JPS6121787B2 - - Google Patents

Info

Publication number
JPS6121787B2
JPS6121787B2 JP55095580A JP9558080A JPS6121787B2 JP S6121787 B2 JPS6121787 B2 JP S6121787B2 JP 55095580 A JP55095580 A JP 55095580A JP 9558080 A JP9558080 A JP 9558080A JP S6121787 B2 JPS6121787 B2 JP S6121787B2
Authority
JP
Japan
Prior art keywords
band
vibration level
tool
vibration
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55095580A
Other languages
Japanese (ja)
Other versions
JPS5720625A (en
Inventor
Hajime Inaba
Yukio Ono
Mitsuo Hiraizumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP9558080A priority Critical patent/JPS5720625A/en
Publication of JPS5720625A publication Critical patent/JPS5720625A/en
Publication of JPS6121787B2 publication Critical patent/JPS6121787B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Machine Tool Sensing Apparatuses (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は工機械における工具欠損検出方法に関
する。 従来、工作機械における工具欠損検出は刃物台
の振動を検出し、その振動レベルを正常動作時に
おける規準レベルと比較し、レベル差が或値以上
に達した場合、工具の欠損と判定する方法が行な
われている。しかし、この方法では刃物および被
加工物の組合せによつては、工具欠損を検出でき
ない場合があるという問題点を有していた。 本発明の目的は、前述の従来用いられている方
法の問題点にかんがみ、刃物台の振動の周波数ス
ペクトルの形状を工具欠損の検出に用いるという
着想に基き、刃物および被加工物の条件に制約さ
れることなく工具欠損の検出の確実性を向上させ
ることにある。 本発明においては、正常切削時の複数の周波数
帯域における各振動レベルを検出し、最大振動レ
ベルを与える帯域前後のいくつかの帯域の振動レ
ベルをそれぞれ該最大振動レベルで正規化して基
準値として記憶し、工具欠損監視時において切削
加工中の各周波数帯域の振動レベルを前記正常時
の最大振動レベルを与える帯域の振動レベルでそ
れぞれ正規化して対応する基準値と比較し、それ
ぞれの差が一定値以上になる帯域が1つ以上あつ
た場合に工具欠損が発生していると判定する工具
欠損検出方法が提供される。 以下本発明の工具欠損検出方法を用いた装置の
一実施例について第1図ないし第3図により説明
する。第1図は該装置のブロツク回路図である。
旋盤10には数値制御部11と刃物台に取付けら
れた加速度ピツクアツプ12が設けられている。
加速度ピツクアツプ12の出力は振動データとし
てチヤージアンプ13に接続され増幅された後、
1/3オクターブ帯域フイルタ14へ加えられる。
1/3帯域フイルタ14は中心周波数が可変なもの
であり、切換えによりオールパスが可能である。
1/3帯域フイルタ14の出力は対数圧縮器15
へ、対数圧縮器15の出力は整流回路16へ、整
流回路16の出力は平滑化回路17へ、平滑化回
路17の出力はアナログ−デイジタル変換器
(AD変換器)18へそれぞれ加えられる。AD変
換されたAD変換器18の出力は第1の比較器2
1の第1入力に印加され、第1の比較器21の第
2の入力はインタフエイス部19からの信号を受
ける。第1の比較器21は全帯域振動レベルによ
る定常切削状態の判断を行ない、定常切削状態で
あるとの判断がなされた場合には出力を次段の振
動周波数スペクトル算定回路22へ送る。振動周
波数スペクトル算定回路22においては振動周波
数スペクトルを求めバツフア回路23へ出力す
る。バツフア回路23は振動周波数スペクトル算
定回路22で求められた一組の周波数スペクトル
を蓄積する。バツフア回路23の出力は第2の比
較回路24の第1の入力へ加えられ、第2の比較
回路24の第2の入力は規準データメモリ装置2
7から、第2の比較回路24の第3の入力は設定
値テーブルメモリ装置28から接続されている。
第2の比較回路24においては、規準データとの
比較による欠損の有無の判定を行ない、工具の欠
損と判定された場合は加工停止指示器25を介し
てインタフエイス部19へ加工停止信号を送り、
工具欠損と判定されない場合は次の切削段階の処
理へと進む。フイルタ周波数切換器29はインタ
フエイス部19を通つて1/3オクターブ帯域フイ
ルタ14の中心周波数を切換える。インタフエイ
ス部19と数値制御部11の間は加工停止信号、
主軸回転情報、および加工開始終了情報が授受さ
れる。タイマ26は振動周波数スペクトル算定回
路22および規準データメモリ装置27を制御す
る。 次にモデル切削による規準データの記憶および
工具欠損検出の方法について、その一例を説明す
る。モデル切削時の規準データの記憶は以下のよ
うに行なわれる。加工開始後、最初の主軸起動信
号によりタイマ26をリセツトし、以後時間のカ
ウントを行なう。ただし、主軸停止信号により時
間のカウントを停止し、再度主軸起動信号を受け
ると時間のカウントを再開継続する。全帯域の振
動レベルを監視し、振動レベルが一定値A0以上
になつたならば切削に入つたものと判断する。さ
らに振動レベルを監視して変動が一定範囲内に落
ち着いたならば定常切削状態に入つたものと判断
する。 定常切削状態に入つたならば、帯域フイルタ1
4の中心周波数を掃引して2kHzから20kHzまでの
1/3オクターブごとの各帯域における振動レベル
を求める。その中で最大の帯域成分レベルを与え
る帯域の中心周波数を1c、レベルをA1naxとす
る。1cの低周波側の帯域の中心周波数を順に
1l11l21l3、高周波側の帯域の中心周波数を
1u11u21u3とする。たとえば1cを6.3k
Hzとすると1l1の各周波数は、1l3:3.15kHz、
1l2:4kHz、1l1:5kHz、1c:6.3kHz、1u1
8kHz、1u2:10kHz、1u3:1.25kHzのようにな
る。各帯域の振動成分レベルをA1l3,A1l2,A1l
,A1u1,A1u2,A1u3とし、これらとA1nax
の比を、それぞれR1l3,R1l2,R1l1,R1u1,R1u
,R1u3とする。すなわち、R1l3=A1l3/A1na
、R1l2=A1l2/A1nax、R1l1=A1l1/A1nax
1u1=A1u1/A1nax、R1u2=A1u2/A1nax、R1u
