JPS6021806A - Interlayer compound of nickel chloride and graphite - Google Patents
Interlayer compound of nickel chloride and graphiteInfo
- Publication number
- JPS6021806A JPS6021806A JP58128033A JP12803383A JPS6021806A JP S6021806 A JPS6021806 A JP S6021806A JP 58128033 A JP58128033 A JP 58128033A JP 12803383 A JP12803383 A JP 12803383A JP S6021806 A JPS6021806 A JP S6021806A
- Authority
- JP
- Japan
- Prior art keywords
- graphite
- nickel chloride
- carbon
- fiber
- intercalation compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 56
- 229910002804 graphite Inorganic materials 0.000 title claims abstract description 48
- 239000010439 graphite Substances 0.000 title claims abstract description 48
- 150000001875 compounds Chemical class 0.000 title claims description 31
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 title claims description 23
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 title claims description 23
- 239000011229 interlayer Substances 0.000 title abstract 3
- 239000000835 fiber Substances 0.000 claims abstract description 28
- 229920000049 Carbon (fiber) Polymers 0.000 claims abstract description 15
- 239000004917 carbon fiber Substances 0.000 claims abstract description 15
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 11
- 239000000203 mixture Substances 0.000 claims abstract description 6
- 238000009830 intercalation Methods 0.000 claims description 31
- 230000002687 intercalation Effects 0.000 claims description 28
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 abstract description 29
- 239000000758 substrate Substances 0.000 abstract description 11
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 abstract description 7
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 abstract description 7
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 abstract description 5
- 239000000460 chlorine Substances 0.000 abstract description 5
- 229910052801 chlorine Inorganic materials 0.000 abstract description 5
- 229930195733 hydrocarbon Natural products 0.000 abstract description 5
- 150000002430 hydrocarbons Chemical class 0.000 abstract description 5
- 229910052751 metal Inorganic materials 0.000 abstract description 5
- 239000002184 metal Substances 0.000 abstract description 5
- 239000012159 carrier gas Substances 0.000 abstract description 4
- 229910052759 nickel Inorganic materials 0.000 abstract description 4
- 239000007809 chemical reaction catalyst Substances 0.000 abstract description 2
- 238000006053 organic reaction Methods 0.000 abstract description 2
- 239000002245 particle Substances 0.000 abstract description 2
- 239000004215 Carbon black (E152) Substances 0.000 abstract 2
- 239000013543 active substance Substances 0.000 abstract 1
- 239000008246 gaseous mixture Substances 0.000 abstract 1
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 7
- 239000011149 active material Substances 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 238000001947 vapour-phase growth Methods 0.000 description 4
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- XPFVYQJUAUNWIW-UHFFFAOYSA-N furfuryl alcohol Chemical compound OCC1=CC=CO1 XPFVYQJUAUNWIW-UHFFFAOYSA-N 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 239000002134 carbon nanofiber Substances 0.000 description 2
- 239000003575 carbonaceous material Substances 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 238000005087 graphitization Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- -1 solopane Chemical compound 0.000 description 2
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910021577 Iron(II) chloride Inorganic materials 0.000 description 1
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 235000019441 ethanol Nutrition 0.000 description 1
- 229910021397 glassy carbon Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- NMCUIPGRVMDVDB-UHFFFAOYSA-L iron dichloride Chemical compound Cl[Fe]Cl NMCUIPGRVMDVDB-UHFFFAOYSA-L 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 229910052976 metal sulfide Inorganic materials 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 229910021382 natural graphite Inorganic materials 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 235000011149 sulphuric acid Nutrition 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G17/00—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
- B60G17/015—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Carbon And Carbon Compounds (AREA)
- Catalysts (AREA)
Abstract
Description
【発明の詳細な説明】 本発明は新規な形態の黒鉛層間化合物に関する。[Detailed description of the invention] The present invention relates to a novel form of graphite intercalation compound.
更に詳細には、炭素の六角網平面が繊維軸に実質的に平
行に且つ年輪状に配列した組織を有する炭素繊維を熱処
理して得られる高結晶性黒鉛繊維の塩化ニッケル層間化
合物に関する。More specifically, the present invention relates to a nickel chloride intercalation compound of highly crystalline graphite fibers obtained by heat treating carbon fibers having a structure in which carbon hexagonal network planes are arranged substantially parallel to the fiber axis and in the form of growth rings.
