publication No. 205049, the amplitude ratio of the signal component in a specific frequency domain and the signal component in the other frequency domain of the AE signal generated during cutting is detected, and the output of the divider is A method has been proposed that determines tool wear when continuously large values are shown.

(発明が解決しようとする課題) しかしながら、かかる従来方法では、工具摩耗
時、機械振動、切りくずの衝突、切削油飛沫など
によつて生ずるノイズにより誤動作したり、また
センサと工具の位置、ワークの形状などによつて
閾値を変化させなければならないなど性能が十分
でなく、また装置が複雑高価であるなどの問題が
あり、小径工具の破損を確実にしかも経済的に検
知し得なかつた。
(Problems to be Solved by the Invention) However, with such conventional methods, malfunctions occur due to noise caused by machine vibration, chip collision, cutting oil splash, etc. when the tool wears out, and the position of the sensor and tool, The performance is not sufficient, as the threshold value must be changed depending on the shape of the tool, and the device is complicated and expensive, making it impossible to reliably and economically detect damage to small-diameter tools.

(発明の構成) 本発明はこのような従来の課題を解決しようと
するものであつて、第1図から明らかなように、
正常切削時には約100KHz以下の信号レベルが大
きく、また全体的にレベルが小さいが、異常切削
時には約100K〜300KHzの信号レベルが大きく全
体的にレベルが大きい。本発明この特徴に注目す
ると共に、工具の折損時に経時的に前記割算器出
力が大きく変化するとに注目して工具異常を検出
するものであつて、AE信号を経時的に検出する
センサと、プリアンプ、全波整流回路、平均化処
理回路、バンドパスフイルタ、全波整流回路、割
算器、第1の立上り検出部(微分回路)、コンパ
レータ、アンド回路、出力回路とから構成された
工具異常検出装置に関するものである。即ちプリ
アンプ及び全波整流回路で得られた信号レベルを
割算器の分母に、又、プリアンプ、バンドパスフ
イルタ(約100K〜約300KHz又は約100K〜約
500KHz)及び全波整流回路で得られた信号レベ
ルを割算器の分子として経時的に割算器に入力
し、割算器の出力を入力して周波数成分を比率
Y/Xの経時的は急激な変化を微分回路である第
1の立上り検出部で検出し、第1の立上り検出部
の出力をコンパレータに入力してコンパレータ設
定閾値と比較して周波数比率立上り異常出力と
し、又プリアンプ、全波整流回路及び平均化処理
回路後の信号をコンパレータで比較してレベル異
常出力とし、周波数比率立上り異常出力とレベル
異常出力をアンド回路へ入力し、両異常出力が同
時に発生した場合にのみ工具異常と判断するよう
になつている。本発明はこのように第1の立上り
検出部を設けたので、工具の折損時に割算器出力
即ち周波数成分比率Y/Xの急激な変化をとらえ
ることができるので、きわめて正確な工具折損を
検出できるものとなつた。
(Structure of the Invention) The present invention attempts to solve such conventional problems, and as is clear from FIG.
During normal cutting, the signal level of about 100KHz or less is high and the overall level is low, but during abnormal cutting, the signal level of about 100K to 300KHz is high and the overall level is high. The present invention focuses on this feature and detects a tool abnormality by paying attention to the fact that the output of the divider changes greatly over time when the tool breaks, and includes a sensor that detects an AE signal over time; Tool abnormality detection circuit consisting of a preamplifier, full-wave rectifier circuit, averaging processing circuit, band-pass filter, full-wave rectifier circuit, divider, first rise detection section (differentiator circuit), comparator, AND circuit, and output circuit. This invention relates to a detection device. In other words, the signal level obtained from the preamplifier and full-wave rectifier circuit is used as the denominator of the divider, and the preamplifier and bandpass filter (about 100K to about 300KHz or about 100K to about
500KHz) and the signal level obtained from the full-wave rectifier circuit are input to the divider over time as the numerator of the divider, and the output of the divider is input to calculate the frequency component as the ratio Y/X over time. The sudden change is detected by the first rise detection section, which is a differentiating circuit, and the output of the first rise detection section is input to the comparator and compared with the comparator setting threshold to determine the frequency ratio rise abnormal output. The signals after the wave rectification circuit and the averaging processing circuit are compared with a comparator to obtain a level abnormal output, and the frequency ratio rise abnormal output and level abnormal output are input to an AND circuit, and a tool abnormality is detected only when both abnormal outputs occur at the same time. I have come to judge that. Since the present invention is provided with the first rise detection section in this way, it is possible to detect a sudden change in the divider output, that is, the frequency component ratio Y/X, when a tool breaks, so tool breakage can be detected very accurately. I became able to do it.