=A1u3/A1naxである。上記の関係を表に示
す。また第2図に1/3オクターブ中心周波数対A1
naxとのレベル比Rとの関係の一例を示す。
The present invention relates to a tool defect detection method in a machine tool. Conventionally, tool loss detection in machine tools involves detecting the vibration of the tool rest, comparing the vibration level with the reference level during normal operation, and determining that the tool is missing if the level difference reaches a certain value. It is being done. However, this method has a problem in that tool damage may not be detected depending on the combination of the cutter and the workpiece. In view of the problems of the conventional methods described above, the purpose of the present invention is to use the shape of the frequency spectrum of the vibration of the tool post to detect tool breakage, and to limit the conditions of the tool and workpiece. The object of the present invention is to improve the reliability of detecting tool defects without causing damage. In the present invention, each vibration level in multiple frequency bands during normal cutting is detected, and the vibration levels in several bands before and after the band giving the maximum vibration level are each normalized by the maximum vibration level and stored as a reference value. Then, when monitoring tool breakage, the vibration level of each frequency band during cutting is normalized by the vibration level of the band that gives the maximum vibration level during normal operation, and compared with the corresponding reference value, and the difference between them is determined to be a constant value. A tool chipping detection method is provided that determines that a tool chipping has occurred when there is one or more bands having the above values. An embodiment of an apparatus using the tool chipping detection method of the present invention will be described below with reference to FIGS. 1 to 3. FIG. 1 is a block circuit diagram of the device.
The lathe 10 is provided with a numerical control section 11 and an acceleration pick-up 12 attached to a tool post.
The output of the acceleration pickup 12 is connected to the charge amplifier 13 as vibration data and amplified, and then
It is applied to a 1/3 octave bandpass filter 14.
The 1/3 band filter 14 has a variable center frequency, and can be switched to provide an all-pass filter.
The output of the 1/3 band filter 14 is sent to the logarithmic compressor 15
The output of the logarithmic compressor 15 is applied to a rectifier circuit 16, the output of the rectifier circuit 16 is applied to a smoothing circuit 17, and the output of the smoothing circuit 17 is applied to an analog-digital converter (AD converter) 18. The AD converted output of the AD converter 18 is sent to the first comparator 2.
The second input of the first comparator 21 receives the signal from the interface section 19 . The first comparator 21 determines the steady cutting state based on the whole band vibration level, and when it is determined that the cutting state is the steady cutting state, sends the output to the vibration frequency spectrum calculation circuit 22 at the next stage. The vibration frequency spectrum calculation circuit 22 calculates a vibration frequency spectrum and outputs it to the buffer circuit 23. The buffer circuit 23 accumulates a set of frequency spectra determined by the vibration frequency spectrum calculation circuit 22. The output of the buffer circuit 23 is applied to a first input of a second comparison circuit 24, the second input of which is connected to the reference data memory device 2.
