JPH0368129B2 - - Google Patents

Info

Publication number
JPH0368129B2
JPH0368129B2 JP57158811A JP15881182A JPH0368129B2 JP H0368129 B2 JPH0368129 B2 JP H0368129B2 JP 57158811 A JP57158811 A JP 57158811A JP 15881182 A JP15881182 A JP 15881182A JP H0368129 B2 JPH0368129 B2 JP H0368129B2
Authority
JP
Japan
Prior art keywords
fibrous
carbon
graphite
layer
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57158811A
Other languages
Japanese (ja)
Other versions
JPS5950010A (en
Inventor
Hiroo Iguchi
Shohei Tamura
Tatsumi Arakawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP57158811A priority Critical patent/JPS5950010A/en
Publication of JPS5950010A publication Critical patent/JPS5950010A/en
Publication of JPH0368129B2 publication Critical patent/JPH0368129B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Inorganic Fibers (AREA)
  • Chemical Treatment Of Fibers During Manufacturing Processes (AREA)

Description

【発明の詳細な説明】 本発明は新規な構造を有する繊維状フツ化黒鉛
に関する。更に詳しくは炭素の網平面の配列の仕
方の異なる3層からなる繊維状フツ化黒鉛に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to fibrous fluorinated graphite having a novel structure. More specifically, the present invention relates to fibrous fluorinated graphite consisting of three layers in which carbon network planes are arranged in different ways.

従来、フツ化黒鉛として知られているものに、
(CF)oの構造を有するもの〔ツアイトシユリフ
ト・デル・アンオルガニツシエ・ヘミー(Z.
Anorg.Chem.)第5巻、283頁(1949)〕及び
(C2F)xの構造を有するもの(特開昭53−102893
号公報)などが知られており、その特異な諸性質
から電池の活物質、潤滑剤などとして工業的に高
く評価されている。しかしそれらはいずれも粉末
状あるいはシート状であり、それ故に用途あるい
は特性が制限されるという問題があつた。
Conventionally known as graphite fluoride,
(CF) Those with the structure o [Z.
Anorg.Chem.) Vol. 5, p. 283 (1949)] and (C 2 F )
No. 3, No. 3, No. 3, No. 3, No. 3, No. 3, No. 3, No. 1, No. 3, No. 1, No. 3, No. 3, No. 3, No. 3, No. 3, No. 2, No. 1, No. 1, No. 1, No. 1, No. 3, No. 2, No. 2, No. 2, No. 2, No. 2, No. 2, No. 2, No. 2, No. 2, 2004] and as a lubricant, etc., it is highly valued industrially due to its unique properties. However, all of them are in the form of powders or sheets, which poses a problem in that their uses and properties are limited.

本発明者らは新規な構造を有する繊維状炭素に
フツ素を作用させることによつて、繊維状のフツ
化黒鉛を得ることができることを見出し、本発明
の到達したものである。
The present inventors have discovered that fibrous graphite fluoride can be obtained by allowing fluorine to act on fibrous carbon having a novel structure, and have achieved the present invention.

従つて本発明の目的は繊維状のフツ化黒鉛を提
供することである。即ち本発明によれば(CF)o
または(C2F)oで表わされるフツ化黒鉛の一方ま
たは両方を少なくとも一部に含む繊維状フツ化黒
鉛であつて、炭素の六角網平面が繊維軸に平行に
かつ年輪状に配列されている最外層、炭素の六角
網平面が繊維軸に平行にかつ放射状に配列されて
いる中間層、特定の方向性を持たない中心層から
なる3層構造を有する繊維状フツ化黒鉛が提供さ
れる。
It is therefore an object of the present invention to provide a fibrous graphite fluoride. That is, according to the invention (CF) o
or (C 2 F) A fibrous graphite fluoride containing at least a part of one or both of the graphite fluorides represented by o , in which the hexagonal planes of the carbon network are arranged parallel to the fiber axis and in the form of tree rings. The present invention provides fibrous graphite fluoride having a three-layer structure consisting of an outermost layer in which carbon hexagonal network planes are arranged in a radial manner parallel to the fiber axis, and a central layer having no specific directionality. .

