JPH0441452B2 - - Google Patents

Info

Publication number
JPH0441452B2
JPH0441452B2 JP19960583A JP19960583A JPH0441452B2 JP H0441452 B2 JPH0441452 B2 JP H0441452B2 JP 19960583 A JP19960583 A JP 19960583A JP 19960583 A JP19960583 A JP 19960583A JP H0441452 B2 JPH0441452 B2 JP H0441452B2
Authority
JP
Japan
Prior art keywords
emitter
chip
tip
pattern
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19960583A
Other languages
Japanese (ja)
Other versions
JPS6091528A (en
Inventor
Yoshio Ishizawa
Chuhei Ooshima
Shigeki Ootani
Ryutaro Soda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Original Assignee
KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO filed Critical KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Priority to JP58199605A priority Critical patent/JPS6091528A/en
Publication of JPS6091528A publication Critical patent/JPS6091528A/en
Publication of JPH0441452B2 publication Critical patent/JPH0441452B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/30Cold cathodes, e.g. field-emissive cathode
    • H01J1/304Field-emissive cathodes

Landscapes

  • Cold Cathode And The Manufacture (AREA)

Description

【発明の詳細な説明】 本発明は電子ビーム露光機、高輝度電子ビーム
利用機器等に使用するフイールド・エミツターに
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a field emitter used in an electron beam exposure machine, a device using a high-intensity electron beam, and the like.

フイールド・エミツターからのエミツシヨン電
流は輝度が大きく、放射電子のエネルガー幅が小
さく、しかも点光源の近いものなどの優れた特長
を持つている。
The emission current from the field emitter has excellent features such as high brightness, small energy width of emitted electrons, and near point light source.

従来、フイールド・エミツター材料としては、
タングステンが実用化されているが遷移金属炭化
物はタングステンよりも仕事関数が小さく、且つ
残留気体との反応に不活性であるため、電子放射
材料としての応用が期待されている。遷移金属炭
化物MCX(ただし、Mは遷移金属を表わす)では
xが0.5〜0.96に亘る非化学量論組成の領域が熱
力学的に存在し、一般に熱平衡に近い状態で作製
した結晶には4〜20原子%の炭素空孔が導入され
る。この炭素空孔の存在は、放射電流の雑音の原
因になつていることが判つたため本発明者らはこ
の炭素空孔を減少させる方法について研究の結
果、炭素空孔に窒素及びまたは酸素を導入固溶さ
せることによつて、減少し得られ、これにより安
定な高輝度フイールド・エミツターを得ることに
成功した。
Traditionally, field emitter materials include:
Although tungsten has been put into practical use, transition metal carbides have a smaller work function than tungsten and are inert to reactions with residual gases, so they are expected to be used as electron emitting materials. In the transition metal carbide MC ~20 atom % of carbon vacancies are introduced. The existence of carbon vacancies was found to be a cause of noise in the radiation current, so the inventors conducted research on a method to reduce these carbon vacancies, and found that nitrogen and/or oxygen was added to the carbon vacancies. By introducing the solid solution, it was possible to reduce the amount of light, and as a result, we succeeded in obtaining a stable high-brightness field emitter.

この化学組成は、一般式 MCxNyOz (ただし、Mはa、Va、a族の遷移金属の
単独または2種以上の固溶物を表わし、0.5≦x
+y+z≦1、0.5≦x≦1、0≦y≦0.5、0≦
z≦0.5である)で示される遷遭金属化合物であ
る。
This chemical composition is expressed by the general formula MC
+y+z≦1, 0.5≦x≦1, 0≦y≦0.5, 0≦
z≦0.5).

前記遷移金属の具体的金属としては、Ti、Zr、
Hf、V、Nb、Ta、Mo、W及びこれらの固溶物
である。
Specific examples of the transition metal include Ti, Zr,
These are Hf, V, Nb, Ta, Mo, W, and solid solutions thereof.

炭化物MCxは、0.5≦x≦1の組成範囲内で
NaCl型構造が安定であることが知られている。
これは、炭素原子サイトに原子空孔が50%できて
も結晶が安定であることを示している。安定なフ
イールドエミツターは、この炭素原子空孔に酸素
原子あるいは窒素原子を導入することにより得ら
れる。したかつて、酸素原子あるいは窒素原子の
導入量は最大50%である。つまり、0≦y≦0.5、
0≦z≦0.5である。また、酸素、窒素の2つの
原子が同時に炭素原子空孔に入るのみならず、炭
素原子と置換して入ることもあり、この場合に
は、炭素原子サイトの制限、すなわち、0.5≦x
+y+z≦1を受ける。
Carbide MCx is within the composition range of 0.5≦x≦1.
It is known that the NaCl type structure is stable.
This shows that the crystal is stable even if 50% of vacancies are created at carbon atom sites. Stable field emitters can be obtained by introducing oxygen or nitrogen atoms into these carbon vacancies. Previously, the amount of oxygen or nitrogen atoms introduced was at most 50%. In other words, 0≦y≦0.5,
0≦z≦0.5. In addition, two atoms, oxygen and nitrogen, not only enter the carbon atom vacancy at the same time, but also enter by replacing the carbon atom. In this case, the carbon atom site is limited, i.e. 0.5≦
+y+z≦1.