From 7 onwards, the third input of the second comparator circuit 24 is connected from a setpoint table memory device 28 .
In the second comparison circuit 24, the presence or absence of a defect is determined by comparison with standard data, and if it is determined that the tool is defective, a machining stop signal is sent to the interface section 19 via a machining stop indicator 25. ,
If it is not determined that the tool is missing, the process proceeds to the next cutting stage. The filter frequency switch 29 switches the center frequency of the 1/3 octave band filter 14 through the interface section 19. A processing stop signal is provided between the interface section 19 and the numerical control section 11.
Spindle rotation information and machining start/end information are exchanged. Timer 26 controls vibration frequency spectrum calculation circuit 22 and reference data memory device 27 . Next, an example of a method for storing reference data and detecting tool loss through model cutting will be described. Storage of reference data during model cutting is performed as follows. After starting machining, the timer 26 is reset by the first spindle activation signal, and time is counted thereafter. However, the time counting is stopped by the spindle stop signal, and when the spindle start signal is received again, the time counting is resumed and continued. The vibration level in the entire band is monitored, and if the vibration level exceeds a certain value A0 , it is determined that cutting has begun. Furthermore, the vibration level is monitored, and if the fluctuation has settled within a certain range, it is determined that a steady cutting state has entered. When the steady cutting state is entered, the band filter 1
4 center frequency from 2kHz to 20kHz
Find the vibration level in each band for each 1/3 octave. It is assumed that the center frequency of the band giving the maximum band component level is 1c and the level is A 1nax . The center frequency of the low frequency side band of 1c is set in order.
1l1 , 1l2 , 1l3 , the center frequency of the high frequency band
Let 1u1 , 1u2 , 1u3 . For example 1c to 6.3k
Assuming Hz, each frequency of 1l1 is 1l3 : 3.15kHz,
1l2 : 4kHz, 1l1 : 5kHz, 1c : 6.3kHz, 1u1 :
8kHz, 1u2 : 10kHz, 1u3 : 1.25kHz. The vibration component level of each band is A 1l3 , A 1l2 , A 1l
1 , A 1u1 , A 1u2 , A 1u3 , and the ratios of these and A 1nax are R 1l3 , R 1l2 , R 1l1 , R 1u1 , R 1u , respectively.
2 , R 1u3 . That is, R 1l3 = A 1l3 /A 1na
x , R 1l2 = A 1l2 /A 1nax , R 1l1 = A 1l1 /A 1nax ,
R 1u1 = A 1u1 /A 1nax , R 1u2 = A 1u2 /A 1nax , R 1u
3 = A 1u3 /A 1nax . The above relationship is shown in the table. Figure 2 also shows 1/3 octave center frequency versus A 1
An example of the relationship between level ratio R and nax is shown.