本発明の繊維状フツ化黒鉛の製造に用いられる
新規な構造を有する繊維状炭素としては種々のも
のが用いられる。たとえばグラフアイト質原料を
プラズマ中で加熱して繊維化する方法、すなわち
プラズマ加熱繊維形成法による炭素繊維は、本発
明の繊維の原料として所要の構造を有しており、
本発明の目的に用いることができる。
Various types of fibrous carbon having a novel structure can be used for producing the fibrous graphite fluoride of the present invention. For example, carbon fiber produced by a method of heating a graphite raw material in plasma to form a fiber, that is, a plasma heating fiber forming method, has the required structure as a raw material for the fiber of the present invention.
It can be used for the purposes of the present invention.

本発明の目的に好適な繊維状炭素は炭素の六角
網平面が繊維軸に平行に、かつ年輪状に配列され
ている最外層、炭素の六角網平面が繊維軸に平行
にかつ放射状に配列されている中間層、特定の方
向性を持たない中心層からなる3層構造を有する
特異な繊維状炭素である。
The fibrous carbon suitable for the purpose of the present invention has an outermost layer in which the carbon hexagonal network planes are arranged parallel to the fiber axis and in the form of growth rings, and a carbon hexagonal network plane in which the carbon hexagonal network planes are arranged parallel to the fiber axis and radially. It is a unique fibrous carbon that has a three-layer structure consisting of an intermediate layer that has a solid carbon fiber, and a central layer that has no specific directionality.

有機高分子繊維の焼成によつて得られる通常の
炭素繊維はこのような構造を有しないものであ
り、そのような炭素繊維は、フツ素ガスを作用さ
せることによつて本発明のフツ化黒鉛繊維をうる
ことは困難である。
Ordinary carbon fibers obtained by firing organic polymer fibers do not have such a structure, and such carbon fibers can be made into the fluorinated graphite of the present invention by acting on fluorine gas. It is difficult to obtain fibers.

本発明に適するプラズマ加熱繊維形成法による
炭素繊維は、田村正平らの発明によるものである
(特願昭56−44956)。その概要を以下に記す。
The carbon fiber produced by the plasma heating fiber forming method suitable for the present invention was invented by Shohei Tamura (Japanese Patent Application No. 44956/1986). The outline is described below.

グラフアイト質原料(たとえば天然黒鉛、通常
の人造黒鉛、熱分解黒鉛など)を精製した後、こ
れを直流アークによる電子温度3400℃以上のプラ
ズマ中で加熱し、炭素繊維を形成させ、0.5/
min程度の流速のアルゴン等の狭窄ガスの流れに
そつて成長させる。繊維は約1cm/minの速度で
成長する。こうして得た繊維状炭素はそのまま、
あるいは2500℃以上の温度で処理して黒鉛化し、
繊維状黒鉛にしてからフツ素化に供することがで
きる。この繊維状炭素は長さは数ミリから20数セ
ンチメートルにわたり、太さは5〜10μmであ
る。またX線回折および電子線回折の結果によれ
ば、炭素の六角網平面が繊維軸に平行にかつ年輪
状に配列されている最外層、炭素の六角網平面が
繊維軸に平行にかつ放射状に配列されている中間
層、特定の方向性を持たない中心層からなる3層
構造をとつていることがわかつた。
After refining graphite raw materials (e.g. natural graphite, ordinary artificial graphite, pyrolytic graphite, etc.), this is heated in a plasma with an electron temperature of 3400°C or higher using a direct current arc to form carbon fibers.
Growth is performed along the flow of a constriction gas such as argon at a flow rate of about 100 min. Fibers grow at a rate of approximately 1 cm/min. The fibrous carbon obtained in this way is
Or graphitize by processing at a temperature of 2500℃ or higher,
It can be made into fibrous graphite and then subjected to fluorination. This fibrous carbon has a length ranging from several millimeters to more than 20 centimeters, and a thickness of 5 to 10 μm. Also, according to the results of X-ray diffraction and electron diffraction, the outermost layer has carbon hexagonal network planes arranged parallel to the fiber axis and in the form of growth rings, and the carbon hexagonal network planes are parallel to the fiber axis and arranged radially. It was found that it has a three-layer structure consisting of an arranged middle layer and a central layer that has no specific directionality.