(実施例) 以下本発明の実施例をまず第2図について説明
すると、AE信号はセンサ1で経時的に検出され、
そしてプリアンプ2で適宜なレベルまで増幅され
る。既述のように異常切削時にはAEレベルが大
きく、周波数成分で約100K〜300KHz又は約100K
〜500KHzの周波数の全体に対する比率が大きい
ことに着目してこれを検出するため、プリアンプ
の信号をレベル異常検出部と周波数比率立上り
異常検出部に供給する。
(Example) An example of the present invention will be described below with reference to FIG. 2. An AE signal is detected over time by a sensor 1,
The preamplifier 2 then amplifies the signal to an appropriate level. As mentioned above, the AE level is high during abnormal cutting, and the frequency component is approximately 100K to 300KHz or approximately 100K.
In order to detect this by focusing on the fact that the frequency of ~500KHz has a large proportion to the whole, the preamplifier signal is supplied to a level abnormality detection section and a frequency ratio rise abnormality detection section.

レベル異常検出部は全波整流回路3、平均化
処理回路4、コンパレータ9からなりプリアンプ
2からの信号を全波整流回路3、平均化処理回路
4によつてAE信号の平均レベルを抽出し、コン
パレータ9に入力し、AE平均レベルが設定閾値
を越えたときにコンパレータ9はレベル異常信号
を出力する。
The level abnormality detection section consists of a full-wave rectification circuit 3, an averaging processing circuit 4, and a comparator 9, and extracts the average level of the AE signal from the signal from the preamplifier 2 by using the full-wave rectification circuit 3 and the averaging processing circuit 4. The signal is input to a comparator 9, and when the AE average level exceeds a set threshold, the comparator 9 outputs a level abnormality signal.

周波数比率立上り異常検出部はまず割算器8
の分母系及び分子系の2系分に分かれている。分
母系は周波数成分全体を全波整流回路5に通じて
検波して得られた信号レベルを割算器8の分母X
として入力する。分子系は約100K〜300KHz又は
100K〜500KHzのバンドパスフイルタ6と全波整
流回路7とからなり、プリアンプ2からの信号か
らバンドパスフイルタ6で必要な周波数成分を取
出して全波整流回路7を通して得られた信号レベ
ルを割算器8の分子Yとして入力する。割算器8
はアナログ割算器であつて、Y/Xの値を経時的
に出力する。Y/Xは周波数成分で100K〜300K
Hz又は100K〜500KHzの信号レベルが全体のレベ
ルに対する比率に比例した値となる。この周波数
比率Y/Xは微分回路である第1の立上り検出部
14に入力されて、入力値が微分された入力値の
変化率としてコンパレータ10に出力され、正常
切削時から異常切削時へ移行することによる、ワ
ークと摩耗した切削工具との摩擦現象とは区別さ
れた周波数比率Y/Xの急激な経時的変化、即ち
立上り、を検出する。このY/Xの変化率即ち出
力の立上りはコンパレータ10に入力されY/X
の変化率が設定閾値を越えたときコンパレータ1
0は周波数比率Y/Xの変化率の立上り異常信号
を出力する。
The frequency ratio rise abnormality detection section first uses the divider 8.
It is divided into two systems: the denominator system and the numerator system. In the denominator system, the signal level obtained by passing the entire frequency component through the full-wave rectifier circuit 5 and detecting it is the denominator X of the divider 8.
Enter as . Molecular system is approximately 100K to 300KHz or
Consisting of a 100K to 500KHz bandpass filter 6 and a full-wave rectifier circuit 7, the bandpass filter 6 extracts the necessary frequency components from the signal from the preamplifier 2, and the signal level obtained through the full-wave rectifier circuit 7 is divided. Input it as numerator Y of container 8. Divider 8
is an analog divider and outputs the value of Y/X over time. Y/X is a frequency component of 100K to 300K
The signal level of Hz or 100K to 500KHz is a value proportional to the ratio to the overall level. This frequency ratio Y / As a result, a sudden change over time, that is, a rise, in the frequency ratio Y/X, which is distinguished from a friction phenomenon between the workpiece and a worn cutting tool, is detected. The rate of change of Y/X, that is, the rise of the output, is input to the comparator 10 and Y/X
When the rate of change of exceeds the set threshold, comparator 1
0 outputs a rising abnormality signal of the rate of change of the frequency ratio Y/X.

