JPS61153918A - Manufacture of field emitter exhibiting highly stable electron emission characteristic - Google Patents

Manufacture of field emitter exhibiting highly stable electron emission characteristic

Info

Publication number
JPS61153918A
JPS61153918A JP59275221A JP27522184A JPS61153918A JP S61153918 A JPS61153918 A JP S61153918A JP 59275221 A JP59275221 A JP 59275221A JP 27522184 A JP27522184 A JP 27522184A JP S61153918 A JPS61153918 A JP S61153918A
Authority
JP
Japan
Prior art keywords
emitter
field
carbon film
electron emission
field emitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59275221A
Other languages
Japanese (ja)
Other versions
JPH0434253B2 (en
Inventor
Yoshio Ishizawa
石沢 芳夫
Chuhei Oshima
忠平 大島
Shigeki Otani
茂樹 大谷
Ryutaro Soda
左右田 龍太郎
Yukio Shibata
柴田 幸男
Susumu Aoki
進 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Research in Inorganic Material
Original Assignee
National Institute for Research in Inorganic Material
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Research in Inorganic Material filed Critical National Institute for Research in Inorganic Material
Priority to JP59275221A priority Critical patent/JPS61153918A/en
Publication of JPS61153918A publication Critical patent/JPS61153918A/en
Publication of JPH0434253B2 publication Critical patent/JPH0434253B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/022Manufacture of electrodes or electrode systems of cold cathodes
    • H01J9/025Manufacture of electrodes or electrode systems of cold cathodes of field emission cathodes

Abstract

PURPOSE:To obtain a field emitter having excellent current stability and electron emission characteristic by thermally treating TiC mono-crystal emitter under hydrocarbon gas to form a carbon film on the surface then applying strong field under super high vacuum. CONSTITUTION:TiC monocrystal emitter is heated under hydrocarbon gas with the temperature of 900-1,400 deg.C to form a carbon film. Then electron beam is emitted for about 30min with the total current of 10-20muA under super high vacuum for a chip formed with a carbon film on the surface to apply strong field stronger than 10<7>V/cm. Consequently, a field emitter having excellent emission performance is obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は高安定電子放射特性を示すフィールドエミッタ
ーの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing a field emitter exhibiting highly stable electron emission characteristics.

フィールドエミッターからの放射電流は、高輝度、可干
渉性1点光源などの優れた性質を示す。
The emitted current from the field emitter exhibits excellent properties such as high brightness and coherent single point light source.

これは電子1fMm光機、低加速SEX 、分析電子顕
微鏡などの電子源として重要である。
This is important as an electron source for electron 1fMm optical equipment, low acceleration SEX, analytical electron microscopes, etc.

従来技術 従来、フィールドエミッターとしては、Wが実用化され
てきたが、このフィールドエミッターは電流の安定性に
問題があり、時間と共に大幅に減衰すると共に電流変動
も大きいので、広い応用を疎外している。
Conventional technology Conventionally, W has been put into practical use as a field emitter, but this field emitter has a problem with current stability, and as it significantly attenuates over time and has large current fluctuations, it has been excluded from a wide range of applications. There is.

また炭化チタン単結晶からなるフィールドエミッターも
知られている。しかし、このフィールドエミッターから
の放射電子は、チップ先端近傍から放射状に放出され、
いくつかの電子ビーム塊に分れる問題点がある。
Field emitters made of single crystal titanium carbide are also known. However, the radiated electrons from this field emitter are emitted radially from near the tip of the chip.
There is a problem in that the electron beam is divided into several clusters.

発明の目的 本発明は従来の炭化チタン単結晶からなるフィールドエ
ミッターの問題点をなくするためになされたもので、そ
の目的は電流安定性がよく、高輝度で電子放射特性の優
れたフィールドエミッターの製造方法を提供するにある
Purpose of the Invention The present invention was made to eliminate the problems of conventional field emitters made of single crystal titanium carbide.The purpose of the present invention is to develop field emitters that have good current stability, high brightness, and excellent electron emission characteristics. To provide a manufacturing method.

発明の構成 本発明者らは前記目的を達成するため鋭意研究の結果、
炭化チタン単結晶エミッターを炭化水素ガス中で900
〜1400℃で熱処理して、該エミッターの表面に炭素
膜を形成させた後、超高真空下でIOV/cm以上の強
電界を印加すると、エミッションパターンが変化し、安
定な電流特性を示すフィールドエミッターが得られるこ
とを究明し得た。この知見に基いて本発明を完成した。
Structure of the Invention As a result of intensive research to achieve the above object, the present inventors have
Titanium carbide single crystal emitter in hydrocarbon gas at 900 °C
After heat treatment at ~1400°C to form a carbon film on the surface of the emitter, when a strong electric field of IOV/cm or more is applied under ultra-high vacuum, the emission pattern changes and the field exhibits stable current characteristics. It has been determined that an emitter can be obtained. The present invention was completed based on this knowledge.

