JPS61142054A - Tool breakage detecting means - Google Patents

Tool breakage detecting means

Info

Publication number
JPS61142054A
JPS61142054A JP26497684A JP26497684A JPS61142054A JP S61142054 A JPS61142054 A JP S61142054A JP 26497684 A JP26497684 A JP 26497684A JP 26497684 A JP26497684 A JP 26497684A JP S61142054 A JPS61142054 A JP S61142054A
Authority
JP
Japan
Prior art keywords
value
tool
ratio
detecting
damage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26497684A
Other languages
Japanese (ja)
Inventor
Tamotsu Nishikido
西木戸 保
Takashi Kanzaki
隆 神前
Kanji Arimatsu
有松 寛次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP26497684A priority Critical patent/JPS61142054A/en
Publication of JPS61142054A publication Critical patent/JPS61142054A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/09Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool
    • B23Q17/0952Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool during machining
    • B23Q17/0971Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool during machining by measuring mechanical vibrations of parts of the machine

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Machine Tool Sensing Apparatuses (AREA)

Abstract

PURPOSE:To accurately detect abnormality of a tool by setting one optimum, or plural, monitoring frequency band area in accordance with the condition and the progress of breakage of said tool in a method of detecting the breakage of a cutting tool, etc. CONSTITUTION:First, a using channel, a breaking frequency band area, difference in monitoring a peak value or an effective value, a reference value of a comparator 17, etc. are set in an control unit 30 for each cutting process. Then, by selecting a group of switches, plural monitoring frequency band areas are set through filters 40a-40c, 41a-41c. And, the peak value of a vibration wave form from an acceleration sensor 13 in this band area is detected by circuits 15a-15d and its effective value is detected by circuits 16a-16d, their respective integral values are obtained by circuits 28a-28d, 29a-29d, and the ratio of these values with those in the whole frequency band area is obtained by dividers 19p, 19r. The moving average value of this ratio or the ratio of this with a data immediately after this is made an index of judgement for detecting the abnormality of a tool.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はハイ1−等の工具の破損検出方法に関し、具体
的には該工具の摩耗、欠損等の破損を正確に検出できる
工具破損検出方法を提案するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for detecting damage to tools such as Hi-1-, and specifically, to a tool damage detection method that can accurately detect damage such as wear and chipping of the tool. This paper proposes a method.

〔従来技術〕[Prior art]

生産性の向」二、加工費の低減、加工積度の劣化防止等
を図る上で工具の破損状況を正確に検出することは重要
である。
It is important to accurately detect tool damage in order to improve productivity, reduce machining costs, and prevent deterioration of machining capacity.

この種の工具破損検出方法としては、「機械技術」第3
2をgA25号58頁〜61頁記載の「人物旋削用スロ
ーアウェイチップの自動検出器」を用いた方法がある。
This type of tool damage detection method is described in "Mechanical Technology" No. 3.
There is a method using "Automatic detector for indexable tip for figure turning" described in gA25, pages 58-61.

即ち、第7図に示すようにに盤lの刃物台2には圧電型
の加速度センサ3が取付けられている。
That is, as shown in FIG. 7, a piezoelectric acceleration sensor 3 is attached to the tool rest 2 of the panel l.

加速度センサ3は旋盤lの切削時の振動を検出するため
のものであり、その検出振動波形はフィルタ4を介して
ピーク値検出回路5及び平均値検出回路6に入力される
。ピーク値検出回路5及び平均値検出回路6の検出結果
P、Rは除算器9に入力される。除算器9は下記(1)
式で示される演算を実行し、その結果をコンパレータ7
に与える。
The acceleration sensor 3 is for detecting vibrations during cutting of the lathe l, and the detected vibration waveform is inputted to a peak value detection circuit 5 and an average value detection circuit 6 via a filter 4. The detection results P and R of the peak value detection circuit 5 and the average value detection circuit 6 are input to the divider 9. Divider 9 is as below (1)
Executes the operation indicated by the formula and sends the result to comparator 7.
give to

C−□   ・・・(1) コンパレータ7はごのCと所定の判断基準値cbとを比
較し、c>cbなる場合は図示しない制御リレーを作動
せしめ旋盤lを停止せしめる。
C-□ (1) The comparator 7 compares C with a predetermined judgment reference value cb, and when c>cb, activates a control relay (not shown) to stop the lathe l.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで第8図に示すように被切削材8の長手方向にお
ける加工寸法が異なる場合或いは材質の異なる被切削材
を切削する場合はこれらに応して切削条件(切削速度、
工具の送り速度3gJ込深さ)を変更する必要がある。
By the way, as shown in FIG. 8, when the machining dimensions in the longitudinal direction of the workpiece 8 are different, or when cutting workpieces of different materials, the cutting conditions (cutting speed,
It is necessary to change the tool feed rate (3gJ including depth).

そして、切削条件が変化する場合はバイI・の異常(摩
耗、切損)により振動が増大する周波数帯域は異なる。
When the cutting conditions change, the frequency band in which vibration increases due to abnormality (wear, cutting damage) of BiI differs.

然るに、−F述の如き従来方法にあっては、フィルタ4
の周波数帯域が固定されていたため、このように切削条
件の変化する被切削材8を切削する場合或いば外乱によ
りこの周波数帯域内のレヘル変動が発生した場合には対
処できないという難点があった。
However, in the conventional method as described in -F, the filter 4
Since the frequency band was fixed, there was a problem in that it was impossible to deal with when cutting the workpiece 8 where the cutting conditions change, or when frequency fluctuations within this frequency band occur due to external disturbances. .