従来、黒鉛との層間化合物を形成する侵入物質として、
アルカリ金属(K+Rh+Cs+LL)、アルカリ土類
金属(Baなと)、希土類金属(Euなど)、ハ*’1
7 (Br21 IC1)、酸(HNO3,H2SO4
など)金属ハ0グン化物(CuCL2. FeCl2.
N1Ct2 +NbCt2など)、金属酸化物(Cr
03)、金属硫化物(F′eS2 )などが知られてい
る。又、これらのうち、いくつかのものは、第1ステー
ジ、第2ステージ或いは高次のステージの種々のステー
ジ数の層間化合物をつくることが知られている。しかし
、侵入物質の種類によって、その黒鉛層間化合物を生成
する難易度に大きな差があり、ステージ数とその均−性
又その安定度にも大きな差がある。Conventionally, as an intercalating substance that forms an intercalation compound with graphite,
Alkali metals (K+Rh+Cs+LL), alkaline earth metals (Ba nato), rare earth metals (Eu, etc.), Ha*'1
7 (Br21 IC1), acid (HNO3, H2SO4
etc.) Metal halide (CuCL2. FeCl2.
N1Ct2 +NbCt2, etc.), metal oxides (Cr
03), metal sulfide (F'eS2), etc. are known. Also, some of these are known to produce intercalation compounds of various numbers of stages: first stage, second stage, or higher stages. However, there are large differences in the degree of difficulty in producing the graphite intercalation compound depending on the type of intercalating substance, and there are also large differences in the number of stages, its uniformity, and its stability.
近年、電池活物質としての有用性の点で注目されはじめ
た塩化ニッケルの黒鉛層間化合物は、一般に侵入物質と
しての塩化ニッケルが黒鉛層間に入り難いものであって
、従来用いられている天然黒鉛などを原料黒鉛母材とし
た場合、高温、高圧の厳しい条件下での反応でも塩化ニ
ッケルは原料黒鉛の層間に入シ難く、高ステーゾのもの
しか得られず、又得られた層間化合物のAJ14%も乱
れた構造、を有していて不安定であシ、又電池活物質と
して用いた場合にもその電池特性は応用上必ずしも十分
ではない。それ故に、用途が制限されるという問題があ
った。Graphite intercalation compounds of nickel chloride, which have recently started to attract attention for their usefulness as battery active materials, are generally difficult for nickel chloride as an interfering substance to enter between graphite layers, and are not suitable for conventionally used natural graphite etc. When nickel chloride is used as a raw graphite base material, even under severe conditions of high temperature and high pressure, it is difficult for nickel chloride to penetrate between the layers of the raw graphite, and only a high staso compound can be obtained, and the AJ of the obtained intercalation compound is 14%. It also has a disordered structure and is unstable, and even when used as a battery active material, its battery properties are not necessarily sufficient for practical applications. Therefore, there was a problem that the applications were limited.
本発明者は、従来の塩化ニッケル黒鉛層間化合物の上記
の欠点を克服すべく広範な条件で研究の結果、炭素の六
角網平面が繊維軸に実質的に平行に且つ年輪状に配列し
た組織を有する炭素繊維を熱処理して得られる黒鉛繊維
を出発原料黒鉛とした場合、規則的な構造を有し、安定
であシ、又、例えば電池活物質として用いた場合に秀れ
た電池特性を発揮するところの新規な塩化ニッケル黒鉛
層間化合物が従来知られている場合に較べて容易に得ら
れることを知見し、本発明に到達したものである。In order to overcome the above-mentioned drawbacks of the conventional nickel chloride graphite intercalation compound, the present inventor conducted research under a wide range of conditions and found a structure in which carbon hexagonal network planes are arranged substantially parallel to the fiber axis and in the form of tree rings. When graphite fibers obtained by heat-treating carbon fibers are used as starting material graphite, they have a regular structure, are stable, and exhibit excellent battery characteristics when used as a battery active material, for example. The present invention was achieved based on the discovery that a novel nickel chloride graphite intercalation compound can be obtained more easily than previously known compounds.
従って本発明の主なる目的は、規則的構造を有する新規
な形態の塩化ニッケル黒鉛層間化合物を提供することに
ある。Therefore, the main object of the present invention is to provide a new form of nickel chloride graphite intercalation compound having a regular structure.