本発明の要旨は、炭化チタン単結晶エミッターを、炭化
水素ガス中で900〜1400℃で熱処理して、その表
面に炭素膜を形成させた後、超高真空は、0.2 X 
O,2X 3■の直方体の先端を電解研磨法によシ約0
.1μmの先端径とし、このエミッタる。例えば、Ti
、0 (110>エミッターの場合は第1図に示すよう
な形状のものとなる。このTiC< 110 >エミッ
ターからのエミッションパターンは第2図に示すように
なる。(なお、斜線部分は電子ビームのあたった部分を
示す。)これはチップ先端の< 100 > 、 < 
111 >の各結晶面から作られる尖った部分からのエ
ミッショ/に対応する。
The gist of the present invention is to heat-treat a titanium carbide single crystal emitter at 900 to 1400°C in hydrocarbon gas to form a carbon film on its surface, and then apply an ultra-high vacuum of 0.2
The tip of the rectangular parallelepiped of O,2
.. This emitter has a tip diameter of 1 μm. For example, Ti
, 0 (110> emitter has a shape as shown in Figure 1. The emission pattern from this TiC <110> emitter is as shown in Figure 2. (The shaded area is the electron beam. ) This shows the area hit by <100> and <100> of the tip tip.
111> corresponds to the emission from the pointed part made from each crystal plane.

このTiGのエミッションパターンは電界強度の大きい
個所からの電子のエミッションで説明できる。
This emission pattern of TiG can be explained by the emission of electrons from locations where the electric field strength is large.

このようにして得られたTiG単結晶エミッターの表面
に炭素膜を形成させる。炭素膜の形成は、T1Gエミッ
ターを炭化水素ガス中で900〜1400Cで加熱する
ことKよって得られる。その加熱時間は100 L (
ラングミュア−、L= 1O−6Torrxsea )
以上とする。即ち、炭化水素ガスを超高真空装置に導入
し、真空度が5 x 10−”I’Orrの場合は20
秒以上の処理時間が必要である。炭化水素ガスとしては
、エチレン、メタン等が挙げられる。しかしこれに限定
されるものではない。
A carbon film is formed on the surface of the TiG single crystal emitter thus obtained. Formation of the carbon film is obtained by heating the T1G emitter in hydrocarbon gas at 900-1400C. The heating time is 100 L (
Langmuir, L=1O-6Torrxsea)
The above shall apply. That is, when hydrocarbon gas is introduced into an ultra-high vacuum apparatus and the degree of vacuum is 5 x 10-"I'Orr,
Processing time of seconds or more is required. Examples of the hydrocarbon gas include ethylene and methane. However, it is not limited to this.

このようにして表面に炭素膜を形成したチップ“から超
高真空下で全電流10〜20μAで30分以上電子ビー
ムを放射し、10’V/e11以上の強電界を印加する
。これによシ、エミッションパターンは第2図から第3
図のものに変化する。
In this way, an electron beam is emitted from the chip with the carbon film formed on its surface for more than 30 minutes at a total current of 10 to 20 μA under ultra-high vacuum, and a strong electric field of 10'V/e11 or more is applied. The emission pattern is shown in Figures 2 to 3.
Changes to the one shown.

表お、斜線部分が電子ビームのあった個所で、点線で示
す部分は清浄表面からのエミッションパターンを示す。
In the table, the shaded area shows the location where the electron beam was applied, and the dotted line shows the emission pattern from the clean surface.

なお、炭化水素ガス中でのチップの加熱温度を900℃
以下、 1400℃以上にするとエミッションパターン
は第2図のままであり、第3図に示すパ゛膚−/には変
化しない。また電子放射特性も改善!1; hr以下の優れた特性を示す。その電流特性は第4図に
示す通りであり、一定の電流値を示し極めて安定である
Note that the heating temperature of the chip in hydrocarbon gas was 900°C.
Thereafter, when the temperature is increased to 1400 DEG C. or higher, the emission pattern remains as shown in FIG. 2 and does not change to the pattern shown in FIG. 3. Also, the electron emission characteristics have been improved! 1; Shows excellent characteristics of hr or less. Its current characteristics are as shown in FIG. 4, and it exhibits a constant current value and is extremely stable.

この実験条件は真空度3.5 X 10” TOrr 
、  印加電圧1500 Vで行ったものである。
The experimental conditions were a vacuum of 3.5 x 10” TOrr.
, with an applied voltage of 1500 V.

実施例 先端径0.1μmのTieo、、6< 110 ) フ
ィールドエミッターを超高真空下にセットし、1500
℃に7ラツシユ加熱した。この真空系にエチレンガスを
導入し、5X10  TOrrの真空度にした後、11
00℃で30分間加熱してチップ表面に炭素膜を形成さ
せ九。この後、3.5 x 10−” Torrの真空
下で全電流10μムを30分以上放射しく 10’、 
V / cm・以上の強電界の印加)続けてエミッショ
ンパタンを変化させた。
Example A field emitter with a tip diameter of 0.1 μm, 6 < 110) was set under ultra-high vacuum, and
It was heated to 7 degrees Celsius. After introducing ethylene gas into this vacuum system and making the vacuum level 5X10 Torr,
9. Heat at 00°C for 30 minutes to form a carbon film on the chip surface. After this, a total current of 10 μm was irradiated for over 30 minutes under a vacuum of 3.5 x 10-” Torr.
Application of a strong electric field of V/cm or more) The emission pattern was then changed.

