JPH05208867A - Highly corrosive glassy carbon material - Google Patents

Highly corrosive glassy carbon material

Info

Publication number
JPH05208867A
JPH05208867A JP4038494A JP3849492A JPH05208867A JP H05208867 A JPH05208867 A JP H05208867A JP 4038494 A JP4038494 A JP 4038494A JP 3849492 A JP3849492 A JP 3849492A JP H05208867 A JPH05208867 A JP H05208867A
Authority
JP
Japan
Prior art keywords
glassy carbon
carbon material
less
content
specific gravity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4038494A
Other languages
Japanese (ja)
Inventor
Yoshio Suzuki
義雄 鈴木
Hisayuki Hamashima
久幸 浜島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP4038494A priority Critical patent/JPH05208867A/en
Publication of JPH05208867A publication Critical patent/JPH05208867A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To provide a highly corrosive glassy carbon material capable of being stably used for a long period under severe conditions such as an oxidative condition in the atmosphere or a plasma spattering condition. CONSTITUTION:The objective highly anticorrosive glassy carbon material is characterized by material properties consisting of a specific gravity of >=1.50, a total ash content of <=700ppm, a total sulfur content of <=500ppm, a crystal surface distance of <=0.375nm and a crystal size of >=1.3nm. This glassy carbon material has preferably pores having sizes of <20mum in the tissue of the material and a pore content of <=1% in addition to the above-mentioned properties.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、酸化等の腐食に対して
優れた耐久性を有する高耐食性ガラス状カーボン材に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a highly corrosion resistant glassy carbon material having excellent durability against corrosion such as oxidation.

【0002】[0002]

【従来の技術】ガラス状カーボン材は、炭化性の熱硬化
性樹脂を非酸化性雰囲気下で焼成炭化処理することによ
って得られるガラス質組織構造を備えた異質な炭素材料
であり、材質的に極めて緻密な均質組織と優れた機械的
強度、気体不透過性ならびに耐食性を備えているため、
例えば電池用電極、電解用電極、半導体製造用坩堝等の
多様の分野で各種部材として汎用されている。特に近
時、その均質で非汚染性の材質組織がシリコンウエハー
のプラズマエッチング用電極やイオン注入装置用の部材
として好適であることが解明され、既に実用段階に入っ
ている。
2. Description of the Related Art A glassy carbon material is a heterogeneous carbon material having a vitreous structure obtained by firing and carbonizing a carbonizing thermosetting resin in a non-oxidizing atmosphere. As it has an extremely dense homogeneous structure and excellent mechanical strength, gas impermeability and corrosion resistance,
For example, it is widely used as various members in various fields such as battery electrodes, electrolysis electrodes, and semiconductor manufacturing crucibles. In particular, recently, it has been clarified that the homogeneous and non-polluting material structure is suitable as an electrode for plasma etching of a silicon wafer or a member for an ion implantation apparatus, and it has already entered a practical stage.

【0003】ガラス状カーボン材は、濃硫酸と濃硝酸か
らなる混酸に浸漬した場合、 150日以上の期間に亘って
外観、重量共に殆ど変化が認められない。これは通常の
黒鉛材が混酸中で2日以内に完全に崩壊するのに比べ、
格段に高い耐食性があることを示すものである。また、
乾燥空気中における耐酸化性も結晶度の高い熱分解黒鉛
よりも優れている。
When the glassy carbon material is immersed in a mixed acid consisting of concentrated sulfuric acid and concentrated nitric acid, there is almost no change in appearance and weight over a period of 150 days or more. This is compared to normal graphite materials that completely disintegrate within 2 days in mixed acid,
This shows that the corrosion resistance is remarkably high. Also,
The oxidation resistance in dry air is also superior to that of pyrolytic graphite having high crystallinity.