即ち、本発明によれば、炭素の六角網平面が繊維軸に実
質的に平行に且つ年輪状に配列した組織を有する炭素繊
維を熱処理して得られる黒鉛繊維の塩化ニッケル黒鉛層
間化合物であり、その組成がCxN i C12+ y
(但し、4(x<12 、 O:;y<1 )で表わ
される塩化ニッケル黒鉛層間化合物が提供される。That is, according to the present invention, it is a nickel chloride graphite intercalation compound of graphite fibers obtained by heat treating carbon fibers having a structure in which the hexagonal network planes of carbon are arranged substantially parallel to the fiber axis and in the form of growth rings, Its composition is CxN i C12+ y
(However, a nickel chloride graphite intercalation compound represented by 4 (x<12, O:;y<1) is provided.
本発明による塩化ニッケル黒鉛層間化合物は、規則的な
構造を持つことを特徴としておシ、第1ステージ、第2
ステージ、第3ステージ及びそれ以上のステージのもの
を包含する。Xの値は4くX〈12の範囲が実用上好ま
しく、特に電池活物質の用途の場合にはその電池容量か
ら考えて4くる塩化ニッケル黒鉛層間化合物の生成が塩
素ガスの存在下で行なわれるため0≦y < 1の値を
とるが、後述するように、反応後減圧に保つことにより
yの値を0にすることが可能である。本発明による塩化
ニッケル黒鉛層間化合物は、その規則的な構造から、安
定であシ、導電材料や有機反応触媒などの用途に特異性
を発揮することが期待されるが、特に電池活物質として
用いた場合、放電における活物質の利用率が高く且つ放
電電圧の平坦性が良いなどの秀れた特性を発揮する。The nickel chloride graphite intercalation compound according to the present invention is characterized by having a regular structure.
stage, third stage and higher stages. It is practically preferable that the value of Therefore, the value of 0≦y<1 is taken, but as will be described later, the value of y can be set to 0 by maintaining the pressure at reduced pressure after the reaction. Due to its regular structure, the nickel chloride graphite intercalation compound of the present invention is expected to be stable and exhibit specificity in applications such as conductive materials and organic reaction catalysts, but it is particularly useful as a battery active material. In this case, excellent characteristics such as a high utilization rate of the active material during discharge and good flatness of the discharge voltage are exhibited.
次に、本発明による塩化ニッケル黒鉛層間化合物を製造
するための原料である黒鉛繊維について説明する。本発
明の層間化合物の製造には、炭素の六角網平面が繊維軸
に実質的に平行に且つ年輪状に配列した組織を有する炭
素繊維をまず製造し、その炭素繊維を熱処理黒鉛化して
得られる黒鉛繊維を用いることが必須である。上記の炭
素繊維は、炭化水素を高温処理する気相成長法によって
得ることができる。その製造に用いる装置及び製造方法
を第1〜3図を参照しながら説明する。炭化水素トシて
ハ、トルエン、ベンゼン、ナフpV7、ゾロパン、メタ
ン、エタンなどが用いられ、特に好tLいのはベンゼン
及びナフタレンである。例えばベンゼンを原料ガスとし
て用いた場合の製造法は以下の通電である。オイルパス
(1)の温度を調節して原料ベンゼン(2)を気化しキ
ャリアガスH2と混合させ、電気炉へ入る直前のそのベ
ンゼンの分圧を約0.5〜500 Torrの範囲に調
節する。第1図にはH2を導入する側管が2つあるが、
それらは次のような目的のためである。即ち、ベンゼン
濃度の低い混合ガスが望まれる場合には、第1の側管か
らキャリアガスH2をオイルパス(1)に入れ、平衡分
圧で混合ガスを押し出し、出てきたガスを第2の側管か
らのキャリアガースH2で薄める。一方、ベンゼン濃度
の高い混合ガスが望まれる場合には、オイルパス(1)
の温度を適当に上げ、第1の側管からキャリアガスH2
を入れて平衡分圧で押し出すだけで所望の濃度のものが
得られるので第2の側管は必ずしも必要ではない。こう
して得た混合ガスを900〜3000℃に保たれた電気
炉(3)に導く。Next, graphite fibers, which are raw materials for producing the nickel chloride graphite intercalation compound according to the present invention, will be explained. In order to produce the intercalation compound of the present invention, carbon fibers having a structure in which the hexagonal network planes of carbon are arranged substantially parallel to the fiber axis and in the form of growth rings are first produced, and then the carbon fibers are heat-treated and graphitized. It is essential to use graphite fibers. The above-mentioned carbon fibers can be obtained by a vapor phase growth method in which hydrocarbons are treated at high temperatures. The apparatus and manufacturing method used for its manufacture will be explained with reference to FIGS. 1 to 3. Hydrocarbons such as toluene, benzene, naphthalene, solopane, methane, and ethane are used, with benzene and naphthalene being particularly preferred. For example, when benzene is used as the raw material gas, the production method is as follows. The temperature of the oil path (1) is adjusted to vaporize raw material benzene (2) and mixed with carrier gas H2, and the partial pressure of the benzene immediately before entering the electric furnace is adjusted to a range of approximately 0.5 to 500 Torr. . In Figure 1, there are two side pipes that introduce H2.