〔問題点を解決するための手段〕[Means for solving problems]

本発明は係る事情に鑑みてなされたものであり、切削工
程ごとに−又は複数の監視周波数帯域を設定することと
して、この監視周波数帯域におkJる振動波形のピーク
値の積分値又は実効値の積分値と、全周波数帯域におL
Jる振動波形のピーク値の積分値又は実効値の積分値と
の比を求め、この仕を工具の異常検出の判断指標とする
ことにより、切削工程ごとに加工寸法5材質が異なる場
合、更には被切削材に偏肉2曲り又は真円度不良等の異
常が存在し、同一の切削条件にも拘わらず振動波形のレ
ヘルが増大するような外乱を生じる場合であっても、誤
検出の虞れがなく、また、データの移動平均処理により
ノイズが測定系に侵入する場合の影響を排除でき、工具
の異常検出を正確に行なえる工具の破損検出方法を提供
することを目的とする。
The present invention has been made in view of the above circumstances, and by setting one or more monitoring frequency bands for each cutting process, the integrated value or effective value of the peak value of the vibration waveform kJ in this monitoring frequency band is determined. and the integral value of L in all frequency bands.
By calculating the ratio of the integral value of the peak value or the integral value of the effective value of the vibration waveform and using this value as a judgment index for tool abnormality detection, it is possible to Even if there is an abnormality in the material to be cut, such as uneven thickness or poor roundness, and a disturbance that increases the level of the vibration waveform despite the same cutting conditions, false detection can occur. It is an object of the present invention to provide a method for detecting tool damage, which can accurately detect tool abnormalities without causing any risk, and which can eliminate the influence of noise entering a measurement system through data moving average processing.

本発明に係る工具の破損検出方法は、工作機械に取イづ
けた振動検出器にて該工作機械の切削時における振動波
形を検出し、検出振動波形に基づき工具の破損を検出す
る方法において、切削工程ごとに設定した−又は複数の
監視周波数帯域における振動波形のピーク値又は実AJ
値の積分値と、全周波数帯域における振動波形のピーク
値又は実効値の積分値との比を求め、この比と各切削工
程ごとに設定される基準値とに基づき目II記工具の破
損を検出することを特徴とする。
A tool damage detection method according to the present invention is a method in which a vibration detector installed in a machine tool detects a vibration waveform during cutting of the machine tool, and tool damage is detected based on the detected vibration waveform. Peak value or actual AJ of vibration waveform in one or more monitoring frequency bands set for each cutting process
Calculate the ratio between the integral value of the vibration waveform and the integral value of the peak value or effective value of the vibration waveform in all frequency bands, and determine the damage of the tool described in Item II based on this ratio and the reference value set for each cutting process. It is characterized by detecting.

〔第1実hb例〕 以下本発明をその実施例を示す図面に基づいて詳述する
。第1図は本発明に係る工具破損検出方法の実施状態を
その信号処理系と共に示す模式図である。
[First Practical HB Example] The present invention will be described in detail below based on drawings showing examples thereof. FIG. 1 is a schematic diagram showing the implementation state of the tool damage detection method according to the present invention together with its signal processing system.

旋盤11の刃物台12の下部には圧電型の加速度センサ
13を取付4Jである。加速度センサI3は被切削材8
の切削時の刃物台12の振動を検出する。加速度センサ
13の検出信号はプリアンプ31にて増幅され、プリア
ンプ31出力は、通過周波数帯域を可変になしである3
チヤンネルの信号処理系A、B。
A piezoelectric acceleration sensor 13 is attached to the lower part of the tool rest 12 of the lathe 11 (4J). Acceleration sensor I3 is for cutting material 8
The vibration of the tool rest 12 during cutting is detected. The detection signal of the acceleration sensor 13 is amplified by a preamplifier 31, and the output of the preamplifier 31 has a variable passing frequency band.
Channel signal processing systems A and B.

C及びプリアンプ31出力を全周波数帯域に亘って検出
可能になしである信号処理系りに与えられる。
C and the output of the preamplifier 31 are applied to a signal processing system that can be detected over the entire frequency band.

信号処理系A、B、Cは同様の回路構成を有し、第2図
に示すプリアンプ31出力を後述する制御装置&30か
らちえられるスイッチ制御信号により開閉される切削し
用スイッチ70a、70b、70cを介して受c3とる
ようになっており、プリアンプ31出力を減衰器32a
 、32b、32c、及び増幅器10a、 IOb、 
locを介してフィルタ4a、 4b、 4cに与え、
その通過周波数帯域内にある入力信号のピーク値Pi 
(i=a、b。
Signal processing systems A, B, and C have similar circuit configurations, and include cutting switches 70a, 70b, and 70c that are opened and closed by switch control signals sent from a control device &30, which will be described later, based on the output of the preamplifier 31 shown in FIG. The output of the preamplifier 31 is sent to the attenuator 32a.
, 32b, 32c, and amplifiers 10a, IOb,
loc to filters 4a, 4b, 4c,
The peak value Pi of the input signal within its pass frequency band
(i=a, b.