本発明の繊維状フツ化黒鉛は次のようにして得
られる。即ち、適当量の繊維状炭素或いは黒鉛を
フツ素圧下におき、所定時間、所定温度で処理す
ることにより(CF)oまたは(C2F)oで表わされる
フツ化黒鉛の一方または両方を少なくとも一部に
有する繊維状フツ化黒鉛が得られる。一般に反応
温度の上昇と共に生成物のFとCのモル比(F/
C)は1に近づく傾向がある。
The fibrous graphite fluoride of the present invention can be obtained as follows. That is, by placing an appropriate amount of fibrous carbon or graphite under fluorine pressure and treating it for a predetermined period of time at a predetermined temperature, at least one or both of the fluorinated graphite represented by (CF) o or (C 2 F) o Fibrous fluorinated graphite containing some of the fibrous graphite is obtained. Generally, as the reaction temperature increases, the molar ratio of F and C in the product (F/
C) tends to approach 1.

X線回折によればフツ化黒鉛には、層間距離が
9.0〓の(C2F)oと、約6〓の層間距離をもつ
(CF)oとの、二種の構造が存在することが判明し
ている。フツ化黒鉛の比重は(CF)oで2.7、
(C2F)oで2.8である。両者の混在状態ではこれら
の値の中間値をとる。
According to X-ray diffraction, graphite fluoride has an interlayer distance.
It has been found that two types of structures exist: (C 2 F) o with an interlayer distance of 9.0〓 and (CF) o with an interlayer distance of about 6〓. The specific gravity of graphite fluoride is (CF) o 2.7,
(C 2 F) o is 2.8. In a mixed state of both, an intermediate value between these values is taken.

次にフツ化黒鉛生成反応に於ける原料繊維状炭
素の直径の影響であるが、直径が太い程(C2F)o
の割合が大となる傾向がある。また原料繊維状炭
素の種類による差は顕著であり、上述のプラズマ
加熱繊維形成法で得た繊維の熱処理物が最も容易
にフツ素化される。
Next, regarding the influence of the diameter of the raw material fibrous carbon in the graphite fluoride production reaction, the thicker the diameter (C 2 F )
There is a tendency for the proportion of Further, there are significant differences depending on the type of raw material fibrous carbon, and the heat-treated fiber obtained by the above-mentioned plasma heating fiber forming method is most easily fluorinated.

本発明の構造からはずれる“乱れた”部分は少
ない程よいが、多少の混入によつて大きな影響を
及ぼすことはない。
The fewer the "disturbed" portions that deviate from the structure of the present invention, the better, but a small amount of contamination will not have a major effect.

このようにして得られる繊維状フツ化黒鉛は、
形態が繊維状である故に、最近特にその優れた特
性によつて新しい用途が開拓されつつあるフツ化
黒鉛系化学分野に於いて、その工業的価値は極め
て高い。
The fibrous graphite fluoride obtained in this way is
Because of its fibrous form, its industrial value is extremely high, especially in the field of fluorinated graphite chemistry, where new applications are being developed recently due to its excellent properties.

具体的には電池等の分野での応用が期待され
る。
Specifically, it is expected to be applied in fields such as batteries.

