JPS6086728A - Field emitter - Google Patents

Field emitter

Info

Publication number
JPS6086728A
JPS6086728A JP58195704A JP19570483A JPS6086728A JP S6086728 A JPS6086728 A JP S6086728A JP 58195704 A JP58195704 A JP 58195704A JP 19570483 A JP19570483 A JP 19570483A JP S6086728 A JPS6086728 A JP S6086728A
Authority
JP
Japan
Prior art keywords
field emitter
solid solution
nitrogen
oxygen
transition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58195704A
Other languages
Japanese (ja)
Other versions
JPH0433096B2 (en
Inventor
Chuhei Oshima
忠平 大島
Yoshio Ishizawa
石沢 芳夫
Shigeki Otani
茂樹 大谷
Yukio Shibata
柴田 幸男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Research in Inorganic Material
Original Assignee
National Institute for Research in Inorganic Material
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Research in Inorganic Material filed Critical National Institute for Research in Inorganic Material
Priority to JP58195704A priority Critical patent/JPS6086728A/en
Publication of JPS6086728A publication Critical patent/JPS6086728A/en
Publication of JPH0433096B2 publication Critical patent/JPH0433096B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/30Cold cathodes, e.g. field-emissive cathode
    • H01J1/304Field-emissive cathodes

Landscapes

  • Cold Cathode And The Manufacture (AREA)

Abstract

PURPOSE:To gain a stable field emitter with high brightness by decreasing carbon defect of transition metalic carbide by solid solution of nitrogen and/or oxygen. CONSTITUTION:A field emitter is formed by using transition metalic compound which is represented by a general formula MCxOyNz (M is a single or more than two sorts of solid solution of transition metal of IV, V and VI family, and the relationship 0.5<x+Y+z<=1,0,5<=x<=1,0<y<=0.5,0<=z<=0.5, may be satisfied but y and z are not zero at the same time). For example, a single crystal of TiC0.96 whose composition is controlled by a suspended zone method is manufactured, and the crystal is cut out so that axes of <100>, <111> and <110> may coincide with an emissive axis, and the tip end is formed to a radius of curvature less than 0.1 by an electrolytic abrasion. After exposing it to the atmosphere with 1 atmospheric pressure and making adsorption of oxygen and nitrogen, it is heated at 1,000 deg.C for 10min for annealing.

Description

【発明の詳細な説明】 本発明は電子ビーム露光機、高輝度電子ビーム利用機a
K使用するフィールド・エミッターに関する。
Detailed Description of the Invention The present invention relates to an electron beam exposure machine, a high brightness electron beam utilization machine a.
Regarding the field emitter used.

従来のフィールド・エミッターの材料としては、タング
ステンが使用されており、また遷移金属炭化物の利用が
試みられている。
Tungsten has been used as a conventional field emitter material, and attempts have been made to use transition metal carbides.

しかし、タングステンを使用する場合は、タングステン
か活性な金属であるために残留気体が表面、に吸着し、
その吸着した原子が放射面上に拡散0.−6゛ 及び移動する。そのため放射面の局所の仕事間、数する
欠点がある。
However, when using tungsten, residual gases are adsorbed to the surface because tungsten is an active metal.
The adsorbed atoms diffuse onto the radiation surface. -6゛ and move. Therefore, there is a drawback that the local work on the radiation surface is limited.

また、遷移金属炭化物を使用する場合は、タングステン
に比較して残留気体との反応に不活性であるが、その活
性度は放射面上の炭素欠陥の数と密接に関係しており、
欠陥の数が増加すれば表面の活性度は増し、電子ビーム
の変動幅はタンゲス亘る非化学量論化の領域が熱力学的
に存在し、−:20 般に熱平衡に近い状態で作成した結晶には4〜切切子子
の炭素欠陥が導入される。
Additionally, when using transition metal carbides, they are more inert in reacting with residual gas than tungsten, but their activity is closely related to the number of carbon defects on the emitting surface.
As the number of defects increases, the surface activity increases, and the fluctuation range of the electron beam thermodynamically exists in a non-stoichiometric region across the tongue. 4 to 9 faceted carbon defects are introduced.

