JPS6280938A - Manufacture of titanium compound field emitter - Google Patents

Manufacture of titanium compound field emitter

Info

Publication number
JPS6280938A
JPS6280938A JP60219835A JP21983585A JPS6280938A JP S6280938 A JPS6280938 A JP S6280938A JP 60219835 A JP60219835 A JP 60219835A JP 21983585 A JP21983585 A JP 21983585A JP S6280938 A JPS6280938 A JP S6280938A
Authority
JP
Japan
Prior art keywords
emitter
treatment
gas
high vacuum
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60219835A
Other languages
Japanese (ja)
Other versions
JPH0577134B2 (en
Inventor
Yoshio Ishizawa
石沢 芳夫
Chuhei Oshima
忠平 大島
Shigeki Otani
茂樹 大谷
Susumu Aoki
進 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Research in Inorganic Material
Original Assignee
National Institute for Research in Inorganic Material
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Research in Inorganic Material filed Critical National Institute for Research in Inorganic Material
Priority to JP60219835A priority Critical patent/JPS6280938A/en
Publication of JPS6280938A publication Critical patent/JPS6280938A/en
Publication of JPH0577134B2 publication Critical patent/JPH0577134B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To improve stability, by applying a strong electric field under ultra- high vacuum, after subjecting the surface of a carbon titanium nitride mono crystal emitter to treatment with a gas including H2S or S. CONSTITUTION:After the surface of a TiCN emitter is subject to treatment at 900-1,400 deg.C, with a gas including H2S or S, or treated through the above- mentioned treatment and a treatment with O2 gas and/or C2H4 or other hydro- carbon gases in parallel, a strong electric field of 10<7>V/cm or more is further applied to the emitter under ultra-high vacuum. After the H2S treatment, the emitter is further heated to 900-1,400 deg.C in O2, where the heating time is chosen to be 5L or more. It is also possible to perform the H2S gas treatment after carrying out the O2 treatment in the reverse way, or they can be performed simultaneously as well with adjustments of introduced gas amounts to: 5: or more for O2 and 2L or more for H2S. These treatments allow simple manufacture of a field emitter presenting excellent stability.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は高安定な電子放射特性を示すフィールドエミッ
ターの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing a field emitter exhibiting highly stable electron emission characteristics.

フィールドエミッターからの放射電流は輝度が大きく、
放射電子のエネルギー幅が小さく、しかも点光源に近い
などの優れた性質を持っているので、低加速走査型電子
顕微鏡2分析電子顕微鏡、電子線ホログライー顕微鏡等
の新機能電子顕微鏡の実現、電子顕微鏡の高分解能下に
必須であり、またナノメートルリソグラフィー等の分野
においても不可欠なものである。
The radiation current from the field emitter has a large brightness,
Since the energy width of emitted electrons is small and it has excellent properties such as being close to a point light source, it is possible to realize new functional electron microscopes such as low-acceleration scanning electron microscopes, analytical electron microscopes, and electron beam holography microscopes. It is indispensable for high-resolution, and is also indispensable in fields such as nanometer lithography.

従来技術 従来、フィールドエミッターとしては、Wが実用化され
ている。しかし、電流の安定性に問題があり、広い応用
を疎外している。
Prior Art Conventionally, W has been put into practical use as a field emitter. However, there are problems with current stability, which precludes wide application.

本発明者らはさきに、遷移金属化合物からなるフィール
ドエミッターとして、エミッターの軸方位を< 110
 >方位に選ぶことにより、従来実現していなかった放
射電子ビームの方向をエミッター軸方位にすることに成
功した。(特願昭58−199605号)。さらに、炭
化チタン単結晶チップ表面を酸素ガスによる処理(特願
昭59−275220号)及びC2H4などの炭化水素
ガスによる処理(特願昭59−275221号)を施す
ことにより、高安定な電子放射性特性を示すフィールド
エミッターを得ることを開発し得た。
The present inventors previously developed a field emitter made of a transition metal compound with an emitter axis orientation of <110
>By selecting the direction, we succeeded in making the direction of the emitted electron beam the emitter axis direction, which had not been achieved previously. (Patent Application No. 199605, 1982). Furthermore, by treating the surface of the titanium carbide single crystal chip with oxygen gas (Japanese Patent Application No. 59-275220) and with hydrocarbon gas such as C2H4 (Japanese Patent Application No. 59-275221), highly stable electron emissivity can be achieved. We were able to develop a field emitter that exhibits the characteristics.