ところが、<001>、<111>エミツターでは、第
1図a,bのエミツシヨンパターン(第1図aは
<001>、第1図bは、<111>を示す。)に示すよ
うに、エミツター軸から放射状に出ており、エミ
ツターの軸方位には殆んど出てない。従つて、パ
ターン中心部は暗い。このような電子放射は応用
上好ましくない。
However, for <001> and <111> emitters, as shown in the emitter patterns shown in Figure 1 a and b (Figure 1 a shows <001> and Figure 1 b shows <111>), , they radiate out from the emitter axis, and almost never come out in the axial direction of the emitter. Therefore, the center of the pattern is dark. Such electron emission is undesirable in terms of applications.

本発明はパターン中心部が明るいフイールド・
エミツターを提供せんとするものである。
The present invention has a bright field in the center of the pattern.
It is intended to provide emitters.

本発明者らはこの目的を達成すべく研究の結
果、エミツター軸方向に電子ビームを放射し、エ
ミツシヨンパターンの中心部を明るくするには、
第1図cに示すようなエミツシヨンパターンを有
する<110>エミツターを用いるのがよいことが
分つた。
The inventors of the present invention conducted research to achieve this objective, and found that in order to emit an electron beam in the direction of the emitter axis and brighten the center of the emitter pattern,
It has been found that it is advantageous to use a <110> emitter having an emission pattern as shown in FIG. 1c.

すなわち、炭化物(例えばTiC)単結晶の表面
研究から、炭化物では(001)面と(111)面が表
面エネルギーが小さく、面の発達がしやすい安定
な面であり、先端径0.1μmチツプが高温で加熱さ
れると、チツプ先端は(001)面と(111)面とが
発達し、これらの面によつて囲まれる。第2図a
は<001>チツプの先端形状である。これは電子
顕微鏡で確認した。
In other words, from research on the surface of single crystals of carbides (for example, TiC), we have found that (001) and (111) planes have low surface energy and are stable planes that are easy to develop, and that chips with a tip diameter of 0.1 μm can be heated at high temperatures. When heated at , the tip of the chip develops (001) and (111) planes and is surrounded by these planes. Figure 2a
is the tip shape of the <001> chip. This was confirmed using an electron microscope.

Wフイールド・エミツターでは低い仕事関数を
持つ結晶面で電子放射が起るが、本発明で使用す
るMCxNyOz<001>フイールド・エミツターで
は、第2図aの電界強度の大きい局所部分(稜線
の集合した一点)から電子放射が起つていること
が分つた。
In the W field emitter, electron emission occurs in the crystal plane with a low work function, but in the MC x N y O z <001> field emitter used in the present invention, the electron emission occurs in the local area where the electric field intensity is large as shown in Figure 2a. It was found that electron emission was occurring from (a single point where the ridge lines gathered).

このことは<111>エミツターでも同じである。 The same is true for <111> emitters.

従つて、エミツシヨン電流を、エミツター軸方
位(真下)に取り出すには、第2図bに示すよう
に、チツプと最先端で強い電界強度がとられるよ
うに設計すればよいことがわかる。
Therefore, it can be seen that in order to extract the emitter current in the direction of the emitter axis (directly below), it is necessary to design the device so that a strong electric field strength is obtained between the chip and the leading edge, as shown in FIG. 2b.

このようなチツプの最先端で強い電界強度を得
るには第2図bからもわかるように、<110>チツ
プのみで実現し得られることが分つた。
As can be seen from Figure 2b, it was found that a strong electric field strength at the leading edge of such a chip could be achieved only with a <110> chip.

すなわち、第2図bに示すような先端が鋭い形
状にするには、<110>チツプを使用することが必
要であるが、単に切り出した<110>チツプをそ
のまま使用しても、そのような先端形状にはなら
ない。切り出した<110>チツプを真空中(例、
真空度1×10-10Torr)で複数回加熱(加熱温度
1500〜1800℃)することにより、表面が安定化し
鋭い先端が得られる。
In other words, in order to create a shape with a sharp tip as shown in Figure 2b, it is necessary to use a <110> chip, but even if you simply use a cut out <110> chip as is, such a shape will not be obtained. It does not have a tip shape. The cut <110> chip is placed in a vacuum (e.g.
Heating multiple times at a vacuum level of 1×10 -10 Torr (heating temperature
(1500-1800℃), the surface is stabilized and a sharp tip is obtained.