本発明の目的は遷移金属炭化物では必然的に導入される
炭素欠陥による残留気体との反応に関してよQ不活性な
放射面を作成し、安定な高輝度のフィールド・エミッタ
ーを提供せんとするものである。
The object of the present invention is to create a radiation surface that is more inert with respect to reaction with residual gas due to carbon defects inevitably introduced in transition metal carbides, and to provide a stable, high-brightness field emitter. be.

本発明者らは、遷移金属酸化物の炭素欠陥を窒素、及び
または酸素を固溶させることによって減少させると、安
定な高輝度フィールド・エミッターが得られることを死
明し得た。
The present inventors have demonstrated that a stable high-brightness field emitter can be obtained by reducing carbon defects in transition metal oxides by incorporating nitrogen and/or oxygen into solid solution.

遷移金属炭化物、遷移金属酸化物及び遷移金属窒化物は
いずれも同じ岩塩型結晶構造をもち、化学結合が似てい
るため、相互に固溶し、この固溶により炭素欠陥の数を
減少させることができる。
Transition metal carbides, transition metal oxides, and transition metal nitrides all have the same rock salt crystal structure and have similar chemical bonds, so they form a solid solution with each other, and this solid solution reduces the number of carbon defects. I can do it.

更、vrr酸素の固溶は放射面の仕事関数を下げ、電子
が効率的に放射させる効果を奏し得られる。また、窒、
素の固溶は熱伝導率を向上させ、放射面を清浄化゛する
だめのフラッシュ加熱がより効率的に行うことができる
効果を奏し得られる。
Furthermore, the solid solution of vrr oxygen lowers the work function of the radiation surface and has the effect of emitting electrons efficiently. Also, nitrogen,
The solid solution of the element improves thermal conductivity and has the effect that flash heating for cleaning the radiation surface can be performed more efficiently.

炭素欠陥の数が少ない程安定な放射面となることから、
一般式MCxOyNz(ただし、Mは■、■、■族のM
移金属の単独または2種以上の固溶物を表わす。)の化
合物において、X+y+z−1のイ1hに近いことが望
ましいが、必ずしも1でなくても固溶させることによシ
安定化することができる。
Since the smaller the number of carbon defects, the more stable the radiation surface becomes.
General formula MCxOyNz (where M is M of the ■, ■, ■ group
Represents a solid solution of a single or two or more types of transfer metals. ), it is desirable that X + y + z-1 be close to 1h, but even if it is not necessarily 1, it can be stabilized by making it a solid solution.

有効な組成の範囲は、次の通シである。Valid composition ranges are as follows.

0.5くxく1、O<y<、 0.5、O<: Z <
0 、51p;ただし、yと2が同時に0であることは
ない7■、V、W族の遷移金属としては、Ti 、 Z
r 、 Hf。
0.5 x × 1, O<y<, 0.5, O<: Z<
0, 51p; However, y and 2 are never 0 at the same time 7■, V, W group transition metals include Ti, Z
r, Hf.

V 、 Nb 、 Ta 、 Mo 、 W 、が挙げ
られ、これらの単独または固溶物であってもよい。
Examples include V, Nb, Ta, Mo, and W, and these may be used alone or as a solid solution.

また前記の範囲内に酸素または窒素を炭素の欠陥に固溶
させる方法は、真空中で酸素(又は窒素)気体を導入し
て1000℃で加熱してもよいし、1気圧の酸素(又は
窒素)気体中にエミッターを露光したのち、真空中で1
000℃で加熱処理をしてもよい。更に結晶成長時に酸
素(又は窒素)の気体を結晶内に固溶しても同様の効果
かえられる。
In addition, the method of dissolving oxygen or nitrogen into carbon defects within the above range may be by introducing oxygen (or nitrogen) gas in vacuum and heating it at 1000°C, or by introducing oxygen (or nitrogen) gas at 1 atm. ) After exposing the emitter in gas, 1
Heat treatment may be performed at 000°C. Furthermore, the same effect can be obtained by dissolving oxygen (or nitrogen) gas in the crystal during crystal growth.