発明の目的 本発明の目的は炭窒化チタン(Ti CxNy、 0.
5≦x + y≦1)単結晶エミッター(以下T1CN
エミッターと略記する)の表面処理方法を開発し、さら
に優れた安定性を示すフィールドエミッターの製造方法
を提供するにある。
OBJECT OF THE INVENTION The object of the invention is to prepare titanium carbonitride (Ti CxNy, 0.
5≦x + y≦1) single crystal emitter (hereinafter T1CN
The purpose of the present invention is to develop a surface treatment method for field emitters (abbreviated as "field emitters"), and to provide a method for manufacturing field emitters that exhibit even better stability.

発明の構成 本発明者らは前記目的を達成すべく、更に研究を続けた
結果、T1CNエミッターの表面をH2SまたはSを含
むガラ己 ス(例えば5F)(以下H2Sと略台する)で、 90
0−1400℃の下で処理し、またはこの処理と02ガ
スによる処理及び又はC2H4または他の炭化水素ガス
(例えばC2H6)(以下C2H4と略記する)を併用
して処理した後、さらに超高真空下で107■/■以上
の強電界を印加すると、エミッションパターンが変化し
、安定な特性を示すフィールドエミッターが得られるこ
とを究明し得た。この知見に基づいて本発明を完成した
Structure of the Invention In order to achieve the above object, the present inventors continued their research, and as a result, the surface of the T1CN emitter was made of glass glass containing H2S or S (for example, 5F) (hereinafter abbreviated as H2S).90
After treatment at 0-1400°C, or a combination of this treatment with 02 gas and/or C2H4 or other hydrocarbon gas (e.g. C2H6) (hereinafter abbreviated as C2H4), further ultra-high vacuum It has been found that when a strong electric field of 107 ■/■ or more is applied under the conditions, the emission pattern changes and a field emitter exhibiting stable characteristics can be obtained. The present invention was completed based on this knowledge.

本発明の要旨は 1)  T1CNエミッター表面を、900〜1400
℃の下で、H2Sによる表面処理を施した後、超高真空
下でio’V/cm以上の強電界を印加することを特徴
とする高安定フィールドエミッターの製造方法。
The gist of the present invention is 1) The T1CN emitter surface is
A method for producing a highly stable field emitter, which comprises applying a strong electric field of io'V/cm or more under an ultra-high vacuum after surface treatment with H2S at .degree.

2)  T1CNエミッター表面を900〜1400℃
の下で、H2SまたはSを含んだガスによる表面処理と
02による表面処理とを別個にまたは同時に施した後、
超高真空下で、107V/cm以上の強電界を印加する
ことを特徴とする高安定フィールドエミッターの製造方
法。
2) T1CN emitter surface at 900-1400℃
After performing surface treatment with a gas containing H2S or S and surface treatment with 02 separately or simultaneously under
A method for manufacturing a highly stable field emitter, which comprises applying a strong electric field of 107 V/cm or more under ultra-high vacuum.

3)  T1CNエミッター表面を、900〜1400
℃の下で、H2Sによる表面処理と、C2H4による表
面処理とを別個にまたは同時に施した後、超高真空下で
、107V/cm以上の強電界を印加することを特徴と
する高安定フィールドエミッターの製造方法。
3) T1CN emitter surface, 900-1400
A highly stable field emitter characterized in that a strong electric field of 107 V/cm or more is applied under an ultra-high vacuum after surface treatment with H2S and surface treatment with C2H4 are applied separately or simultaneously at ℃. manufacturing method.