【0004】しかしながら、前記した半導体関係等の分
野においては、従来にも増して過酷条件での酸化、プラ
ズマ・イオンビーム等によるスパッタリング、化学的ま
たは電気化学的な腐食などに対する耐久性が強く要求さ
れている。この要求に対しては、循環精製したフェノー
ル・ホルムアルデヒド環状溶融重合体を成形したのち焼
成し、2000℃の高温で処理して得られる高純度のガラス
状カーボン材が高い耐食性を示すことが知られている
〔 Fluorocarbon 社、“Production Engineering”Vol.
48,No.7(1977) 〕。
However, in the field of semiconductors and the like mentioned above, durability against oxidization under severe conditions, sputtering by plasma / ion beam, chemical or electrochemical corrosion, etc. is strongly demanded more than ever. ing. To meet this requirement, it is known that a high-purity glassy carbon material obtained by molding a cyclic-refined cyclic melt polymer of phenol / formaldehyde, firing it, and treating it at a high temperature of 2000 ° C exhibits high corrosion resistance. [Fluorocarbon, “Production Engineering” Vol.
48, No. 7 (1977)].

【0005】[0005]

【発明が解決しようとする課題】ところが、上記の高純
度ガラス状カーボン材は化学的な腐食現象に対する抵抗
力は良好であるが、高酸素濃度の雰囲気(大気中)にお
ける酸化あるいはプラズマによるスパッタリングに対し
ては十分な耐久性を示さない。
However, although the above-mentioned high-purity glassy carbon material has good resistance to chemical corrosion, it is not suitable for oxidation or plasma sputtering in a high oxygen concentration atmosphere (atmosphere). However, it does not show sufficient durability.

【0006】本発明者らはこのような実情に鑑み、ガラ
ス状カーボン材の材質性状と耐食性、とりわけ酸化やプ
ラズマスパッタリングに対する耐久性との相関性につき
多角的な検討を加えた結果、これらの耐食性にはガラス
状カーボン材の緻密度、純度、不純物成分、結晶構造等
が相互に絡み合って関与することを突き止め、更に各特
性要素を特定範囲に調整した材質性状のガラス状カーボ
ン材は十分な耐食性能を発揮する事実を解明した。
In view of such circumstances, the present inventors have made various studies on the correlation between the material properties of the glassy carbon material and the corrosion resistance, especially the durability against oxidation and plasma sputtering. It was found that the density, purity, impurity components, crystal structure, etc. of the glassy carbon material are entangled with each other, and each characteristic element is adjusted to a specific range. Clarified the fact that it exerts its power.

【0007】本発明は前記の知見に基づいて開発された
もので、その目的は大気中での酸化あるいはプラズマス
パッタリング等の苛酷な条件下においても長期の安定使
用が可能な高耐食性ガラス状カーボン材を提供すること
にある。
The present invention was developed based on the above findings, and its purpose is a highly corrosion-resistant glassy carbon material which can be stably used for a long period of time even under severe conditions such as oxidation in the air or plasma sputtering. To provide.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
めの本発明による高耐食性ガラス状カーボン材は、比重
1.50以上、総灰分700ppm以下、総硫黄分50ppm 以下、結
晶面間隔0.375nm 以下、結晶子の大きさ1.3nm 以上の材
質性状を備えることを構成上の特徴とする。これに加え
て、含有ポアーの大きさが20μm 未満で、そのポアー含
有量が1%以下であることが一層好ましい構成態様とな
る。
The highly corrosive glassy carbon material according to the present invention for achieving the above object has a specific gravity of
The structural feature is that the material property is 1.50 or more, total ash content is 700 ppm or less, total sulfur content is 50 ppm or less, crystal face spacing is 0.375 nm or less, and crystallite size is 1.3 nm or more. In addition to this, it is more preferable that the size of the contained pores is less than 20 μm and the content of the pores is 1% or less.

【0009】上記構成における各材質性状の値は、比重
および総灰分についてはJIS R7222−1979「高純度
黒鉛素材の物理試験方法」、総硫黄分はJIS M8813
−1988「石炭類及びコークス類の元素分析方法」による
測定値、結晶面間隔および結晶子の大きさは日本学術振
興会第117 委員会作成の「人造黒鉛の格子定数および結
晶子の大きさ測定法」による(002) 面の測定値とする。
また、ポアー径は光学顕微鏡あるいは走査型電子顕微鏡
観察によって測定した最大ポアー径、ポアー含有率(気
孔率)は真比重と比重からの算出値とする。
The values of the properties of each material in the above constitution are JIS R7222-1979 "Physical test method of high purity graphite material" for specific gravity and total ash content, and JIS M8813 for total sulfur content.
−1988 Measured values by “method of elemental analysis of coals and cokes”, crystal face spacing and crystallite size are “Measurement of lattice constant and crystallite size of artificial graphite” prepared by the 117th Committee of the Japan Society for the Promotion of Science. Method, and the measured value of the (002) plane.
Further, the pore diameter is the maximum pore diameter measured by observation with an optical microscope or a scanning electron microscope, and the pore content rate (porosity) is a value calculated from true specific gravity and specific gravity.