次に実施例を挙け、本発明のフィールド・エミッターの
優れた効果を奏することを明らかにする。
Next, Examples will be given to demonstrate the excellent effects of the field emitter of the present invention.

比較例 浮遊帯域法によシ組成を制御したTie、、6単結晶を
作製し、(100)、(111)、(110)軸が放射
軸と一致するように切り出した。その先端を電解研磨に
よシ0.1μ以下の曲率半径に整形し、9 1、Opaの超高真空中でフィールド・エミッションを
調べた。
Comparative Example A Tie, 6 single crystal whose composition was controlled by the floating zone method was prepared and cut out so that the (100), (111), and (110) axes coincided with the radial axis. The tip was electrolytically polished to a radius of curvature of 0.1μ or less, and the field emission was examined in an ultra-high vacuum of 91, Opa.

<100 >チップの表面は十数原子%の欠陥があった
。このチップにおける放射電流の経時変化は第1図に示
す通シであった。第1図が示すように、この表面からの
放射電流は、ステップ及びスパイク状の変動が発生し、
また時間と共に減少した。
<100> The surface of the chip had defects of more than ten atomic percent. The change in radiation current over time in this chip was as shown in FIG. As shown in Figure 1, the radiation current from this surface undergoes step and spike-like fluctuations.
It also decreased over time.

この傾向は(111)チップ、〈110〉チップでも観
測された。
This tendency was also observed for the (111) and <110> chips.

実施例 比較例におけると同様にして< 100 >、<110
、(110)のチップを作製し、これを1気圧の大気に
露出して酸素と窒素を吸着させた後、1000℃で10
分間加熱して焼鈍し、比較例と同様にしてフィールド・
エミッションを調ヘタ。この(100’)チップにおけ
る放射電流の経時変化は第2図に示す通りであった。こ
の図が示すように、放射電流が極めて安定で、10時間
後でもその安定度が続いた。この傾向は(111>チッ
プ、〈110〉チップでも観測された。
<100>, <110 in the same manner as in Examples and Comparative Examples
, (110) was prepared, exposed to the atmosphere at 1 atm to adsorb oxygen and nitrogen, and then heated at 1000°C for 10
Annealed by heating for 1 minute, and field-treated in the same manner as the comparative example.
Adjust the emissions. The emitted current change over time in this (100') chip was as shown in FIG. As this figure shows, the emitted current was extremely stable and remained stable even after 10 hours. This tendency was also observed for the (111>chip and <110>chip.

11.実施例においては遷移金属としての代表としてT
iを挙けたが、Zr、Hf、V、Nb 、、Ta % 
No、Wにおいても、同様な結果が得られる。
11. In the examples, T is used as a representative transition metal.
Although i is listed, Zr, Hf, V, Nb, Ta %
Similar results are obtained for No. and W as well.

以上のように、本発明のフィールド・エミッターは従来
のものに比べ極めて放射電流を長期に亘って極めて安定
である優れた効果を奏し得られる。
As described above, the field emitter of the present invention exhibits an excellent effect that the emission current is extremely stable over a long period of time compared to the conventional field emitter.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の十数原子%の炭素欠陥を有するフィール
ドエミッターにおける放射電流の時間変化図、第2図は
本発明のフィールド・エミッターにおける放射電流の時
間変化図を示す。 特許出願人 科学技術庁無機材質研究所長 後 藤 優
 j 1
FIG. 1 shows a time-varying diagram of the radiation current in a conventional field emitter having carbon defects of more than ten atomic percent, and FIG. 2 shows a diagram of the radiation current over time in the field emitter of the present invention. Patent applicant Masaru Goto, Director, Inorganic Materials Research Institute, Science and Technology Agency j 1

Claims (1)

【特許請求の範囲】 材料の化学組成が一般式、MCxOyN2(ただし、1
(パ\ くlXOくyく帆5、O<z < 0.5を表わす一’
=5jp、’g+y、亡zが同時に0であることはない
。)で示される遷移金属化合物からなることを特徴とす
るフィー、」レド・エミッター。 〕1
[Claims] The chemical composition of the material is the general formula, MCxOyN2 (where 1
(P\kulXOkuykuho5, 1' representing O<z<0.5
=5jp, 'g+y, and z are never 0 at the same time. ), characterized in that it consists of a transition metal compound represented by 'Ledo emitter. ]1
JP58195704A 1983-10-19 1983-10-19 Field emitter Granted JPS6086728A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58195704A JPS6086728A (en) 1983-10-19 1983-10-19 Field emitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58195704A JPS6086728A (en) 1983-10-19 1983-10-19 Field emitter