0又は実効値Ri (第2図では表わしていない)を夫
々に備えたピーク値検出回路151.実効値検出回路+
6iにて夫々検出し、検出結果をピーク値積分器281
.実効(16積分器29iを介して信号処理系りに設け
た除算器19p、 19rに夫々与える。また、信号処
理系りは減衰器32d5増幅器10dを経た、第2図に
示すプリアンプ31出力の全周波数帯域に亘るピーク4
fkPd及び実効(i&Ild (第2図では表わして
いない)を夫々ピーク値検出回路15d、実効値検出回
路+6dにて逐次検出し、次いでピーク値積分器Rdの
積分値ΣPd、 ΣRdを算出し、除算器19p、 1
9rに与える。なお、第2図はプリアンプ31の出力信
号の電圧1周波数9時間を直交3次元座標系に表わした
グラフであり、時間軸の離散時間はピーク値検出回路1
5a、I5b、15c、15d 、実効値検出回路+6
a、 16b、 16c、 16dのサンプリング周期
に相当する。
0 or an effective value Ri (not shown in FIG. 2). Effective value detection circuit +
6i, and the detection results are sent to the peak value integrator 281.
.. The effective signal (16) is applied to dividers 19p and 19r provided in the signal processing system via an integrator 29i.The signal processing system also receives the total output of the preamplifier 31 shown in FIG. Peak 4 over frequency band
fkPd and effective (i & Ild (not shown in Fig. 2) are sequentially detected by the peak value detection circuit 15d and effective value detection circuit +6d, respectively, and then the integral values ΣPd and ΣRd of the peak value integrator Rd are calculated and divided. Vessel 19p, 1
Give to 9r. Note that FIG. 2 is a graph representing voltage 1 frequency 9 hours of the output signal of the preamplifier 31 on an orthogonal three-dimensional coordinate system, and the discrete time on the time axis is expressed by the peak value detection circuit 1.
5a, I5b, 15c, 15d, effective value detection circuit +6
This corresponds to the sampling periods of a, 16b, 16c, and 16d.

減衰器32a、32b、32c、32d及び増幅器10
a、 IOb、 IOc。
Attenuators 32a, 32b, 32c, 32d and amplifier 10
a, IOb, IOc.

10dは各チャンネルA、B、C及び信号処理系りの信
号のレベル調整のためのものである。33は較正用発振
器であって、プリアンプ31出力に換えてその出力を減
衰器32a 、32b、32c、32dに与え、減衰器
32a 、32b、32c、32d、増幅器10a、 
Job、 IOc、 iodの調整等を行なわせるため
のものである。
10d is for level adjustment of each channel A, B, C and signal processing system signals. Reference numeral 33 denotes a calibration oscillator, which supplies its output to attenuators 32a, 32b, 32c, and 32d in place of the output of the preamplifier 31;
This is for adjusting Job, IOc, iod, etc.

信号処理系A、B、Cの回路構成は同様であるので、以
下信号処理系Aについて説明する。
Since the circuit configurations of signal processing systems A, B, and C are similar, signal processing system A will be described below.

増幅器]Oa出力はバイパス用スイッチ42aを介して
バイパスフィルタ40aにちえられ、また、バイバスフ
ィルタ40a出力はバイパス用スイッチ43aを介して
ローパスフィルタ41aに与えられ、ローパスフィルタ
4Ia出力はピーク値検出回路15a 。
Amplifier] The Oa output is applied to a bypass filter 40a via a bypass switch 42a, the output of the bypass filter 40a is applied to a low-pass filter 41a via a bypass switch 43a, and the output of the low-pass filter 4Ia is applied to a peak value detection circuit 15a. .

実効(i*検出回路16aに与えられる。バイパス用ス
イッチ42a 、 43aをバイパス側に切換えた場合
はバイパスフィルタ40a、ローパスフィルタ41aは
夫々回路が閉鎖される。バイパスフィルタ40a。
Effective (i* is given to the detection circuit 16a. When the bypass switches 42a and 43a are switched to the bypass side, the circuits of the bypass filter 40a and the low-pass filter 41a are respectively closed. Bypass filter 40a.

ローパスフィルタ41aの遮断周波数即ち、バンドパス
フィルタ4aとして通過帯域周波数は可変となっている
The cut-off frequency of the low-pass filter 41a, that is, the passband frequency of the band-pass filter 4a is variable.

ピーク(1に4★出回路15aは第2図に示す監視周波
数帯域fal〜fa2間のピーク値Paを逐次検出し、
これをピーク値積分器28aに与える。ピーク値積分器
28aは所定時間り内のPaの積分値ΣPaを算出し、
これを除算器19pに与える。実効値検出回路16aは
同様に監視周波数fal〜fa2間の実効値Ra(第2
図には表わしていない)を逐次検出し、これを実効イ1
4積分器29aに与える。実効値積分器29aは同様に
してΣRaを算出し、除算器19rに与える。
The peak (1 to 4★ output circuit 15a sequentially detects the peak value Pa between the monitoring frequency band fal to fa2 shown in FIG. 2,
This is applied to the peak value integrator 28a. The peak value integrator 28a calculates the integral value ΣPa of Pa within a predetermined time,
This is given to the divider 19p. Similarly, the effective value detection circuit 16a detects the effective value Ra (second
(not shown in the figure) is detected one after another, and this is applied to the effective
4 integrator 29a. The effective value integrator 29a similarly calculates ΣRa and provides it to the divider 19r.