実施例 1 一片のグラフオイルジーテイーエー
(GRAFOILGTA:米国ユニオンカーバイド社製
グラフアイト)を一晩王水に浸漬させたあと水洗
いし、塩素ガス雰囲気下、800℃で10分間加熱す
る。この操作を二度繰り返した。こうして精製し
たグラフオイルを、二個の炭素棒からなる電極の
間にある支持体上に乗せ、狭窄ガスとしてアルゴ
ンを0.5ml/minで流し、直流アーク中で発生す
るプラズマ中で加熱を行なつた。プラズマ温度は
電子温度として5000℃であつた。成長してきた毛
髪状の繊維状炭素は、約22cmの長さに達するもの
があつた。こうして得た繊維状炭素は、X線構造
解析の結果第1図に示す如く炭素の六角網平面が
繊維軸に平行かつ年輪状に配列されている最外
層、炭素の六角網平面が繊維軸に平行にかつ放射
状に配列されている中間層、特定の方向性を持た
ない中心層からなる3層構造をとつていることが
わかつた。
Example 1 A piece of GRAFOIL GTA (Graphite manufactured by Union Carbide, USA) is soaked in aqua regia overnight, washed with water, and heated at 800° C. for 10 minutes in a chlorine gas atmosphere. This operation was repeated twice. The graph oil purified in this way was placed on a support between two electrodes made of carbon rods, argon was flowed at 0.5 ml/min as a constriction gas, and it was heated in plasma generated in a DC arc. Ta. The plasma temperature was 5000°C as the electron temperature. The hair-like fibrous carbon that had grown reached a length of about 22 cm. As shown in Figure 1, the result of X-ray structural analysis of the fibrous carbon obtained in this way shows that the outermost layer has carbon hexagonal network planes parallel to the fiber axis and arranged in the shape of growth rings, and the carbon hexagonal network planes parallel to the fiber axis. It was found that it has a three-layer structure consisting of an intermediate layer that is arranged in parallel and radially, and a central layer that has no specific directionality.

次いで上記繊維状炭素のフツ素化を行なう。上
述のようにして得られた約50mgの繊維状炭素を
375℃に保ち、フツ素ボンベからフツ素を容器内
に導びき、フツ素圧を200mmHgに保つことによつ
て繊維状炭素にフツ素ガスを作用させた。このよ
うにして得たフツ化黒鉛繊維のフツ素含有量は、
酸素フラスコ燃焼法によりフツ化黒鉛を燃焼させ
てフツ素をフツ化水素として水に吸収させ、フツ
素イオン電極を用いて求めた。その結果は生成フ
ツ化黒鉛のモル比組成がCF0.95であることを示し
た。
Next, the fibrous carbon is fluorinated. Approximately 50 mg of fibrous carbon obtained as described above was
The temperature was maintained at 375°C, fluorine gas was introduced into the container from a fluorine cylinder, and the fluorine pressure was maintained at 200 mmHg to cause fluorine gas to act on the fibrous carbon. The fluorine content of the fluorinated graphite fiber obtained in this way is
Fluorinated graphite was burned using the oxygen flask combustion method, and fluorine was absorbed into water as hydrogen fluoride, and the results were determined using a fluorine ion electrode. The results showed that the molar ratio composition of the produced graphite fluoride was CF 0.95 .

断面構造はフツ素化後もフツ素化前と同様第1
図に示される通りのものであつた。
The cross-sectional structure is the same after fluorination as before fluorination.
It was exactly as shown in the figure.

実施例 2 実施例1で得た繊維状炭素を2800℃で90分間熱
処理をして得た繊維状黒鉛を用いて、実施例1と
同様のフツ素化を行なつた。上記繊維状黒鉛およ
び繊維状フツ化黒鉛の構造を、X線回折および電
子線回折により調べたところ、微結晶の発達して
いるほかは実施例1の場合と同様の3層構造がみ
られた。フツ素化の結果モル化組成がCF0.62の繊
維状フツ化黒鉛が得られた。
Example 2 Fluorination was carried out in the same manner as in Example 1 using fibrous graphite obtained by heat-treating the fibrous carbon obtained in Example 1 at 2800° C. for 90 minutes. When the structure of the above-mentioned fibrous graphite and fibrous fluorinated graphite was examined by X-ray diffraction and electron beam diffraction, a three-layer structure similar to that in Example 1 was observed, except that microcrystals were developed. . As a result of fluorination, fibrous fluorinated graphite with a molar composition of CF 0.62 was obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原料炭素繊維および本発明の
繊維状フツ化黒鉛の断面構造を示す図である。
FIG. 1 is a diagram showing the cross-sectional structure of the raw material carbon fiber of the present invention and the fibrous graphite fluoride of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 (CF)oまたは(C2F)oで表わされるフツ化黒
鉛の一方または両方を少なくとも一部に含む繊維
状フツ化黒鉛であつて、炭素の六角網平面が繊維
軸に平衡にかつ年輪状に配列されている最外層、
炭素の六角網平面が繊維軸に平行にかつ放射状に
配列されている中間層、特定の方向性を持たない
中心層からなる3層構造を有することを特徴とす
る繊維状フツ化黒鉛。
1. Fibrous graphite fluoride containing at least a part of graphite fluoride represented by (CF) o or (C 2 F) o , in which the plane of the hexagonal carbon network is in equilibrium with the fiber axis and The outermost layer is arranged in a ring,
A fibrous graphite fluoride characterized by having a three-layer structure consisting of an intermediate layer in which carbon hexagonal network planes are arranged radially and parallel to the fiber axis, and a central layer without specific directionality.
JP57158811A 1982-09-14 1982-09-14 Fibrous fluorinated graphite Granted JPS5950010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57158811A JPS5950010A (en) 1982-09-14 1982-09-14 Fibrous fluorinated graphite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57158811A JPS5950010A (en) 1982-09-14 1982-09-14 Fibrous fluorinated graphite