Publications (2)

Publication Number Publication Date
JPS6086728A true JPS6086728A (en) 1985-05-16
JPH0433096B2 JPH0433096B2 (en) 1992-06-02

Family

ID=16345587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58195704A Granted JPS6086728A (en) 1983-10-19 1983-10-19 Field emitter

Country Status (1)

Country Link
JP (1) JPS6086728A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6091528A (en) * 1983-10-25 1985-05-22 Natl Inst For Res In Inorg Mater Field emitter consisting of transition metal compound
JP2001519076A (en) * 1997-04-02 2001-10-16 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー Metal-oxygen-carbon field emitter

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9285695B2 (en) 2011-09-16 2016-03-15 Ricoh Company, Ltd. Latent electrostatic image developing toner

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS559775A (en) * 1978-07-08 1980-01-23 Toyosha Co Ltd Tilling device
JPS5661733A (en) * 1979-10-24 1981-05-27 Hitachi Ltd Field emission cathode and its manufacture
JPS5760367U (en) * 1980-09-26 1982-04-09

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5760367B2 (en) * 1974-01-11 1982-12-18 Toray Industries

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS559775A (en) * 1978-07-08 1980-01-23 Toyosha Co Ltd Tilling device
JPS5661733A (en) * 1979-10-24 1981-05-27 Hitachi Ltd Field emission cathode and its manufacture
JPS5760367U (en) * 1980-09-26 1982-04-09

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6091528A (en) * 1983-10-25 1985-05-22 Natl Inst For Res In Inorg Mater Field emitter consisting of transition metal compound
JPH0441452B2 (en) * 1983-10-25 1992-07-08 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho
JP2001519076A (en) * 1997-04-02 2001-10-16 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー Metal-oxygen-carbon field emitter
US6376973B1 (en) * 1997-04-02 2002-04-23 E. I. Du Pont De Nemours And Company Metal-oxygen-carbon field emitters

Also Published As

Publication number Publication date
JPH0433096B2 (en) 1992-06-02

Similar Documents

Publication Publication Date Title
JP2004284938A (en) Method of producing carbon nanotube
JP2973352B2 (en) How to make graphite fiber
JP2829221B2 (en) Method of forming oxide film on metal substrate by thermal plasma evaporation method
JPS6086728A (en) Field emitter
US4115526A (en) Process for the preparation of reactive tungsten and derivatives thereof
JP2004267926A (en) Method and apparatus for manufacturing carbon nanotube, catalyst used for the same, catalytic apparatus using catalyst and method of manufacturing catalytic device
JP2754647B2 (en) Manufacturing method of electrode material
JP2739966B2 (en) Manufacturing method of thermal field emission electron source
JP4681202B2 (en) Electron emission coating for thermionic cathode, thermionic cathode, arc discharge lamp
JPS6013258B2 (en) Manufacturing method of carbide field emitter
ES351239A1 (en) Microheating elements,more particularly for cathodes of electron tubes
JPS63279535A (en) Manufactute of carbon-nitride niobium field emitter
JP2001279362A (en) Molybdenum material and its production method
JPS6091528A (en) Field emitter consisting of transition metal compound
JP2000508110A (en) Method of changing work function using ion implantation
US2693431A (en) Method of making electron emitters
JPH03735B2 (en)
JPS63110521A (en) Oxide-coated cathode and manufacture thereof
JP2563342B2 (en) Method for growing compound semiconductor crystal
JPS643350B2 (en)
KR100192035B1 (en) Manufacturing method of cathode
JPH0368129B2 (en)
EP0355766B1 (en) Vacuum deposition apparatus and process for preparing magnetic recording medium
Michaelson High temperature materials for vacuum service
JPH03280322A (en) Alkaline earth carbonate for emitter