こうして得られた、<110>チツプを使用したフ
イールド・エミツターのエミツシヨンバターンは
第1図cに示す通り、中心部に電子ビームが出て
おり、その周囲に4つの輝点を有するものとな
る。
The emission pattern of the field emitter using the <110> chip thus obtained has an electron beam in the center and four bright spots around it, as shown in Figure 1c. Become.

これらの知見に基いて本発明を完成した。 The present invention was completed based on these findings.

本発明の要旨は、材料の化学組成を一般式
MCxNyOz(式中、Mはa、a、a族の遷
移金属の単独または2種以上の固溶体を表わし、
0.5≦x+y+z≦1、0.5≦x≦1、0≦y≦
0.5、0≦z≦0.5である)で示される遷移金属化
合物からなるフイールド・エミツターにおいて、
エミツターの軸方位を<110>にし、かつ、先端
を鋭い形状とすることにより、放射電子ビームの
方向をエミツター軸方位にして、中心部とその周
囲に4つの輝点を有するエミツシヨンパターンを
可能にしたことを特徴とする遷移金属化合物から
なるフイールド・エミツターにある。
The gist of the invention is to define the chemical composition of the material by the general formula
MCxNyOz (wherein M represents a solid solution of a, a, or group a transition metals alone or of two or more,
0.5≦x+y+z≦1, 0.5≦x≦1, 0≦y≦
0.5, 0≦z≦0.5) in a field emitter made of a transition metal compound,
By setting the axial direction of the emitter to <110> and making the tip sharp, the direction of the emitted electron beam is aligned with the emitter axis direction, creating an emitter pattern with four bright spots in the center and around it. A field emitter made of a transition metal compound is characterized by the following characteristics:

実施例 TiC0.96N0.002O0.03<110>、フイールド・エミ
ツターからのエミツシヨンパターンは第1図cの
通りであり、電流雑音も0.2%以下、電流変動も
−0.04%/h以下であつた。その実施条件は次の
通りで行つた。
Example TiC 0.96 N 0.002 O 0.03 <110>, the emission pattern from the field emitter was as shown in Figure 1c, the current noise was less than 0.2%, and the current fluctuation was less than -0.04%/h. . The implementation conditions were as follows.

すなわち、先端径約0.05μmのチツプを真空度
8×10-11Torr、温度1750℃で数秒間・数回加熱
して作製した<110>チツプを、酸素と窒素の混
合ガス(酸素9、窒素1の割合)中(圧力1×
10-6Torr)で1000℃で100秒間加熱する。チツプ
表面の吸着(汚れが)すすんだ場合には、元の表
面状態に戻すために1000℃のフラツシング加熱を
行う。印加電圧は1980V、エミツシヨン電流は
1μAである。
In other words, a <110> chip with a tip diameter of approximately 0.05 μm was heated several times for several seconds at a temperature of 1750 °C in a vacuum of 8 1 ratio) medium (pressure 1×
10 -6 Torr) and 1000°C for 100 seconds. If adsorption (dirt) on the chip surface progresses, flashing heating is performed at 1000℃ to restore the original surface condition. The applied voltage is 1980V, and the emission current is
It is 1μA.

以上のように、本発明のフイールド・エミツタ
ーによると、パターン中心部が極めて明るく、し
かもN、及び(または)Oを固溶させた遷移金属
炭化物をエミツター材料として使用するため、電
流雑音も0.2%以下、電流変動も−0.04%/hr以
下の安定な放射特性を有する効果を奏し得られ
る。
As described above, according to the field emitter of the present invention, the center of the pattern is extremely bright, and since a transition metal carbide containing N and/or O as a solid solution is used as the emitter material, the current noise is 0.2%. Hereinafter, the effect of having stable radiation characteristics with current fluctuation of -0.04%/hr or less can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はMCxNyOzフイールド・エミツターか
らのエミツシヨンパターン図を示す。×印は中心
位置を示す。第1図aはMCxNyOz<001>のエミ
ツシヨンパターン、第1図bはMCxNyOz<111>
のエミツシヨンパターン、第1図cはMCxNyOz
<110>のエミツシヨンパターン、第2図はMCx
NyOzフイールド・エミツターチツプの先端形状
図を示す。第2図aは<001>チツプの先端形状、
第2図bは<110>チツプの先端形状。
FIG. 1 shows a diagram of the emission pattern from the MC x N y O z field emitter. The x mark indicates the center position. Figure 1a shows the emission pattern of MC x N y O z <001>, Figure 1b shows the emitter pattern of MC x N y O z <111>
The emission pattern in Figure 1c is MC x N y O z
<110> emission pattern, Figure 2 is MC x
A diagram of the tip shape of the N y O z field emitter tip is shown. Figure 2 a shows the tip shape of the <001> tip.
Figure 2b shows the tip shape of the <110> chip.