They are for the following purposes: That is, when a mixed gas with a low benzene concentration is desired, carrier gas H2 is introduced into the oil path (1) from the first side pipe, the mixed gas is pushed out at equilibrium partial pressure, and the gas that comes out is transferred to the second side pipe. Dilute with carrier girth H2 from the side pipe. On the other hand, if a mixed gas with a high benzene concentration is desired, the oil path (1)
Suitably raise the temperature of the carrier gas H2 from the first side pipe.
The second side tube is not necessarily necessary because the desired concentration can be obtained by simply introducing the liquid and extruding it at the equilibrium partial pressure. The mixed gas thus obtained is introduced into an electric furnace (3) maintained at 900 to 3000°C.
電気炉の温度が900〜1500℃の比較的低温の場合
には炉内には超微粒金属(4)が塗布されたセラミック
あるいは黒鉛からなる円筒状(第3図参照)あるいは平
板状の基板(5)(第2図参照)を置く。When the temperature of the electric furnace is relatively low, from 900 to 1500 degrees Celsius, a cylindrical (see Figure 3) or flat substrate made of ceramic or graphite coated with ultrafine metal (4) is placed inside the furnace. 5) Place (see Figure 2).
超微粒金属としては、例えば、粒径100〜300Xの
Fe 、 Ni 又はFe −N i合金を用いること
ができる。As the ultrafine metal, for example, Fe, Ni, or Fe-Ni alloy with a grain size of 100 to 300X can be used.
また電気炉の温度が1100〜3000℃と比較的高温
の場合には炉内には、揮発性ノ・イドロカーがン類を含
む炭素素材(例えばフルフリルアルコールを焼成して炭
素を作る時に未反応分が残留した炭素素材で東海カーボ
ン社製グラッシーカーボンの名で市販されているもの)
からなる円筒状あるいは平板状の基板を置く。ベンゼン
が分解して生じた炭素原子が前者の場合には超微粒金属
を触媒として成長し所望の炭素繊維(6)が基板上に密
生する形で生成する。また後者の場合には基板からの蒸
発物の作用によって所望の炭素繊維が基板上に密生する
形で生成する。この炭素繊維を2000〜3500℃、
好ましくは2700〜3000℃の温度で黒鉛化処理を
し、黒鉛結晶子を成長させて黒鉛繊維を得ることができ
る。このようにして得られた黒鉛繊維は、X線回折及び
電子顕微鏡観察によれば、第4図に示す如く炭素六角網
面が繊維軸に実質的に平行にかつ年輪状に配向した構造
を有している。Furthermore, when the temperature of the electric furnace is relatively high (1,100 to 3,000°C), the furnace contains carbon materials containing volatile hydrocarbons (for example, unreacted when furfuryl alcohol is fired to make carbon). A carbon material with residual water, commercially available under the name Glassy Carbon manufactured by Tokai Carbon Co., Ltd.)
A cylindrical or flat substrate made of is placed. In the former case, carbon atoms produced by the decomposition of benzene grow using ultrafine metal particles as a catalyst, and the desired carbon fibers (6) are produced in a dense manner on the substrate. In the latter case, the desired carbon fibers are formed densely on the substrate due to the action of evaporated matter from the substrate. This carbon fiber is heated to 2000-3500℃.