除算器19ρ、19rは、夫々このΣPa、  ΣRa
とピーク値積分器28d出力ΣPd、実効積分器29d
出カΣRdとに基づき下記(2)式に示す演算を実行し
、C1C′を算出する。
The dividers 19ρ and 19r are divided by these ΣPa and ΣRa, respectively.
and peak value integrator 28d output ΣPd, effective integrator 29d
Based on the output ΣRd, the calculation shown in equation (2) below is executed to calculate C1C'.

c、c’は端子25p、25rより取出せるようにして
あり、信号切換スイッチ34を介して所要の基準値Cb
  (又はC’b)を設定したコンパレータ17に人力
され、コンパレータ17は基準値Cb  (又はC’b
)と入力信号C(又はc’)とを比較し、入力信号が基
準値よりも大となった場合にはタイマ23を起動し、そ
の状態がタイマ23に設定した時間継続した場合は警報
ランプ24を点灯すると共に警報器27を鳴動さセる。
c and c' can be taken out from the terminals 25p and 25r, and the required reference value Cb is set via the signal changeover switch 34.
(or C'b) is manually set to the comparator 17, and the comparator 17 sets the reference value Cb (or C'b
) and the input signal C (or c'), and if the input signal is greater than the reference value, the timer 23 is activated, and if this condition continues for the time set in the timer 23, the alarm lamp is activated. 24 is turned on and the alarm 27 is sounded.

そして、端子26がらタイマ23出力を取出せるように
しである。コンパレータ17出力が上記タイマ23の設
定時間より短かい場合はタイマ23は零復帰する。コン
パレータ17の基11 (mは切削条件等に応じて定め
られる。
The output of the timer 23 can be taken out from the terminal 26. If the output of the comparator 17 is shorter than the set time of the timer 23, the timer 23 returns to zero. Base 11 of comparator 17 (m is determined according to cutting conditions, etc.).

信号処理系B、Cには信号処理系へと同様の番号の末尾
にす、cをイ」シて説明を省略する。
The signal processing systems B and C have the same numbers at the end as the signal processing systems, the c is omitted, and the explanation is omitted.

なお、信号処理系A、B、Cは4チヤンネル以」ニとし
てもよいことは勿論である。
It goes without saying that the signal processing systems A, B, and C may have four or more channels.

而して本発明方法の実施に際しては、切離しスイッチ7
0a 、 70b 、 70cの開閉、各フィルタ4a
Therefore, when implementing the method of the present invention, the disconnection switch 7
Opening/closing of 0a, 70b, 70c, each filter 4a
.

4b、 4cの通過帯域周波数の設定、(つまりバイパ
ス用スイッチ42a 、 43a 、 42b 、 4
3b 、 42c 、 43cの切換位置設定、バイパ
スフィルタ40a 、 40b 。
4b, 4c passband frequency settings (that is, bypass switches 42a, 43a, 42b, 4
3b, 42c, 43c switching position settings, bypass filters 40a, 40b.

40c10−バスフィルタ41.a 、 41b 、 
41cの!!断同周波数設定)、信号切換スイッチ34
の切換位置設定、(つまりピーク値監視又は実りJ値監
視の別の設定)、コンパレータ17の基準値設定を制御
装置30により切削工程の進行に応して順次制御してい
く。
40c10-Bass filter 41. a, 41b,
41c's! ! Same frequency setting), signal changeover switch 34
The switching position setting (that is, another setting of peak value monitoring or fruit J value monitoring), and reference value setting of the comparator 17 are sequentially controlled by the control device 30 as the cutting process progresses.

〔作用〕[Effect]

次に第3図に示すフローヂャ−1−に基づき制御装置3
0の制御内容について説明する。今、第8図に示す被切
削材8について説明すると、先ず切削工程α、β、γ、
δの夫々について使用チャンネル、遮断周波数帯域、ピ
ーク値、実効値監視の別、コンパレータ17の基準値等
の監視条件を定め、これらを制御装置30に設定する。
Next, based on the flowchart 1 shown in FIG.
The control details of 0 will be explained. Now, to explain the material to be cut 8 shown in FIG. 8, first, the cutting process α, β, γ,
Monitoring conditions such as channel used, cutoff frequency band, peak value, whether to monitor effective value, reference value of comparator 17, etc. are determined for each of δ, and these are set in the control device 30.

切削が開始されると制御装置30はまず工程を判断し、
α工程にQ+Jる使用チャンネル等の監視条件を設定す
る。使用jヤンネル数は単一でも複数でもよい。そして
、端子出力26を監視してこれに出力が得られる場合、
つまりコンパレータ17の入力信号C(又はC′)が夫
々の基/$値Cb  (又はC’b)よりも大となる状
態がタイマ23に設定した時間継続した場合には、工具
に異常が発生しても−ると判定し、廣盤11を停止させ
る。このとき警報ランプ24は点灯し、警報器27は鳴
動する。
When cutting starts, the control device 30 first determines the process,
Set monitoring conditions such as channels used for Q+J in the α process. The number of channels used may be single or multiple. Then, if the terminal output 26 is monitored and an output is obtained,
In other words, if the input signal C (or C') of the comparator 17 continues to be larger than the respective base/$ value Cb (or C'b) for the time set in the timer 23, an abnormality will occur in the tool. However, it is determined that the disc 11 is not running, and the wide disc 11 is stopped. At this time, the alarm lamp 24 lights up and the alarm 27 sounds.