Claims (1)

【特許請求の範囲】[Claims] 1 材料の化学組成を一般式MCxNyOz(式中、
Mはa、a、a族の遷移金属の単独または
2種以上の固溶体を表わし、0.5≦x+y+z≦
1、0.5≦x≦1、0≦y≦0.5、0≦z≦0.5であ
る)で示される遷移金属化合物からなるフイール
ド・エミツターにおいて、エミツターの軸方位を
<110>にし、かつ、先端を鋭い形状とすること
により、放射電子ビームの方向をエミツター軸方
位にして、中心部とその周囲に4つの輝点を有す
るエミツシヨンパターンを可能にしたことを特徴
とする遷移金属化合物からなるフイールド・エミ
ツター。
1 The chemical composition of the material is expressed by the general formula MCxNyOz (wherein,
M represents a solid solution of a, a, or group a transition metals, and 0.5≦x+y+z≦
1, 0.5≦x≦1, 0≦y≦0.5, 0≦z≦0.5. A field made of a transition metal compound, which is characterized by having a shape that allows the direction of the emitted electron beam to be in the emitter axis direction, making it possible to form an emission pattern with four bright spots in the center and around it. Emittah.
JP58199605A 1983-10-25 1983-10-25 Field emitter consisting of transition metal compound Granted JPS6091528A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58199605A JPS6091528A (en) 1983-10-25 1983-10-25 Field emitter consisting of transition metal compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58199605A JPS6091528A (en) 1983-10-25 1983-10-25 Field emitter consisting of transition metal compound

Publications (2)

Publication Number Publication Date
JPS6091528A JPS6091528A (en) 1985-05-22
JPH0441452B2 true JPH0441452B2 (en) 1992-07-08

Family

ID=16410637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58199605A Granted JPS6091528A (en) 1983-10-25 1983-10-25 Field emitter consisting of transition metal compound

Country Status (1)

Country Link
JP (1) JPS6091528A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63279535A (en) * 1987-05-08 1988-11-16 Natl Inst For Res In Inorg Mater Manufactute of carbon-nitride niobium field emitter
WO1998044527A1 (en) * 1997-04-02 1998-10-08 E.I. Du Pont De Nemours And Company Metal-oxygen-carbon field emitters
JP2003086127A (en) * 2001-09-10 2003-03-20 Toshiba Corp Electron beam device and device manufacturing method using it
KR20230137482A (en) 2016-08-08 2023-10-04 에이에스엠엘 네델란즈 비.브이. Electron emitter and method of fabricating same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6086728A (en) * 1983-10-19 1985-05-16 Natl Inst For Res In Inorg Mater Field emitter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6086728A (en) * 1983-10-19 1985-05-16 Natl Inst For Res In Inorg Mater Field emitter

Also Published As

Publication number Publication date
JPS6091528A (en) 1985-05-22

Similar Documents

Publication Publication Date Title
EP1189256A1 (en) Microwave vacuum tube device employing grid-modulated cold cathode source having nanotube emitters
JP3556331B2 (en) Manufacturing method of electron source
DE69401694D1 (en) Electron-emitting device
US3711908A (en) Method for forming small diameter tips on sintered material cathodes
JPH0441452B2 (en)
Adachi et al. Stable carbide field emitter
JPH0437530B2 (en)
JPH11273551A (en) Electron emitting element employing boron nitride and its manufacture
Bettler et al. Effect of impurities on surface self-diffusion and surface structure
Okuyama Growth of Cr needle crystals induced by field electron emission
KR20010029866A (en) Schottky emitter cathode with a stabilized ZrO2 reservoir
JPH0433096B2 (en)
RU2161838C2 (en) Field-emission film-coated cathode and process of its manufacture
JPS63279535A (en) Manufactute of carbon-nitride niobium field emitter
Ishizawa Transition metal carbide field emitters
JPH0577134B2 (en)
JPH0421295B2 (en)
Ishizawa et al. Field emission properties of< 110>-oriented carbide tips
JPS6013258B2 (en) Manufacturing method of carbide field emitter
Nie et al. Thermionic emission of carbonized La-Mo cathode
JPH0533487B2 (en)
JPS6280936A (en) Manufacture of field emitter
US3925240A (en) Halogen containing lead activated calcium sulfide luminescent composition
JP3111233B2 (en) Active species generator for semiconductor manufacturing
JPH0628130B2 (en) Method for producing niobium carbide field emitter