4)TiCNエミッター表面を、900〜1400℃の
下で、H2Sによる表面処理、02による表面処理及び
C2H4による表面処理を別個に9例えばH2S−02
→C2H4,H2S→C2H4→02. C2H4→H
2S→021 C2H4→02→H2S rO2→C2
H4−H2S、 または02→H2S→C2H、+の順
序または同時に施した後、超高真空下で、107V/c
m以上の強電界を印加することを特徴とする高安定フィ
ールドエミッターの製造方法、にある。
4) The TiCN emitter surface was separately subjected to surface treatment with H2S, surface treatment with 02, and surface treatment with C2H4 at 900 to 1400 °C, e.g., H2S-02.
→C2H4, H2S→C2H4→02. C2H4→H
2S→021 C2H4→02→H2S rO2→C2
After applying H4-H2S, or 02→H2S→C2H, + in the order or simultaneously, under ultra-high vacuum, 107V/c
A method for manufacturing a highly stable field emitter, characterized by applying a strong electric field of m or more.

本発明において使用するT1CNエミッターは、炭窒化
チタン単結晶ロンドから切り出した9例えば0.2X0
.2X3mmの直方体の先端を電解研磨法により約0.
1μmの先端径とし、このエミッターを超高真空下で1
500℃フラッシュ加熱し、T1CN< 110 >エ
ミッターの表面を清浄したものを使用する。そのエミッ
ションパターンは第1図に示す通りである。なお、図中
の斜線部分が電子ビームのd晩だ部分を表わす。
The T1CN emitter used in the present invention is 9, for example, 0.2X0 cut from titanium carbonitride single crystal Rondo.
.. The tip of a 2 x 3 mm rectangular parallelepiped was polished to about 0.0 mm by electrolytic polishing.
The tip diameter was 1 μm, and this emitter was heated under ultra-high vacuum for 1 μm.
A T1CN<110> emitter whose surface has been cleaned by flash heating at 500°C is used. The emission pattern is as shown in FIG. Note that the shaded area in the figure represents the d-light part of the electron beam.

このような清浄表面を持ったTi CN < 110 
>チップをH2Sガス中で、例えば10−’Torrノ
下で900〜1400℃で加熱する。加熱時間は2L(
ラングミュア−) (L =10−6TorrX1se
c)以上になるように選ぶ。加熱温度が900℃未満及
び1400℃を超えると、エミッションパターンは清浄
表面からのエミッションパターンと同じであり、電子放
射特性も改善されない。従って、加熱温度は900〜1
400℃であることが必要である。
TiCN < 110 with such a clean surface
>Heating the chip in H2S gas, e.g., at 900-1400<0>C under 10-'Torr. Heating time is 2L (
Langmuir) (L = 10-6TorrX1se
c) Select so that it is or more. When the heating temperature is below 900°C and above 1400°C, the emission pattern is the same as that from a clean surface, and the electron emission characteristics are not improved. Therefore, the heating temperature is 900-1
The temperature needs to be 400°C.

このように処理した後、超高真空下で、全電流を約10
μAにし、30分以上電子ビームを放射(強電界を印加
)すると、エミッションパターンは第2図に変化する。
After this treatment, under ultra-high vacuum, the total current was increased to about 10
When the electron beam is radiated (a strong electric field is applied) at μA for 30 minutes or more, the emission pattern changes as shown in FIG. 2.

なお、点線部分は表面処理前の清浄表面からのエミッシ
ョンパターンを示す。
Note that the dotted line portion indicates the emission pattern from the clean surface before surface treatment.

このような処理を施したTi CNフィールドエミッタ
ーは、電流雑音が±0.296以下で、ドリフトは±0
.2%/hr以下の優れた特性を示し、第3図talの
通りとなる。
The Ti CN field emitter treated in this way has a current noise of less than ±0.296 and a drift of ±0.
.. It exhibits excellent characteristics of 2%/hr or less, as shown in FIG. 3 (tal).

前期のH2S処理と02処理及び又はC2H4ガスによ
る処理を組合せてガス処理を施してもよい。
The gas treatment may be performed by combining the earlier H2S treatment, the 02 treatment, and/or the treatment with C2H4 gas.

これらを例示すると次の通りである。Examples of these are as follows.

1)前記のH2S処理後、さらにα中で900〜140
0℃で加熱する。その時の加熱時間は5L以上になるよ
うに選ぶ。また逆に02処理を先に施した後、H2Sガ
ス処理を行っても、また、同時に施してもよい。同時に
行う場合は02ガスの導入量を02 : 、5 L以上
、H2S:2L以上と調整して行う。
1) After the above H2S treatment, 900 to 140
Heat at 0°C. The heating time at that time should be selected to be 5L or more. Conversely, the H2S gas treatment may be performed after the 02 treatment or at the same time. If they are carried out at the same time, the amount of introduced 02 gas is adjusted to 02: 5 L or more and H2S: 2 L or more.