次にβ工程に入るとその場合の使用チャンネルに応して
スイッチ70a 、 70b又は70cを閉路する。
Next, when entering the β step, the switch 70a, 70b or 70c is closed depending on the channel used in that case.

この場合において、α工程に使用したチャンネルを再度
使用する場合であって、遮断周波数帯域。
In this case, when the channel used in the α process is used again, the cutoff frequency band.

ピーク値、実効値の基準値cb、c’bを変更する必要
がある場合はα工程からβ工程に移るに際し、これらの
設定変更を必要とする。
If it is necessary to change the reference values cb and c'b of the peak value and effective value, it is necessary to change these settings when moving from the α process to the β process.

そしてβ工程の監視を実行し、同様にしてδ工程迄の監
視を実行する。
Then, monitoring of the β process is performed, and monitoring up to the δ process is similarly performed.

この様な本発明による場合は切削工程等に応して信号処
理系A、B、Cのチャンネル数、その監視周波数帯域を
夫々独立的に定め、またピーク値の積分値の比及び実効
(+&の積分値の比の監視の別、その基準値を定めるも
のであるので、予め実績等によりこれらの監視条件を適
宜に設定する場合には、切削条件が変化する被切削材8
についても工具の破損を正確に検出できる。
In the case of the present invention, the number of channels of signal processing systems A, B, and C and their monitoring frequency bands are determined independently according to the cutting process, etc., and the ratio of the integral value of the peak value and the effective (+& In addition to monitoring the ratio of the integral values of
It is also possible to accurately detect tool damage.

第4図は設定周波数帯域におけるピーク値(又は実すJ
値)の時間的変化を実線にて、また、このピーク値(又
は実効値)それ自体のレベルの高。
Figure 4 shows the peak value (or actual J
The solid line shows the temporal change in the peak value (or effective value), and the high level of this peak value (or effective value) itself.

低によって異常、正常とを判断するだめの闇値を1点鎖
線で示している。この図では工具が正常であるので、ピ
ーク値(又は実効値)のレベルは闇値以下となっている
The dark value, which is used to determine whether something is abnormal or normal depending on how low it is, is shown by a dashed-dotted line. In this figure, since the tool is normal, the level of the peak value (or effective value) is below the dark value.

ところで、被切削材8に偏肉1曲り又は真円度不良等の
異常が存在する場合は、第4図に破線で示すように検出
振動波形はこの異常に起因してそのレベルが増大する。
By the way, if there is an abnormality in the workpiece 8, such as uneven thickness, bending, or poor roundness, the level of the detected vibration waveform increases due to this abnormality, as shown by the broken line in FIG.

このような場合に」二連の如くピーク値Pa (又はそ
の積分値ΣPa)或いは実効値Ra (又は積分値ΣR
a)それ自体を工具の異常検出の判断指標とすると、こ
れらも検出振動波形のレベルの増大に伴い増加し、その
闇値よりも大きくなり、被切削材8の異常を工具の異常
と誤検出する虞れがある。
In such a case, the peak value Pa (or its integral value ΣPa) or the effective value Ra (or its integral value ΣR
a) If these themselves are used as judgment indicators for tool abnormality detection, these will also increase as the level of the detected vibration waveform increases, and will become larger than the dark value, causing an abnormality in the workpiece 8 to be erroneously detected as a tool abnormality. There is a possibility that

然るに、本発明は上述した如く監視周波数帯域における
検出振動波形のピーク値の積分値ΣPa又は実効値の積
分値゛ΣRaと、全周波数帯域における検出振動波形の
ピーク値の積分値ΣPd又は実効値の積分値ΣRdとの
比c、c’を工具の異常検出の判断指標とするものであ
るから、被切削JfA8に異常が存在する場合は、ΣP
a、  ΣPd又はΣRa、  ΣRdが夫々同程度増
大するので、c、c’は略一定であるのに対し、工具に
異常が発生し監視周波数帯域におけるΣPa又はΣRa
が増大する場合はc、c’が大きくなるので、被切削+
48の異常と工具の異常とを弁別でき、従って誤検出の
虞れなく正確な検出が行えるのである。
However, as described above, the present invention combines the integral value ΣPa of the peak value of the detected vibration waveform in the monitoring frequency band or the integral value ``ΣRa'' of the effective value, and the integral value ΣPd of the peak value of the detected vibration waveform in the entire frequency band or the effective value. Since the ratio c, c' with the integral value ΣRd is used as a judgment index for tool abnormality detection, if there is an abnormality in the cut JfA8, ΣP
Since a, ΣPd, ΣRa, and ΣRd each increase by the same amount, c and c' remain approximately constant, but when an abnormality occurs in the tool, ΣPa or ΣRa in the monitoring frequency band increases.
When c increases, c and c' increase, so the cut +
48 abnormalities and tool abnormalities can be distinguished from each other, and therefore accurate detection can be performed without the risk of erroneous detection.

〔第2実施例〕 第5図は本発明の他の実施例をその信号処理系と共に示
す模式図であり、前述の実施例と対応する部分には同一
の番号を付して説明を省略する。
[Second Embodiment] FIG. 5 is a schematic diagram showing another embodiment of the present invention together with its signal processing system, and parts corresponding to those in the above-mentioned embodiment are given the same numbers and their explanation will be omitted. .