コンパレータ9のレベル異常信号とコンパレー
タ10の周波数比率の変化率の立上り異常信号は
アンド回路11に入力され、レベル異常信号と周
波数比率の変化率の立上り異常信号とが同時に発
生した場合にのみアンド回路11は異常と判定し
て出力回路12に工具異常信号を出力し出力回路
12はリレー出力などの制御信号を出力する。
The level abnormality signal of the comparator 9 and the rising abnormality signal of the frequency ratio change rate of the comparator 10 are input to the AND circuit 11, and the AND circuit is operated only when the level abnormality signal and the rising abnormality signal of the frequency ratio change rate occur simultaneously. 11 determines that there is an abnormality and outputs a tool abnormality signal to the output circuit 12, which outputs a control signal such as a relay output.

第3図は本発明の別の実施例を示す。第2図と
同じ部材は同じ符号で示されその説明は省略す
る。第3図では、平均化処理回路4のあとにかつ
コンパレータ9の前に、微分回路である第2の立
上り検出部13が挿入されており、平均化処理回
路からの信号を入力し、平均化されたAEレベル
の経時的な急激な変化即ち立上りを検出し、コン
パレータ9は第2の立上り検出部13からの信号
を入力して、工具とセンサの距離変化に影響され
ないように、設定閾値と比較してAEレベルの変
化率が設定閾値を越えたときAEレベル立上り異
常信号を出力するようにされている。
FIG. 3 shows another embodiment of the invention. The same members as in FIG. 2 are designated by the same reference numerals, and their explanation will be omitted. In FIG. 3, a second rise detection section 13, which is a differentiating circuit, is inserted after the averaging processing circuit 4 and before the comparator 9, and inputs the signal from the averaging processing circuit and performs the averaging. The comparator 9 inputs the signal from the second rise detection section 13 and sets the set threshold value so as not to be affected by the change in the distance between the tool and the sensor. In comparison, when the rate of change in the AE level exceeds a set threshold, an AE level rise abnormal signal is output.