Graphite fibers can be obtained by performing graphitization treatment preferably at a temperature of 2700 to 3000°C to grow graphite crystallites. According to X-ray diffraction and electron microscopic observation, the graphite fiber thus obtained has a structure in which the carbon hexagonal network planes are oriented substantially parallel to the fiber axis and in the shape of annual rings, as shown in FIG. are doing.
本発明の塩化ニッケル黒鉛層間化合物は、上記の気相成
長法によシ得た黒鉛繊維と塩化ニッケル粉末とを塩素雰
囲気下で接触させることにより得−ることかできる。得
られる塩化ニッケル黒鉛層間化合物の組成は、CXN
I C70+ y (但し、4<x<12゜0≦y<1
)で表わされるが、一般に反応温度が高いとステージ
数が低くな、? 、Xの値は4に近づく傾向がある。塩
素圧は臨界的ではなく、本発明に用いる気相成長法によ
る黒鉛繊維の場合、比較的低圧、例えば−気圧でも第1
ステージの層間化合物が容易に得られて有利である。又
、塩素圧が低いほど、yの値は小さくなる。さらに、反
応後減圧に保つことによりyの値を0とすることも可能
である。反応時間は臨界的ではなく、所望の組成が得ら
れる時間反応させればよいが、一般に反応時間を長くす
ればX、の直は小となる。反応温度も臨界的ではなく、
広範囲の温度を用いることができる。The nickel chloride graphite intercalation compound of the present invention can be obtained by bringing the graphite fiber obtained by the above vapor phase growth method into contact with nickel chloride powder in a chlorine atmosphere. The composition of the resulting nickel chloride graphite intercalation compound is CXN
I C70+ y (However, 4<x<12゜0≦y<1
), but generally speaking, the higher the reaction temperature, the lower the number of stages. , the value of X tends to approach 4. The chlorine pressure is not critical, and in the case of graphite fibers produced by the vapor phase growth method used in the present invention, even at a relatively low pressure, for example -atmospheric pressure, the first
It is advantageous that a stage intercalation compound can be easily obtained. Also, the lower the chlorine pressure, the smaller the value of y. Furthermore, it is also possible to set the value of y to 0 by maintaining the pressure at reduced pressure after the reaction. The reaction time is not critical, and it is sufficient to allow the reaction to take place for a period of time to obtain the desired composition, but in general, the longer the reaction time, the smaller the value of X. The reaction temperature is also not critical;
A wide range of temperatures can be used.
前述した通電、気相成長法による炭素繊維を2000〜
3500℃、好まし°くは2700〜3000 ℃で熱
処理して得られる黒鉛繊維を層間化合物の黒鉛母材とし
ていることが本発明の大きな特徴であシ、それによシ目
的の塩化ニッケル層間化合物が、ステージ数に制限され
ることなく、比較的穏和な反応条件で効率よく得ること
ができる。又、得られる本発明のニッケル黒鉛層間化合
物は規則的な構造を有しておシ、第1ステージの層間化
合物も非常に容易に得られて侵入物質の分率の高いもの
になシ得るので、最近その優れた諸物件によって重要視
されつつある諸用途、特に電池活物質としての用途にお
いてその工業的価値は極めて高い。The carbon fiber produced by the above-mentioned energization and vapor phase growth method is
A major feature of the present invention is that graphite fibers obtained by heat treatment at 3,500°C, preferably 2,700 to 3,000°C are used as the graphite base material of the intercalation compound. can be obtained efficiently under relatively mild reaction conditions without being limited by the number of stages. In addition, the obtained nickel graphite intercalation compound of the present invention has a regular structure, and the first stage intercalation compound can be obtained very easily and can have a high fraction of intercalating substances. , its industrial value is extremely high in various uses that have recently become important due to its excellent properties, especially as a battery active material.
以下、実施例によって本発明を更に詳細に説明するが、
本発明の範囲は実施例に限定されるものではない。Hereinafter, the present invention will be explained in more detail with reference to Examples.
The scope of the invention is not limited to the examples.