この実施例は前記比c、c’の移動平均値SkS ’k
を工具の異常検出の判断指標とする。
In this embodiment, the moving average value SkS'k of the ratios c and c' is
is used as a judgment index for tool abnormality detection.

移動平均処理装置50ρは除算器19p出力Cを逐次読
込み、この時系列データCn  (n=1,2・・・)
について所定個数にの移動平均値を下記に3)式に従っ
て求める。
The moving average processing device 50ρ sequentially reads the output C of the divider 19p and generates this time series data Cn (n=1, 2...)
The moving average value for a predetermined number of items is calculated according to the following equation 3).

なお、個数には被切削材8の各切削工程α〜δ夫々に要
するり前時間よりも充分短い時間に得られる個数である
Note that the number of pieces is the number that can be obtained in a sufficiently shorter time than the previous time required for each cutting process α to δ of the workpiece 8.

また、同様に移動平均処理装置50rは除算器19r出
力C′を逐次読込め、移動平均値を下記(4)式に従っ
て求める。
Similarly, the moving average processing device 50r can sequentially read the output C' of the divider 19r, and calculates the moving average value according to the following equation (4).

移動平均処理装置50p、 50r出力s、s’は信号
切換スイッチ34を介してコンパレータ17に与えられ
る。コンパレータ17にはり前工程α〜δに応した基準
値sb、口′bが設定されており、s>sb(又ハs 
’ > S ’b)なる場合は警報ランプ24番こ出力
し、以下上述の実施例と同様にして工具の破損を検出で
きる。
The outputs s and s' of the moving average processing devices 50p and 50r are provided to the comparator 17 via the signal changeover switch 34. The comparator 17 is set with a reference value sb and an opening 'b corresponding to the pre-steps α to δ, and s>sb (and s
'> S ' b) If so, the alarm lamp No. 24 is outputted, and damage to the tool can be detected in the same manner as in the above-mentioned embodiment.

さて、この実施例による場合は上述の実施例と同効を奏
することは勿論、以下の効果をも奏する。
Now, this embodiment not only provides the same effects as the above-mentioned embodiments, but also provides the following effects.

、 即ち、周波数が監視周波数帯域にあるノイズが測定
系に侵入し、これをピーク値Paとして取込んだ場合は
、第6図に斜線で示すように当該ノイズ侵入時にお&J
る積分値ΣPaが増大し、また、Cが増大するので、こ
れを工具の異常発生として誤検出を生ずる1★れがある
が、この実施例は移動平均値Sを判断指標とするもので
あるので、前述の個数kを適宜のイ16に選定し、また
、基準値sbを適宜の値に選定する場合は、ノイズの個
数に分のピーク値の積分値に対する影響を著しく低減で
き、つまり移動平均値のノイズによる増大を低減でき、
この結果基準値sbを超える(Aれがない。これに対し
て工具に異常が発生ずる場合は移動平均値が」 5 著しく増大し、基準値sbを超えるので、両者の弁別が
行なえる。従って、この実施例ではノイズが測定系に侵
入する場合でも、工具の異常を正確に検出できる。なお
、C′の移動平均値τ′を判断指標とする場合も同様で
ある。
In other words, if noise whose frequency is in the monitoring frequency band invades the measurement system and is taken in as the peak value Pa, the
Since the integral value ΣPa increases and C also increases, this may result in erroneous detection as a tool abnormality. However, in this embodiment, the moving average value S is used as a judgment index. Therefore, if the above-mentioned number k is selected as an appropriate value 16, and the reference value sb is selected as an appropriate value, the influence on the integral value of the peak value corresponding to the number of noise items can be significantly reduced. The increase due to noise in the average value can be reduced,
As a result, the moving average value exceeds the standard value sb (there is no A error. On the other hand, if an abnormality occurs in the tool, the moving average value increases significantly and exceeds the standard value sb, so it is possible to distinguish between the two. In this embodiment, even if noise enters the measurement system, abnormalities in the tool can be detected accurately.The same applies when the moving average value τ' of C' is used as the judgment index.

なお、」二記第2実施例において、工具の異常検出の判
断を行標として移動平均値口、1l(rn=に、 lu
l。
In addition, in the second embodiment described in Section 2, the moving average price point, 1l (rn=, lu
l.

・・・)と当該移動平均処理に係るデータC,◎−E〜
calの直後のデータCm4−1との比C+n++/S
m又はY′10とc’+n++との比Cm+ l / 
S ’ra+1を用いる構成としてもよい。
...) and data C related to the moving average processing, ◎-E~
Ratio with data Cm4-1 immediately after cal C+n++/S
Ratio of m or Y'10 and c'+n++ Cm+ l /
A configuration using S'ra+1 may also be used.

即ち、除算器19p(又は19r ) 、移動平均処理
装置&50p  (又は50r)出力を除算器(図示せ
ず)に与え、この除算器にて下記(5)式に示す演算を
実行し、演算結果をコンパレータ17に与える。
That is, the output of the divider 19p (or 19r) and the moving average processing device &50p (or 50r) is fed to a divider (not shown), and the divider executes the calculation shown in equation (5) below, and the calculation result is is given to the comparator 17.