2)前記1)における02処理に代え、C2H4ガスに
よる処理(ガス導入量50L以上)を同様に行うことが
できる。
2) Instead of the 02 process in 1) above, a process using C2H4 gas (gas introduction amount of 50 L or more) can be performed in the same way.

3) H2S処理+ 02処理及びC2H4処理を同時
または別個に施してもよい。
3) H2S treatment + 02 treatment and C2H4 treatment may be performed simultaneously or separately.

なお、前記1)、 2)、 3)の方法を行う場合は、
炭窒化チタン単結晶の方位に関係なく、優れた安定性を
示すフィールドエミッターを製造することができる。
In addition, when performing methods 1), 2), and 3) above,
Field emitters exhibiting excellent stability can be manufactured regardless of the orientation of the titanium carbonitride single crystal.

実施例1゜ 先端径0.1μmのT1Co、vsNo、o+ < 1
10>フィールドエミッターを、超高真空下にセットし
、1500℃にフラッシュ加熱して清浄表面を得た。こ
の系にH2Sガスを導入し、1×1O−6Torrノ真
空度にした後、1100℃で10秒間加熱した。(lO
Lの露出量)、その後超高真空下で全電流約10μAを
30分間放射(107V/cm以上の強電界の印加)し
て、エミッションパターンを第1図より第2図のパター
ンに変化させた。得られたフィールドエミッターの電流
雑音は真空度5 x 10”””’Torr c)下で
±0.296以下、ドリフトは±0.2%/hr以下、
その電子放射特性は第3図1a)に示す通りであった。
Example 1゜T1Co with tip diameter of 0.1 μm, vsNo, o+ < 1
10> The field emitter was set under ultra-high vacuum and flash heated to 1500°C to obtain a clean surface. H2S gas was introduced into this system to create a vacuum of 1 x 1 O-6 Torr, and then heated at 1100°C for 10 seconds. (lO
L exposure amount), and then radiated a total current of about 10 μA for 30 minutes under ultra-high vacuum (applying a strong electric field of 107 V/cm or more), changing the emission pattern from Fig. 1 to the pattern shown in Fig. 2. . The current noise of the field emitter obtained is less than ±0.296 under a vacuum degree of 5 x 10””’Torr c), and the drift is less than ±0.2%/hr.
Its electron emission characteristics were as shown in FIG. 3 1a).

実施例2゜ 実施例1.の方法でTiCoc+sNo、o+ < 1
10>フィー号ドエミツターチップを、H2Sで表面処
理した後、この系にC2H4ガスを導入し、I X1O
−6Torrの真空度にした後、1100℃で100秒
間加熱した。(100Lの露出量)。
Example 2゜Example 1. By the method of TiCoc+sNo, o+ < 1
10> After surface treating the feed emitter chip with H2S, C2H4 gas is introduced into this system, and IX1O
After setting the degree of vacuum to -6 Torr, it was heated at 1100° C. for 100 seconds. (100L exposure amount).

その後、実施例1.におけると同様に超高真空下で10
7V / an以上の強電界を印加してエミツンヨンパ
ターンを第1図から第2図に変化させた。
After that, Example 1. 10 under ultra-high vacuum as in
A strong electric field of 7 V/an or more was applied to change the emitter pattern from FIG. 1 to FIG. 2.