(発明の効果) 本発明は以上のようにAEレベル異常検出部
と周波状比率立上り異常検出部とから構成し、
両検出部からレベル異常信号と周波数比率立上り
異常信号を入力され、両信号が同時に発生したと
きに工具異常信号を出力回路12に出力するアン
ド回路11を設けてあるので機械振動や切屑の衝
突、切削油飛沫などによつて生ずるノイズによる
判定誤りが無く、また工具とワークとの摩擦現象
による誤動作もなく、しかも簡単な回路構成であ
る。また切損直前の異常摩耗による異常音発生時
にも動作するので、切損予知検出装置にも使用す
ることができる。即ち微分回路を設けない工具異
常検出方法では、工具が摩耗してワークと摩擦状
態になると、工具折損時とよく似たAE信号が検
出され、誤動作することがあつた。第4図、第6
図はそれぞれ本発明装置による工具折損時および
工具摩耗時の割算器8の経時的出力を示すグラフ
である。摩耗現象では割算器出力はゆるやかに変
化するが、工具折損時には急激に出力が大きくな
るので、割算器出力変化量(立上り)をみること
により工具破損を確実に検出できるようになつ
た。第5図、第7図は本発明装置による工具折損
時および工具摩耗時の立上り検出部(微分回路)
の経時的出力を示すグラフである。第4図、第6
図で示す割算器出力はどちらもほぼ同じ大きさで
あるが、第5図、第7図で示す微分回路出力は工
具折損信号が工具摩耗信号の約2倍になつてお
り、明確に両者を本発明では区別することができ
るものとなつた。
(Effects of the Invention) As described above, the present invention is composed of an AE level abnormality detection section and a frequency ratio rise abnormality detection section,
An AND circuit 11 is provided which inputs a level abnormality signal and a frequency ratio rise abnormality signal from both detectors and outputs a tool abnormality signal to the output circuit 12 when both signals occur simultaneously, thereby preventing machine vibrations, chip collisions, etc. There are no judgment errors due to noise caused by cutting oil splashes, etc., there are no malfunctions due to friction phenomena between the tool and the workpiece, and the circuit configuration is simple. Furthermore, since it operates even when an abnormal sound is generated due to abnormal wear immediately before a breakage, it can also be used as a breakage prediction/detection device. That is, in a tool abnormality detection method that does not include a differential circuit, when the tool wears out and comes into friction with the workpiece, an AE signal similar to that when the tool breaks is detected, resulting in malfunction. Figures 4 and 6
The figures are graphs showing the output of the divider 8 over time when the tool is broken and when the tool is worn, respectively, by the apparatus of the present invention. During wear phenomena, the output from the divider changes slowly, but when the tool breaks, the output increases rapidly, so tool breakage can now be reliably detected by looking at the amount of change (rise) in the divider output. Figures 5 and 7 show a rise detection section (differential circuit) when a tool breaks or wears out using the device of the present invention.
It is a graph showing the output over time. Figures 4 and 6
Both divider outputs shown in the figure are approximately the same size, but in the differential circuit output shown in Figures 5 and 7, the tool breakage signal is approximately twice as large as the tool wear signal, and it is clear that both In the present invention, it has become possible to distinguish between

【図面の簡単な説明】[Brief explanation of drawings]

第1図は正常切削時と工具異常時とのAE信号
レベルの対比図を示す各AE信号の周波数分析グ
ラフ、第2図および第3図は本発明のそれぞれ異
なる実施例のブロツク図である。第4図及び第5
図は工具折損時の割算器出力及びその出力を微分
した立ち上り検出部の経時的出力をそれぞれ示す
グラフ、第6図及び第7図は工具摩耗時の割算器
出力及び立ち上り検出部の経時的出力をそれぞれ
示すグラフである。 1……センサ、2……プリアンプ、3……全波
整流回路、4……平均化処理回路、5……全波整
流回路、6……バンドパスフイルタ、7……全波
整流回路、8……割算器、9……コンパレータ、
10……コンパレータ、11……アンド回路、1
2……出力回路、13……第2の立ち上り検出部
(微分回路)、14……第1の立ち上り検出部(微
分回路)。
FIG. 1 is a frequency analysis graph of each AE signal showing a comparison of AE signal levels during normal cutting and during tool abnormality, and FIGS. 2 and 3 are block diagrams of different embodiments of the present invention. Figures 4 and 5
The figure is a graph showing the output of the divider when the tool is broken and the output of the rise detection unit over time when the output is differentiated. Figures 6 and 7 are the output of the divider and the output of the rise detection unit over time when the tool is worn. This is a graph showing the respective outputs. 1...Sensor, 2...Preamplifier, 3...Full wave rectifier circuit, 4...Averaging processing circuit, 5...Full wave rectifier circuit, 6...Band pass filter, 7...Full wave rectifier circuit, 8 ...Divider, 9...Comparator,
10... Comparator, 11... AND circuit, 1
2...Output circuit, 13...Second rise detection section (differentiation circuit), 14...First rise detection section (differentiation circuit).