コンパレータ17はX III+−1(又はX′■〔川
)と基準値Xo  (又はX’o)とを比較し、X +
u + > X 。
The comparator 17 compares XIII+-1 (or X'■ [river) with the reference value Xo (or X'o), and
u+>X.

(又はX ’+n +−+ > X ’+1 )なる場
合は警報ランプ24に出力する。これにより同様に工具
の破損を検出できる。
(or X'+n +-+ >X'+1), it is output to the alarm lamp 24. This also allows tool damage to be detected.

このようにXIM□ (又はX ’m ++ )を判断
指標とする場合は被切削材8に異常が存在し、また、工
具に異常が発生するときでも上記(5)式において分母
了、(又はS’+n)は概ね一定であるのに対し、分子
Cm++ 、(又はC’m +1 )は工具に異常が発
生したときは急激に増大するので、前述の第1実hb例
と同様、被切削材8の異常と工具の異常とを弁別して、
正確な検出が行なえる。
In this way, when using XIM□ (or S'+n) is approximately constant, whereas the molecule Cm++, (or C'm +1) increases rapidly when an abnormality occurs in the tool. Distinguish between the abnormality of the material 8 and the abnormality of the tool,
Accurate detection can be performed.

なお、上記実hb例ではピーク値の比C1実効値の比C
′の移動平均値を求めることとしたが、Pa。
In addition, in the above actual hb example, the peak value ratio C1 the effective value ratio C
We decided to find the moving average value of ′, but Pa.

・・Pd、 Ra、・・・Rd等夫々の移動平均値を求
め、これを積分してそれらの比を求めることとしてもよ
い。
. . Pd, Ra, . . . Rd, etc. may be calculated by calculating their respective moving average values and integrating these values to calculate their ratio.

なお、上述の実施例では本発明をハイドの破損検出に適
用したが、フフイスカノタ等の他の工具の破損検出にも
適用できることは勿論である。また上述の実施例では工
程ごとの監視条件を自動変更するようにしたが、一部又
は全部を手動設定で行うようにしてもよい。
In the above-described embodiment, the present invention was applied to detecting breakage of hides, but it is of course applicable to detecting breakage of other tools such as a screwdriver. Further, in the above-described embodiment, the monitoring conditions for each process are automatically changed, but some or all of the monitoring conditions may be changed manually.

〔効果〕〔effect〕

以上の如き本発明にあっては、工具の破損及びその進行
状況に応して最適の−又は複数の監視周波数帯域を設定
し、この監視周波数帯域にお番Jる振動波形のピーク値
又は実効値の積分値と、全周波数帯域におけるそれとの
比5 この比の移動平均値又はこの移動平均値と直後の
データとの比を工具の異常検出の判断指標とするもので
あるので、被切削材の切削条件が変化する場合であって
も、また、被切削材に偏肉1曲り又は真円度不良等の異
常が存在する場合であっても、更にはノイズが測定糸に
I曇人する場合であっても、誤検出の虞れがなく工具の
異常を正確に検出することができる等、本発明は優れた
効果を奏する。
In the present invention as described above, an optimal monitoring frequency band or a plurality of monitoring frequency bands are set depending on the tool damage and its progress, and the peak value or effective value of the vibration waveform in this monitoring frequency band is set. The ratio of the integral value to that in all frequency bands 5 The moving average value of this ratio or the ratio of this moving average value and the immediately following data is used as a judgment index for tool abnormality detection. Even if the cutting conditions change, or even if there is an abnormality in the material to be cut, such as a bend in uneven thickness or poor roundness, noise may still be present in the measurement thread. Even in such cases, the present invention has excellent effects such as being able to accurately detect tool abnormalities without the risk of erroneous detection.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明力性の実施状!ぶをその信号処理系と共
に示す模式図、第2図はプリアンプ出力を示すグラフ、
第3図は制御装置のフローチャー1−1第4図は本発明
の効果説明のためのグラフ、第5図は本発明の他の実施
例を示す模式図、第6図はその効果説明のためのグラフ
、第7図は従来方法の実施状態を示す模式図、第8図は
被切削材を示す模式図である。
Figure 1 shows the implementation of this invention! Figure 2 is a schematic diagram showing the preamplifier output along with its signal processing system.
Fig. 3 is a flowchart of the control device 1-1 Fig. 4 is a graph for explaining the effects of the present invention, Fig. 5 is a schematic diagram showing another embodiment of the present invention, and Fig. 6 is a graph for explaining the effects. FIG. 7 is a schematic diagram showing the implementation state of the conventional method, and FIG. 8 is a schematic diagram showing the material to be cut.