得られたフィールドエミッターの電流雑音は真空度5刈
0’−12Torr千のもとて十0.296以下、ドリ
フトは±0.2%/ h r以下であり、その特性は第
3図(blに示す通りであった。
The current noise of the obtained field emitter was less than 10.296 at a vacuum level of 5 to 12 Torr, and the drift was less than ±0.2%/hr, and its characteristics are shown in Figure 3 (bl It was as shown in

実施例3゜ 実施例2.におけるC 2 H4に代えて02を使用し
、1100℃で20秒間加熱した。(20Lの露出量Å
以下実施例2゜と同様にしてフィールドエミッターを得
た。得られたフィールドエミッターは実施例2.と同様
なものであった。
Example 3゜Example 2. 02 was used in place of C 2 H4 in , and heated at 1100° C. for 20 seconds. (20L exposure amount Å
A field emitter was obtained in the same manner as in Example 2. The obtained field emitter is Example 2. It was similar to

実施例4゜ 実施例2.と同様にしてC2H4処理した後、再度超高
真空に排気した後、02を導入し、1×10−εTor
rの真空度にした後、1100℃で20秒間加熱した。
Example 4゜Example 2. After C2H4 treatment in the same manner as above, evacuated to ultra-high vacuum again, 02 was introduced, and 1×10-εTor was applied.
After setting the vacuum degree to r, it was heated at 1100° C. for 20 seconds.

(20Lの露出量上以下実施例2.と同様にしてフィー
ルドエミッターを製造した。得られたフィールドエミッ
ターの特性は実施例2゜と同様のものであった。
(Exposure amount: 20L) A field emitter was manufactured in the same manner as in Example 2. The characteristics of the obtained field emitter were similar to those in Example 2.

発明の効果 本発明の方法によると、炭窒化チタン単結晶から、優れ
た安定性を示すフィールドエミッターが容易に製造する
ことができる。
Effects of the Invention According to the method of the present invention, a field emitter exhibiting excellent stability can be easily manufactured from a titanium carbonitride single crystal.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はTiCogsNo、o+< 110 > フィ
ールドエミッター01500℃フラッシュ加熱後の清浄
表面からのエミッションパターン、第2図は本発明の方
法の処理を施した後のフィールドエミッターからのエミ
ッションパターン、第3図は本発明の方法で製造したフ
ィールドエミッターの全電流と時間の関係図で、第3図
1blはH2Sガスのみにより表面処理した場合、第3
図1blはH2S処理後、3らにC2山ガス処理を施し
た場合を示す。 特許出願人  科学技術庁無機材質研究所長後  藤 
    優
Figure 1 shows the emission pattern from the clean surface of a TiCogsNo, o+<110> field emitter after flash heating at 01500°C. Figure 2 shows the emission pattern from the field emitter after processing according to the method of the present invention. Figure 3 is a graph showing the relationship between the total current and time of the field emitter manufactured by the method of the present invention, and FIG.
FIG. 1bl shows the case where after the H2S treatment, the C2 mountain gas treatment was performed on the third layer. Patent applicant Goto, director of the Institute for Inorganic Materials, Science and Technology Agency
Excellent

Claims (1)

【特許請求の範囲】 1)炭窒化チタン単結晶エミッター表面を、900〜1
400℃の下で、H_2SまたはSを含んだガスによる
表面処理を施した後、超高真空下で、10^7V/cm
以上の強電界を印加することを特徴とするチタン化合物
フィールドエミッターの製造方法。 2)炭窒化チタン単結晶エミッター表面を、900〜1
400℃の下で、H_2SまたはSを含んだガスによる
表面処理とO_2による表面処理とを別個にまたは同時
に施した後、超高真空下で、10^7V/cm以上の強
電界を印加することを特徴とするチタン化合物フィール
ドエミッターの製造方法。 3)炭窒化チタン単結晶エミッター表面を、900〜1
400℃の下で、H_2SまたはSを含んだガスによる
表面処理とC_2H_4またはその他の炭化水素ガスに
よる表面処理とを別個にまたは同時に施した後、超高真
空下で10^7V/cm以上の強電界を印加することを
特徴とするチタン化合物フィールドエミッターの製造方
法。 4)炭窒化チタン単結晶エミッター表面を、900〜1
400℃の下で、H_2SまたはSを含んだガスによる
表面処理、O_2による表面処理及びC_2H_4また
はその他の炭化水素ガスによる表面処理を別個にまたは
同時に施した後、超高真空下で、10^7V/cm以上
の強電界を印加することを特徴とするチタン化合物フィ
ールドエミッターの製造方法。
[Claims] 1) The surface of the titanium carbonitride single crystal emitter is 900 to 1
After surface treatment with gas containing H_2S or S at 400℃, under ultra-high vacuum, 10^7V/cm
A method for producing a titanium compound field emitter, characterized by applying a strong electric field of the above magnitude. 2) Titanium carbonitride single crystal emitter surface with 900~1
After performing surface treatment with a gas containing H_2S or S and surface treatment with O_2 separately or simultaneously at 400°C, applying a strong electric field of 10^7 V/cm or more under ultra-high vacuum. A method for producing a titanium compound field emitter characterized by: 3) Titanium carbonitride single crystal emitter surface with 900~1
After surface treatment with H_2S or S-containing gas and surface treatment with C_2H_4 or other hydrocarbon gas at 400°C, separately or simultaneously, the A method for producing a titanium compound field emitter, characterized by applying an electric field. 4) Titanium carbonitride single crystal emitter surface with 900~1
After surface treatment with a gas containing H_2S or S, a surface treatment with O_2, and a surface treatment with C_2H_4 or other hydrocarbon gas at 400°C, separately or simultaneously, under ultra-high vacuum at 10^7V. A method for manufacturing a titanium compound field emitter, which comprises applying a strong electric field of /cm or more.
JP60219835A 1985-10-02 1985-10-02 Manufacture of titanium compound field emitter Granted JPS6280938A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60219835A JPS6280938A (en) 1985-10-02 1985-10-02 Manufacture of titanium compound field emitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60219835A JPS6280938A (en) 1985-10-02 1985-10-02 Manufacture of titanium compound field emitter