実施例1
第1図に示した装置を用いて本発明に適した気相成長法
炭素繊維を得る。粒度が300X以下の超微粒Fe (
真空冶金に、に、製)約10Pを1ooccのエチルア
ルコール(試薬−級)にけん濁し、約5CCをアルミナ
の基板(内径42朋、長さ300龍の円筒の内壁)にス
プレーして繊維束成核の種づけを行なう。これを110
0℃に保たれた炉内に置きベンゼン分圧が50 Tor
rとなるように水素で希釈された原料ガスを300 C
C/minの流速で導く。Example 1 A vapor grown carbon fiber suitable for the present invention was obtained using the apparatus shown in FIG. Ultra-fine Fe with a particle size of 300X or less (
Suspend about 10P (manufactured by Vacuum Metallurgy, Inc.) in 100cc of ethyl alcohol (reagent grade) and spray about 5CC onto an alumina substrate (inner wall of a cylinder with an inner diameter of 42 mm and a length of 300 mm) to form a fiber bundle. Seed the seeds. This is 110
Placed in a furnace maintained at 0°C with a benzene partial pressure of 50 Torr.
The raw material gas diluted with hydrogen so that r
Conducted at a flow rate of C/min.
基板の中心部K1mTIL/minの成長速度、50〜
lo。Growth rate of K1mTIL/min at the center of the substrate, 50 ~
lo.
本/I!1!2程度の密度で繊維が生成する。約2時間
後、太さlOμ、長さ約10cmに成長した炭素繊維約
3.41が基板′上に得られる。これを2900℃で1
5分間アルゴン中で熱処理して黒鉛化を行なった。この
ようにして得た黒鉛繊維の構造をX線回折及び電子線回
折によシ調べたところ第4図に示すように炭素六角網平
面が軸方向に揃った年輪状の形態をとっていることがわ
かった。Book/I! Fibers are produced with a density of about 1!2. After about 2 hours, about 3.41 carbon fibers having a thickness of lOμ and a length of about 10 cm are obtained on the substrate'. 1 at 2900℃
Graphitization was performed by heat treatment in argon for 5 minutes. The structure of the graphite fiber thus obtained was examined by X-ray diffraction and electron beam diffraction, and as shown in Figure 4, it was found to have a tree-ring-like form with carbon hexagonal network planes aligned in the axial direction. I understand.
次いで該黒鉛繊維を用いて塩化ニッケルの黒鉛層間化合
物を得る。上で得られた約2Fの黒鉛繊維と塩化ニッケ
ルの粉末約0.5Li/−をよく混ぜ合せた後石英チュ
ーブに入れ、これを550℃に保ちその中に塩素ガスを
導いて約150時間保った。Next, a graphite intercalation compound of nickel chloride is obtained using the graphite fiber. The approximately 2F graphite fiber obtained above and approximately 0.5 Li/- of nickel chloride powder were mixed well, then placed in a quartz tube, kept at 550°C, and chlorine gas introduced into it for approximately 150 hours. Ta.
この時の塩素の圧力は1気圧であった。このようにして
得た塩化ニッケル黒鉛層間化合物は元素分析の結果、C
5,5NiCz2.5の組成を有し、またX線回折の結
果第一ステージの層間化合物となっていることがわかっ
た。また、繊維断面をX線回折及び電子顕微鏡観察によ
って調べたところ、第4図と類似の巨視的年輪状組織を
保有していることがわかった。The pressure of chlorine at this time was 1 atm. As a result of elemental analysis, the nickel chloride graphite intercalation compound obtained in this way showed that C
It had a composition of 5,5NiCz2.5, and X-ray diffraction revealed that it was a first-stage intercalation compound. Further, when the cross section of the fiber was examined by X-ray diffraction and electron microscopic observation, it was found that the fiber had a macroscopic annual ring-like structure similar to that shown in FIG.