【表】 最初の切削段階の規準データとして、振動デー
タをサンプリングした時刻t1と最大帯域成分レベ
ルを与える帯域の中心周波数1c1cの3つ下
の帯域の周波数1l3と各帯域A1naxとの比R1l3
1l2,R1l1,R1u1,R1u2,R1u3を記憶する。す
なわちt11c1l3,R1l3,R1l2,R1l1,R1u
,R1u2,R1u3が記憶される。ここでR1l3,R1l
,R1l1,R1u1,R1u2,R1u3の中に一定値R0より
小さいものがある場合は、その帯域と1cより見
てその帯域より速い帯域を除く等の操作を行な
う。 上述の第1の切削段階と同様に各k切削段階に
おいて基準データを求めて記憶する。n番目のk
切削段階における規準データは一般に(too
ol3,Rol3,Rol2,Rol1,Rou1,Rou2,Rou
)となる。 モデル切削時の規準データの記憶が前述のよう
に行なわれると、記憶された規準データと被加工
物の切削状態におけるデータとの比較が行なわれ
工具欠損の監視を行なうことができる。監視時に
もモデル切削時と同様にタイマのリセツトをし時
間をカウントする。時刻toに規準データに従つ
て、モデル切削時と同様にデータを求める。時刻
oの規準データが(toocol3,Rol3,Ro
l2,Rol1,Rou1,Rou2,Rou3)とするとol3
ら7帯域の振動レベルを求めocの帯域成分レベ
ルAocとの比を求める。それぞれの比をR′ol3
R′ol2,R′ol1,R′ou1,R′ou2,R′ou3とする。各帯