Publications (2)

Publication Number Publication Date
JPS5950010A JPS5950010A (en) 1984-03-22
JPH0368129B2 true JPH0368129B2 (en) 1991-10-25

Family

ID=15679872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57158811A Granted JPS5950010A (en) 1982-09-14 1982-09-14 Fibrous fluorinated graphite

Country Status (1)

Country Link
JP (1) JPS5950010A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0531382Y2 (en) * 1988-03-09 1993-08-12
US4857404A (en) * 1988-08-24 1989-08-15 The Dow Chemical Company Fluorinated carbonaceous fibers
US5106606A (en) * 1989-10-02 1992-04-21 Yazaki Corporation Fluorinated graphite fibers and method of manufacturing them

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58191221A (en) * 1982-05-01 1983-11-08 Showa Denko Kk Fluorocarbon type fiber
JPS58208112A (en) * 1982-05-28 1983-12-03 Nobuatsu Watanabe Fibrous fluorinated graphite

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58191221A (en) * 1982-05-01 1983-11-08 Showa Denko Kk Fluorocarbon type fiber
JPS58208112A (en) * 1982-05-28 1983-12-03 Nobuatsu Watanabe Fibrous fluorinated graphite

Also Published As

Publication number Publication date
JPS5950010A (en) 1984-03-22

Similar Documents

Publication Publication Date Title
US4435375A (en) Method for producing a carbon filament and derivatives thereof
JPH0469214B2 (en)
JPH0368129B2 (en)
JPH1045474A (en) Production of graphite material coated with pyrolyzed carbon
DE3782304T2 (en) PRODUCTION OF COMPOSITE BODIES CONTAINING CERAMIC AND METAL-CERAMIC FILLERS.
JPH01264964A (en) Carbon fiber-reinforced composite material having excellent thermal impact resistance and its production
DE602004010538T2 (en) Durable graphite bodies and process for their preparation
JP2591967B2 (en) Processed carbonaceous felt product and method for producing the same
DE1302312B (en)
JPH02184511A (en) Production of porous graphite
JP2981023B2 (en) Porous carbon fiber, method for producing the same, method for producing porous graphite fiber, and method for treating porous carbon fiber
JPS63149142A (en) Multilayer molded heat insulator and manufacture thereof
EP0668376A1 (en) Process for producing long whiskers of silicon carbide
JPS6021806A (en) Interlayer compound of nickel chloride and graphite
US4803123A (en) Process for production of fibrous carbon material
JPS5978913A (en) Manufacture of fluorinated graphite
JPH05208867A (en) Highly corrosive glassy carbon material
JPH0551205A (en) Method for controlling graphitization degree of carbon material surface layer and method for coating material surface
JPS62291863A (en) Battery active material
RU1533221C (en) Method of producing diamonds
JPH03242374A (en) Production of high-purity graphite product
JPH05148025A (en) Production of silicon carbide part
JPS604827A (en) Crucible for spectrochemical analysis
SU853956A1 (en) Method of producing diamonds
JPH02139464A (en) Production of carbon fiber felt