Claims (1)

【特許請求の範囲】 1、工作機械に取付けた振動検出器にて該工作機械の切
削時における振動波形を検出し、検出振動波形に基づき
工具の破損を検出する方法において、 切削工程ごとに設定した一又は複数の監視 周波数帯域における振動波形のピーク値又は実効値の積
分値と、全周波数帯域における振動波形のピーク値又は
実効値の積分値との比を求め、この比と各切削工程ごと
に設定される基準値とに基づき前記工具の破損を検出す
ることを特徴とする工具の破損検出方法。 2、工作機械に取付けた振動検出器にて該工作機械の切
削時における振動波形を検出し、検出振動波形に基づき
工具の破損を検出する方法において、 切削工程ごとに設定した一又は複数の監視 周波数帯域における振動波形のピーク値又は実効値の積
分値及び全周波数帯域における振動波形のピーク値又は
実効値の積分値を検出し、各積分値の比を求める過程で
、移動平均処理を行い、前記比と各切削工程ごとに設定
される基準値とに基づき前記工具の破損を検出すること
を特徴とする工具の破損検出方法。 3、工作機械に取付けた振動検出器にて該工作機械の切
削時における振動波形を検出し、検出振動波形に基づき
工具の破損を検出する方法において、 切削工程ごとに設定した一又は複数の監視 周波数帯域における振動波形のピーク値又は実効値の積
分値及び全周波数帯域における振動波形のピーク値又は
実効値の積分値を検出し、各積分値の比を求める過程で
、移動平均処理を行い、この移動平均値と、当該移動平
均処理に係るデータの直後の前記積分値の比との比を算
出し、算出した比と各切削工程ことに設定される基準値
とに基づき前記工具の破損を検出することを特徴とする
工具の破損検出方法。
[Scope of Claims] 1. A method for detecting vibration waveforms during cutting of the machine tool using a vibration detector attached to the machine tool, and detecting damage to the tool based on the detected vibration waveforms, comprising: setting for each cutting process. The ratio of the integrated value of the peak value or effective value of the vibration waveform in one or more monitoring frequency bands and the integrated value of the peak value or effective value of the vibration waveform in all frequency bands is calculated, and this ratio is calculated for each cutting process. A method for detecting damage to a tool, characterized in that damage to the tool is detected based on a reference value set in . 2. A method in which a vibration detector attached to a machine tool detects the vibration waveform during cutting of the machine tool and detects damage to the tool based on the detected vibration waveform, which includes one or more monitoring points set for each cutting process. In the process of detecting the integral value of the peak value or effective value of the vibration waveform in the frequency band and the integral value of the peak value or effective value of the vibration waveform in all frequency bands, and calculating the ratio of each integral value, performing moving average processing, A tool damage detection method, characterized in that damage to the tool is detected based on the ratio and a reference value set for each cutting process. 3. In a method of detecting vibration waveforms during cutting of the machine tool with a vibration detector attached to the machine tool and detecting damage to the tool based on the detected vibration waveforms, one or more monitors set for each cutting process are used. In the process of detecting the integral value of the peak value or effective value of the vibration waveform in the frequency band and the integral value of the peak value or effective value of the vibration waveform in all frequency bands, and calculating the ratio of each integral value, performing moving average processing, The ratio between this moving average value and the integral value immediately after the data related to the moving average processing is calculated, and damage to the tool is determined based on the calculated ratio and the reference value set for each cutting process. A tool damage detection method characterized by detecting.
JP26497684A 1984-12-14 1984-12-14 Tool breakage detecting means Pending JPS61142054A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26497684A JPS61142054A (en) 1984-12-14 1984-12-14 Tool breakage detecting means

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26497684A JPS61142054A (en) 1984-12-14 1984-12-14 Tool breakage detecting means

Publications (1)

Publication Number Publication Date
JPS61142054A true JPS61142054A (en) 1986-06-28

Family

ID=17410824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26497684A Pending JPS61142054A (en) 1984-12-14 1984-12-14 Tool breakage detecting means

Country Status (1)

Country Link
JP (1) JPS61142054A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000073018A1 (en) * 1999-05-27 2000-12-07 Sanyo Electric Co., Ltd. Method and apparatus for checking cutting tool

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000073018A1 (en) * 1999-05-27 2000-12-07 Sanyo Electric Co., Ltd. Method and apparatus for checking cutting tool
KR100449601B1 (en) * 1999-05-27 2004-09-22 산요덴키가부시키가이샤 Method and apparatus for checking cutting tool

Similar Documents

Publication Publication Date Title
US4942387A (en) Apparatus and method for tool break and wear detection
US4709198A (en) High-speed machining controller
US4736625A (en) Method and apparatus for monitoring the cutting condition of a machine tool during machining of a workpiece
US5298889A (en) Metal cutting machine tool break detection
JPS61142054A (en) Tool breakage detecting means
JP2001205545A (en) Tool replacement timing judging system
Jemielniak et al. Detection of cutting edge breakage in turning
JPS61159353A (en) Detection of tool breakage
JPH06218655A (en) Monitoring of tool fault and device therefor
JPS60207744A (en) Detection of breakage of tool
JPH07187448A (en) Monitoring device for work conveyance condition
JPH11179636A (en) Replacement timing decision system for tool
JPH04189447A (en) Control device for cutting machine
JPH06297020A (en) Automatic controlling method for plate thickness in mill
JPH0117087B2 (en)
EP3975168A1 (en) A device for active attenuation and control of ambient noise
EP3975168B1 (en) A device for active attenuation and control of ambient noise
JPH05253799A (en) Monitoring device of machine tool for in-line
RU2169641C2 (en) Monitoring and measuring complex for controlling wear degree of cutting tool
SU1499181A1 (en) Arrangement for checking condition of cutting tools
JPH01177950A (en) Method for detecting wear of cutting tool
SU829352A2 (en) Apparatus for measuring cutting tool wear
SU1748995A1 (en) Method of controlling cutter state
JPH02179310A (en) Monitor device for sheet thickness control function in rolling mill
SU1389991A1 (en) Method and apparatus for checking the wear of tool