Claims (1)

【特許請求の範囲】 1 アコーステイツクエミツシヨン(以下AEと
略記する。)信号を経時的に検出するセンサと、
センサからのAE信号を適度のレベルまで増幅す
るプリアンプと、プリアンプからの信号を整流し
て経時的に信号レベルを抽出する全波整流回路
と、全波整流回路からの信号を入力してAE信号
の平均レベルを経時的に抽出する平均化処理回路
と、平均化処理回路からの信号を入力して設定閾
値と比較してAE平均レベルが設定閾値を越えた
ときにレベル異常信号を出力するレベル異常信号
用のコンパレータと、プリアンプからの信号から
周波数成分全体を検波して得られた信号レベルを
割算器に分母Xとして出力する分母系の全波整流
回路と、プリアンプからの信号から約100KHz乃
至500KHzの内、必要な周波数成分を取出すバン
ドパスフイルタと、バンドパスフイルタからの信
号を検波して得られた信号レベルを割算器に分子
Yとして出力する分子系全波整流回路と、分母系
全波整流回路の信号レベルと分子系全波整流回路
の信号レベルを入力して割算Y/Xを行い周波数
成分比率Y/Xを経時的に出力する割算器と、割
算器の信号を入力して周波数成分比率Y/Xの経
時的な急激な変化を検出する第1の立上り検出部
(微分回路)と、第1の立上り検出部からの信号
を入力して設定閾値と比較し、周波数成分比率
Y/Xの変化率が設定閾値を越したとき周波数比
率立上り異常信号を出力する周波数比率立上り異
常信号用にコンパレータと、レベル異常信号用の
コンパレータの出力と周波数比率立上り異常信号
用のコンパレータの出力を入力し、レベル異常信
号と周波数比率立上り異常信号が同時に発生した
とき工具異常信号を出力するアンド回路と、アン
ド回路からの信号を入力して制御信号を出力する
出力回路とを具えてなる工具異常検出装置。 2 前記平均化処理回路とレベル異常信号用のコ
ンパレータとの間には、平均化処理回路からの信
号を入力し、平均化されたAEレベルの経時的な
急激な変化を検出する第2の立上り検出部(微分
回路)が挿入され、前記レベル異常信号用のコン
パレータは、第2の立上り検出部からの信号を入
力して設定閾値と比較してAEレベルの変化率が
設定閾値を越えたとき立上り異常信号を出力する
立上り異常信号用コンパレータである特許請求の
範囲第1項に記載の工具異常検出装置。
[Claims] 1. A sensor that detects an acoustic emission (hereinafter abbreviated as AE) signal over time;
A preamplifier that amplifies the AE signal from the sensor to an appropriate level, a full-wave rectifier circuit that rectifies the signal from the preamplifier and extracts the signal level over time, and an AE signal that inputs the signal from the full-wave rectifier circuit. An averaging processing circuit that extracts the average level over time, and a level that inputs the signal from the averaging processing circuit, compares it with a set threshold, and outputs a level abnormal signal when the AE average level exceeds the set threshold. A comparator for abnormal signals, a denominator full-wave rectifier circuit that detects the entire frequency component from the signal from the preamplifier and outputs the signal level obtained as the denominator A bandpass filter extracts the necessary frequency components from 500KHz to 500kHz, a molecular full-wave rectifier circuit detects the signal from the bandpass filter, and outputs the signal level obtained as the numerator Y to the divider. A divider that inputs the signal level of the mother-system full-wave rectifier circuit and the signal level of the molecular-system full-wave rectifier circuit, performs division Y/X, and outputs the frequency component ratio Y/X over time; A first rise detection section (differentiation circuit) that receives a signal and detects a rapid change over time in the frequency component ratio Y/X, and a signal from the first rise detection section that receives the signal and compares it with a set threshold. When the rate of change of the frequency component ratio Y/X exceeds a set threshold, a frequency ratio rising abnormality signal is output.A comparator is used for the frequency ratio rising abnormal signal, and the output of the comparator for the level abnormal signal and the frequency ratio rising abnormal signal are provided. an AND circuit that inputs the output of a comparator for the device and outputs a tool abnormality signal when a level abnormality signal and a frequency ratio rise abnormality signal occur simultaneously; and an output circuit that inputs the signal from the AND circuit and outputs a control signal. A tool abnormality detection device comprising: 2 A signal from the averaging processing circuit is input between the averaging processing circuit and the comparator for the level abnormal signal, and a second rising edge is provided to detect a sudden change over time in the averaged AE level. A detection section (differentiation circuit) is inserted, and the comparator for the level abnormal signal inputs the signal from the second rise detection section and compares it with a set threshold, and detects when the rate of change of the AE level exceeds the set threshold. The tool abnormality detection device according to claim 1, which is a rise abnormality signal comparator that outputs a rise abnormality signal.
JP58185952A 1983-10-06 1983-10-06 Tool abnormality detector Granted JPS6079261A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58185952A JPS6079261A (en) 1983-10-06 1983-10-06 Tool abnormality detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58185952A JPS6079261A (en) 1983-10-06 1983-10-06 Tool abnormality detector