上記製法によって得たフィールドエミッターの第1図は
Tie (110>エミッターの1500℃フラッシュ
加熱後の先端形状、第2図は第1図のエミッターからの
エミッションパターン、第3図は第1図のエミッターチ
ップの表面に炭化皮膜を形成させた後のエミッションパ
ターン、第4図は本発明の方法で製造したエミッターの
全電流と時間との関係図であシ、この時の実験条件は真
空度3.5XIOTorr、印加電圧1500 Vであ
る。
Figure 1 of the field emitter obtained by the above manufacturing method is the tip shape of the Tie (110> emitter after flash heating at 1500°C, Figure 2 is the emission pattern from the emitter in Figure 1, and Figure 3 is the emitter in Figure 1. The emission pattern after forming a carbonized film on the surface of the chip, and FIG. 4 is a graph showing the relationship between the total current and time of the emitter manufactured by the method of the present invention, and the experimental conditions at this time were a vacuum degree of 3. 5XIO Torr, applied voltage 1500V.

企電 麦(μA)Corporate power (μA)

Claims (1)

【特許請求の範囲】[Claims] 炭化チタン単結晶エミッターを、炭化水素ガス中で90
0〜1400℃で熱処理して、その表面に炭素膜を形成
させた後、超高真空下で10^7V/cm以上の強電界
を印加することを特徴とする高安定電子放射特性を示す
フィールドエミッターの製造法。
A titanium carbide single crystal emitter was heated to 90°C in hydrocarbon gas.
A field exhibiting highly stable electron emission characteristics characterized by applying a strong electric field of 10^7 V/cm or more under ultra-high vacuum after heat treatment at 0 to 1400°C to form a carbon film on the surface. Emitter manufacturing method.
JP59275221A 1984-12-27 1984-12-27 Manufacture of field emitter exhibiting highly stable electron emission characteristic Granted JPS61153918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59275221A JPS61153918A (en) 1984-12-27 1984-12-27 Manufacture of field emitter exhibiting highly stable electron emission characteristic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59275221A JPS61153918A (en) 1984-12-27 1984-12-27 Manufacture of field emitter exhibiting highly stable electron emission characteristic

Publications (2)

Publication Number Publication Date
JPS61153918A true JPS61153918A (en) 1986-07-12
JPH0434253B2 JPH0434253B2 (en) 1992-06-05

Family

ID=17552389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59275221A Granted JPS61153918A (en) 1984-12-27 1984-12-27 Manufacture of field emitter exhibiting highly stable electron emission characteristic

Country Status (1)

Country Link
JP (1) JPS61153918A (en)

Also Published As

Publication number Publication date
JPH0434253B2 (en) 1992-06-05

Similar Documents

Publication Publication Date Title
JP3299544B2 (en) Field emission cathode and method of manufacturing the same
CN104882346B (en) Method for preparing field emission cathode of carbon nanotube array coated with carbon nanoparticles
JPS61153918A (en) Manufacture of field emitter exhibiting highly stable electron emission characteristic
JPH0421295B2 (en)
JPS6280938A (en) Manufacture of titanium compound field emitter
JPS6280937A (en) Manufacture of high performance field emitter
JPS6280936A (en) Manufacture of field emitter
JPS63279535A (en) Manufactute of carbon-nitride niobium field emitter
JPS6229032A (en) Manufacture of highly stabilized field emitter
JPH01209634A (en) Manufacture of niobium carbide-nitride field emitter
JPH03735B2 (en)
JPS62502086A (en) Method and apparatus for epitaxial deposition of doped materials
JPH0461724A (en) Manufacture of niobium carbide field emitter
JPH0227643A (en) Stabilizing heat electric field radiation electron gun
JPS6013258B2 (en) Manufacturing method of carbide field emitter
US3936532A (en) Activation of thin wire emitters for field ionization/field desorption mass spectrometry
JPH0299615A (en) Highly graphitized carbon fiber and its production
JP4867643B2 (en) Manufacturing method of Schottky emitter
JPS6092607A (en) Electron beam annealing device
RU2158036C2 (en) Process of manufacture of diamond films by method of gas phase synthesis
JPH10259481A (en) Formation of amorphous carbon coating
JP2005053720A (en) Method for producing carbon nanotube
JPS63110288A (en) High lubricating member and production thereof
JPS62205267A (en) Production of aluminum oxide film
JPH11100295A (en) Formation of diamond film or diamond-like carbon film and device therefor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term