Publications (2)

Publication Number Publication Date
JPS6280938A true JPS6280938A (en) 1987-04-14
JPH0577134B2 JPH0577134B2 (en) 1993-10-26

Family

ID=16741794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60219835A Granted JPS6280938A (en) 1985-10-02 1985-10-02 Manufacture of titanium compound field emitter

Country Status (1)

Country Link
JP (1) JPS6280938A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63279535A (en) * 1987-05-08 1988-11-16 Natl Inst For Res In Inorg Mater Manufactute of carbon-nitride niobium field emitter
CN106549157A (en) * 2015-09-18 2017-03-29 中国科学院宁波材料技术与工程研究所 Hollow ball shape class graphite-phase C3N4With elemental sulfur composite material and its preparation method and application

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63279535A (en) * 1987-05-08 1988-11-16 Natl Inst For Res In Inorg Mater Manufactute of carbon-nitride niobium field emitter
CN106549157A (en) * 2015-09-18 2017-03-29 中国科学院宁波材料技术与工程研究所 Hollow ball shape class graphite-phase C3N4With elemental sulfur composite material and its preparation method and application

Also Published As

Publication number Publication date
JPH0577134B2 (en) 1993-10-26

Similar Documents

Publication Publication Date Title
JP3137760B2 (en) Manufacturing method of polycrystalline semiconductor thin film
US4636400A (en) Method of treating silicon nitride film formed by plasma deposition
JPS6280938A (en) Manufacture of titanium compound field emitter
JPH07113147B2 (en) New carbon material manufacturing method
US6447851B1 (en) Field emission from bias-grown diamond thin films in a microwave plasma
JPS63279535A (en) Manufactute of carbon-nitride niobium field emitter
JPS5982732A (en) Manufacture for semiconductor device
JPS6229032A (en) Manufacture of highly stabilized field emitter
JPS62222633A (en) Manufacture of semiconductor element
JPS6280936A (en) Manufacture of field emitter
JPS61190830A (en) Manufacture of titanium oxycarbide emitter
JPH0461724A (en) Manufacture of niobium carbide field emitter
JPH03735B2 (en)
JPH01209634A (en) Manufacture of niobium carbide-nitride field emitter
JPS634454B2 (en)
JPH0434253B2 (en)
JPS6280937A (en) Manufacture of high performance field emitter
JP2739966B2 (en) Manufacturing method of thermal field emission electron source
JPH0791655B2 (en) Surface treatment method and apparatus
JPH03274642A (en) High luminance la b6 cathode
JPH0441452B2 (en)
JP2663518B2 (en) Silicon substrate cleaning method
JPH05209271A (en) Selective cvd method
US7101586B2 (en) Method to increase the emission current in FED displays through the surface modification of the emitters
JPS5971242A (en) Generation method of electron beam with high stability and high intensity

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term