Publications (2)

Publication Number Publication Date
JPS6079261A JPS6079261A (en) 1985-05-07
JPH0215823B2 true JPH0215823B2 (en) 1990-04-13

Family

ID=16179745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58185952A Granted JPS6079261A (en) 1983-10-06 1983-10-06 Tool abnormality detector

Country Status (1)

Country Link
JP (1) JPS6079261A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05285723A (en) * 1992-02-14 1993-11-02 Hitachi Koki Co Ltd Tipped cutting tool

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02190239A (en) * 1989-01-19 1990-07-26 Nachi Fujikoshi Corp Drill abnormality detecting device for borer for printed wiring board
US6712160B1 (en) 2000-11-07 2004-03-30 Halliburton Energy Services Inc. Leadless sub assembly for downhole detection system
US6817425B2 (en) 2000-11-07 2004-11-16 Halliburton Energy Serv Inc Mean strain ratio analysis method and system for detecting drill bit failure and signaling surface operator
US6681633B2 (en) * 2000-11-07 2004-01-27 Halliburton Energy Services, Inc. Spectral power ratio method and system for detecting drill bit failure and signaling surface operator
US7357197B2 (en) 2000-11-07 2008-04-15 Halliburton Energy Services, Inc. Method and apparatus for monitoring the condition of a downhole drill bit, and communicating the condition to the surface
JP4569749B2 (en) * 2004-07-23 2010-10-27 旭硝子株式会社 Glass plate crack detection method and apparatus, and glass plate polishing method and apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05285723A (en) * 1992-02-14 1993-11-02 Hitachi Koki Co Ltd Tipped cutting tool

Also Published As

Publication number Publication date
JPS6079261A (en) 1985-05-07

Similar Documents

Publication Publication Date Title
US4642617A (en) Acoustic tool break detection system and method
US4849741A (en) Tool break detecting method and system preventing false alarms due to rough surfaces
JP2567124B2 (en) Machine tool monitoring device and monitoring method
US4707687A (en) Detector to discriminate between tool break acoustic signatures and spiky noise
JP2519825B2 (en) Apparatus and method for determining tool breakage and fatigue status
JPS6224945A (en) Monitor and method of optimizing monitor
GB2163850A (en) Acoustic detection of contact between cutting tool and workpiece
US4707688A (en) Detection of tool breaks that cause slowly decreasing cutting noise
JPS6244360A (en) Device and method of detecting contact between cutting tool and work
JPH0215823B2 (en)
JPH0423216B2 (en)
JP2575323B2 (en) Cutting load monitoring method by data extraction averaging method
JPH0455821B2 (en)
JPH0455820B2 (en)
JPH0558855B2 (en)
JPH068111A (en) Drill life judgment method
JPS6064250A (en) Tool damage detecting apparatus
JPH0332553A (en) Tool breakage detecting device
JP2629695B2 (en) Monitoring equipment for cutting machines
JPH02205727A (en) Apparatus for detecting abnormality of bearing
JPS58108420A (en) Monitor for chaterring generation of machine tool
JPH0616981B2 (en) Tool loss detector
KR960003212B1 (en) Device and method of monitoring vibration in n.c. machine system
JPH0249384Y2 (en)
JPH01177950A (en) Method for detecting wear of cutting tool