第1図は気相法炭素繊維を製造する装置の一例を示す図
、第2図及び第3図は第1図の装置に用いる超微粒金属
粉を種づけした基板の例を示し、第4図は本発明の塩化
ニッケル黒鉛層間化合物の原料である黒鉛繊維の断面構
造を示す模式図である。
(1)オイルパス (2)原料
(3)電気炉 (4)超微粒金属触媒
(5)基板 (6)炭素繊維
特許出願人 遠 藤 守 信FIG. 1 shows an example of an apparatus for producing vapor-grown carbon fiber, FIGS. 2 and 3 show examples of a substrate seeded with ultrafine metal powder used in the apparatus of FIG. The figure is a schematic diagram showing the cross-sectional structure of graphite fiber, which is a raw material for the nickel chloride graphite intercalation compound of the present invention. (1) Oil path (2) Raw materials (3) Electric furnace (4) Ultrafine metal catalyst (5) Substrate (6) Carbon fiber patent applicant Morinobu Endo
Claims (1)
に配列した組織を有する炭素繊維を熱処理して得られる
黒鉛繊維の塩化ニッケル黒鉛層間化合物であシ、その組
成がCxN1Ct2+y(但し、4<X<12.O≦y
く1)で表わされる塩化ニッケル黒鉛層間化合物。It is a nickel chloride graphite intercalation compound of graphite fibers obtained by heat-treating carbon fibers having a structure in which the hexagonal network planes of carbon are arranged substantially parallel to the fiber axis and in the form of tree rings, and its composition is CxN1Ct2+y (however, 4<X<12.O≦y
A nickel chloride graphite intercalation compound represented by 1).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58128033A JPS6021806A (en) | 1983-07-15 | 1983-07-15 | Interlayer compound of nickel chloride and graphite |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58128033A JPS6021806A (en) | 1983-07-15 | 1983-07-15 | Interlayer compound of nickel chloride and graphite |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6021806A true JPS6021806A (en) | 1985-02-04 |
Family
ID=14974849
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58128033A Pending JPS6021806A (en) | 1983-07-15 | 1983-07-15 | Interlayer compound of nickel chloride and graphite |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6021806A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6456777A (en) * | 1987-08-27 | 1989-03-03 | Nikkiso Co Ltd | Electrically conductive ink |
US4923637A (en) * | 1987-06-24 | 1990-05-08 | Yazaki Corporation | High conductivity carbon fiber |
JPH0790959A (en) * | 1993-09-20 | 1995-04-04 | Mitsuharu Mito | Installation of partition wall |
-
1983
- 1983-07-15 JP JP58128033A patent/JPS6021806A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4923637A (en) * | 1987-06-24 | 1990-05-08 | Yazaki Corporation | High conductivity carbon fiber |
JPS6456777A (en) * | 1987-08-27 | 1989-03-03 | Nikkiso Co Ltd | Electrically conductive ink |
JPH0790959A (en) * | 1993-09-20 | 1995-04-04 | Mitsuharu Mito | Installation of partition wall |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6765949B2 (en) | Carbon nanostructures and methods of preparation | |
US9796591B2 (en) | Methods for reducing carbon oxides with non ferrous catalysts and forming solid carbon products | |
JP5658739B2 (en) | Method for producing solid carbon by reducing carbon oxide | |
Jiao et al. | Single-walled tubes and encapsulated nanoparticles: comparison of structural properties of carbon nanoclusters prepared by three different methods | |
JP2009538262A (en) | Method for producing uniform single-walled nanotubes | |
JP2006007213A (en) | Production method of catalyst for producing carbon nanotube | |
WO2000040509A1 (en) | Amorphous nano-scale carbon tube and production method therefor | |
JP2011016711A (en) | Carbon nanotube and method for producing the same | |
JP2004299986A (en) | Carbon nanotube, and its production method | |
McLean et al. | Catalytic CVD synthesis of boron nitride and carbon nanomaterials–synergies between experiment and theory | |
JP2000095509A (en) | Production of carbon nanotube and catalyst therefor | |
JP2014181179A (en) | Method of growing carbon nanotubes lined up in the vertical direction on diamond substrate | |
JPH0931757A (en) | Manufacturing of graphite fiber | |
JP3817703B2 (en) | Method and apparatus for producing coiled carbon fiber | |
CN112573505A (en) | Method for preparing MXene/carbon nano tube composite material | |
JP2008195550A (en) | Tungsten oxide fiber and its production method | |
Bhagabati et al. | Synthesis/preparation of carbon materials | |
JPH02167898A (en) | Production of graphite whisker | |
JPS6021806A (en) | Interlayer compound of nickel chloride and graphite | |
JP2005279624A (en) | Catalyst, method and apparatus for producing carbon nanotube | |
JP3890408B2 (en) | Method for producing boron nitride nanotubes for hydrogen storage | |
Zhang et al. | Influence of growth temperature on the structure, composition and bonding character of nitrogen-doped multiwalled carbon nanotubes | |
JPS58110493A (en) | Production of graphite whisker | |
KR101383821B1 (en) | Direct synthesis method of carbon nanotube using intermetallic nano-catalysts formed on surface of various metal substrates and the structure thereof | |
JPWO2007083831A1 (en) | Platelet-type slit vapor-grown carbon fiber and method for producing the same |