ごとに上述の比と規準データの比との差を求め
る。すなわち、 |Rol3−R′ol3|,|Rol2−R′ol2|,|Rol1
R′ol1|, |Rou1−R′ou1|,|Rou2−R′ou2|,|Rou3
R′ou3| を計算する。前記計算結果のうち一定値Reより
大きいものが1つ以上あつた場合は工具に欠損が
発生したものと判断する。第3図は規準データお
よび比較される切削時データを並記した第2図と
同様な特性図であり、縦軸R′はocの帯域レベル
との比を示している。 本発明によれば、刃物および被加工物の条件に
制約されることなく工具欠損の検出の確実性を向
上させることができる。 又、本発明によれば、振動レベルを正規化して
基準値として記憶すると共に、実際の値も正規化
して該基準値と比較するように構成したから、基
準値作成時に比べて実際の運転時における各帯域
の振動レベルが異常以外の何等かの原因で変動し
ても誤検出をすることはなく、正確な工具欠損検
出ができる。
[Table] As reference data for the first cutting stage, the time t 1 at which the vibration data was sampled, the center frequency 1c of the band giving the maximum band component level, the frequency 1l3 of the band three bands below 1c , and each band A 1nax . Ratio R 1l3 ,
Store R 1l2 , R 1l1 , R 1u1 , R 1u2 , and R 1u3 . That is, t 1 , 1c , 1l3 , R 1l3 , R 1l2 , R 1l1 , R 1u
1 , R 1u2 and R 1u3 are stored. Here R 1l3 , R 1l
If any of 2 , R 1l1 , R 1u1 , R 1u2 , and R 1u3 is smaller than the constant value R 0 , operations such as removing that band and a band faster than that band when viewed from 1c are performed. Similar to the first cutting step described above, reference data is determined and stored at each k cutting step. nth k
The reference data in the cutting stage is generally (t o , o
c , ol3 , R ol3 , R ol2 , R ol1 , R ou1 , R ou2 , R ou
3 ). When the reference data during model cutting is stored as described above, the stored reference data is compared with the data in the cutting state of the workpiece, and tool damage can be monitored. During monitoring, the timer is reset and the time is counted in the same way as when cutting the model. Data is obtained at time t o in accordance with the standard data in the same manner as when cutting the model. The standard data at time t o is (t o , oc , ol3 , R ol3 , R o
l2 , R ol1 , R ou1 , R ou2 , R ou3 ), the vibration levels of seven bands are determined from ol3, and the ratio with the band component level A oc of oc is determined. Let the respective ratios be R′ ol3 ,
Let R′ ol2 , R′ ol1 , R′ ou1 , R′ ou2 , R′ ou3 . The difference between the above ratio and the standard data ratio is determined for each band. That is, |R ol3 −R′ ol3 |, |R ol2 −R′ ol2 |, |R ol1
R′ ol1 |, |R ou1 −R′ ou1 |, |R ou2 −R′ ou2 |, |R ou3
Calculate R′ ou3 | If one or more of the calculation results are larger than the constant value Re, it is determined that the tool is defective. FIG. 3 is a characteristic diagram similar to FIG. 2 in which reference data and cutting data to be compared are shown side by side, and the vertical axis R' indicates the ratio of the OC to the band level. According to the present invention, the reliability of detecting tool damage can be improved without being restricted by the conditions of the cutter and the workpiece. Further, according to the present invention, the vibration level is normalized and stored as a reference value, and the actual value is also normalized and compared with the reference value. Even if the vibration level in each band changes due to some cause other than an abnormality, there will be no false detection, and accurate tool loss detection can be performed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例としての工具欠損検
出方法に用いられる装置のブロツク回路図、第2
図は周波数対A1naxとのレベル比との関係を示す
特性図、第3図は規準データおよび比較される切
削時データを並記した周波数対ocの帯域レベル
との比の関係を示す特性図である。 10……施盤、11……数値制御部、12……
加速度ピツクアツプ、13……チヤージアンプ、
14……帯域フイルタ、15……対数圧縮器、1
6……整流回路、17……平滑化回路、18……
AD変換器、19……インタフエイス部、20…
…処理部、21……第1の比較器、22……振動
周波数スペクトル算定回路、23……バツフア回
路、24……第2の比較回路、25……加工停止
指示器、26……タイマ、27……規準データメ
モリ装置、28……設定値テーブルメモリ装置、
29……フイルタ周波数切換器。
FIG. 1 is a block circuit diagram of a device used in a tool chipping detection method as an embodiment of the present invention, and FIG.
The figure is a characteristic diagram showing the relationship between frequency and the level ratio of A 1nax , and Figure 3 is a characteristic diagram showing the relationship between frequency and the band level of OC , with standard data and cutting data to be compared. It is. 10...Lathe, 11...Numerical control section, 12...
Acceleration pickup, 13...Charge amplifier,
14... Bandwidth filter, 15... Logarithmic compressor, 1
6... Rectifier circuit, 17... Smoothing circuit, 18...
AD converter, 19...Interface section, 20...
...processing unit, 21...first comparator, 22...vibration frequency spectrum calculation circuit, 23...buffer circuit, 24...second comparison circuit, 25...processing stop indicator, 26...timer, 27...Reference data memory device, 28...Setting value table memory device,
29...Filter frequency switcher.

Claims (1)

【特許請求の範囲】[Claims] 1 正常切削時の複数の周波数帯域における各振
動レベルを検出し、最大振動レベルを与える帯域
前後のいくつかの帯域の振動レベルをそれぞれ該
最大振動レベルで正規化して基準値として記憶
し、工具欠損監視時において切削加工中の各周波
数帯域の振動レベルを前記正常時の最大振動レベ
ルを与える帯域の振動レベルでそれぞれ正規化し
て対応する基準値と比較し、それぞれの差が一定
値以上になる帯域が1つ以上あつた場合に工具欠
損が発生していると判定する工具欠損検出方法。
1 Detect each vibration level in multiple frequency bands during normal cutting, normalize the vibration levels in several bands before and after the band giving the maximum vibration level by the maximum vibration level, and store it as a reference value to prevent tool damage. At the time of monitoring, the vibration level of each frequency band during cutting is normalized by the vibration level of the band giving the maximum vibration level during normal operation, and compared with the corresponding reference value, and the band in which the difference between them is equal to or greater than a certain value is determined. A tool chipping detection method that determines that a tool chipping has occurred when one or more of the following occur.
JP9558080A 1980-07-15 1980-07-15 Detection of tool chipping Granted JPS5720625A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9558080A JPS5720625A (en) 1980-07-15 1980-07-15 Detection of tool chipping

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9558080A JPS5720625A (en) 1980-07-15 1980-07-15 Detection of tool chipping

Publications (2)

Publication Number Publication Date
JPS5720625A JPS5720625A (en) 1982-02-03
JPS6121787B2 true JPS6121787B2 (en) 1986-05-28

Family

ID=14141525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9558080A Granted JPS5720625A (en) 1980-07-15 1980-07-15 Detection of tool chipping

Country Status (1)

Country Link
JP (1) JPS5720625A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5963529A (en) * 1982-10-01 1984-04-11 Ishikawajima Harima Heavy Ind Co Ltd Diagnosing method of rotary machine
JPS5963528A (en) * 1982-10-01 1984-04-11 Ishikawajima Harima Heavy Ind Co Ltd Diagnosing method of rotary machine
JPS59175942A (en) * 1983-03-23 1984-10-05 Agency Of Ind Science & Technol Rms processing unit in cutting edge damage detecting device for intermittent cutting machine
JP3518838B2 (en) * 1997-09-04 2004-04-12 株式会社東芝 Sound monitoring device
JP2016135511A (en) * 2015-01-23 2016-07-28 三菱電機株式会社 Irregular machining detecting apparatus and irregular machining detecting method
JP7083293B2 (en) * 2017-08-31 2022-06-10 Ntn株式会社 Status monitoring method and status monitoring device
WO2019044729A1 (en) * 2017-08-31 2019-03-07 Ntn株式会社 State-monitoring method and state-monitoring device

Also Published As

Publication number Publication date
JPS5720625A (en) 1982-02-03

Similar Documents

Publication Publication Date Title
US5170358A (en) Method of controlling chatter in a machine tool
JP7101952B2 (en) Multi-tasking machine with failure prediction function
JPS6224945A (en) Monitor and method of optimizing monitor
US3819916A (en) Method for monitoring machining condition of a machine tool
CA1218457A (en) Method and apparatus for determining the endpoints of a speech utterance
JPS6121787B2 (en)
JPH06344246A (en) Abrasion detecting method for cutting tool
JPH0343020B2 (en)
JPH0132024B2 (en)
JPS63200944A (en) Feed speed controller in cutting machine tool
JP2520018B2 (en) Processing load monitoring method and apparatus
JPS62193750A (en) Multi-blade tool damage detecting device
JPS5924913A (en) Circuit device detecting cutting of work by saw
JPS62193751A (en) Multi-blade tool damage detecting device
JPS62193749A (en) Multi-blade tool damage detecting device
JPS62136345A (en) Device for detecting abnormality of cutting tool
SU1499181A1 (en) Arrangement for checking condition of cutting tools
JPH04176541A (en) Detecting method for cutting work
JPS61187654A (en) Apparatus for detecting abrasion of tool
JPS61221648A (en) Tool breakage detector
JPH01177950A (en) Method for detecting wear of cutting tool
JPS6044255A (en) Diagnostic device of cutting abnormality
JPH0751976A (en) Stop control system at abnormal load of spindle
JPS61182570A (en) Chip shape discriminator
JPS58126044A (en) Monitoring device for unbalance vibration of main shaft