【0010】本発明で特定された材質性状のガラス状カ
ーボン材は、従来プロセスによる製造技術において各工
程の条件を適宜に調整することによって得ることができ
る。まず、材質の高密度化を図るために、原料となる熱
硬化性樹脂として残炭率が少なくとも40%のフェノール
系、フラン系またはポリイミド系の樹脂を選択使用す
る。通常、原料樹脂の形態は粉状もしくは液状である
が、その形態に応じてモールド成形、射出成形、注型成
形、多重成形等から最も好適な成形手段を選定し、例え
ば板状、パイプ状、坩堝状など所望の形状に成形し、 1
00〜180 ℃の温度範囲で硬化処理を施す。この際、原料
樹脂の選択、成形および硬化の条件を制御することによ
り目的とする比重、ポアー径、ポアー含有率を確保す
る。
The glassy carbonaceous material having the material property specified in the present invention can be obtained by appropriately adjusting the conditions of each step in the manufacturing technique by the conventional process. First, in order to increase the density of the material, a phenol-based, furan-based, or polyimide-based resin having a residual carbon rate of at least 40% is selectively used as a thermosetting resin as a raw material. Usually, the form of the raw material resin is powdery or liquid, but depending on the form, the most suitable molding means is selected from mold forming, injection molding, cast molding, multiple molding, etc., for example, plate form, pipe form, Molded into desired shape such as crucible shape, 1
Curing treatment is performed in the temperature range of 00 to 180 ° C. At this time, the target specific gravity, pore diameter, and pore content rate are secured by controlling the conditions of selection of raw material resin, molding and curing.

【0011】焼成炭化処理は、硬化した樹脂成形体を黒
鉛坩堝に詰め、または黒鉛板で挟持した状態で、窒素、
アルゴン等の不活性ガスで置換された電気炉中で加熱す
るか、燃焼ガス加熱方式のリードハンマー炉中に炭素質
パッキングで被包充填して加熱する方法でおこなう。処
理温度は、通常 800〜1500℃程度であるが、必要に応じ
て2000℃以上の高温で黒鉛化処理する。この際、処理温
度を制御することにより得られるガラス状カーボン材の
結晶面間隔と結晶子の大きさを目的の範囲に調整する。
The firing and carbonization treatment is carried out by filling the cured resin molded body in a graphite crucible or sandwiching it between graphite plates with nitrogen,
It is carried out by heating in an electric furnace replaced with an inert gas such as argon, or by encapsulating with a carbonaceous packing in a combustion gas heating type lead hammer furnace and heating. The treatment temperature is usually about 800 to 1500 ° C, but if necessary, graphitization treatment is performed at a high temperature of 2000 ° C or higher. At this time, the crystal plane spacing and the crystallite size of the glassy carbon material obtained by controlling the treatment temperature are adjusted to the target ranges.

【0012】目標とする純度性状を確保するには、特別
に製造された有機質以外の成分を含有しない高純度の原
料樹脂を外部からの不純物汚染のない環境下で硬化、焼
成を施す方法、常法に従って製造したガラス状カーボン
材をハロゲン系ガス雰囲気中で加熱する二次的な精製処
理を施す方法、あるいはこれら両者を組み合わせる方法
が用いられる。高純度の原料樹脂は、予め吸着分離ある
いは高純度蒸留、クロマトグラフィー等の手段で不純物
を除去したのち、外部からの環境汚染を防止するために
クリーンルームまたはこれに準じた環境中で合成する。
硬化および焼成時の不純物汚染を防止するには、処理環
境を外部から遮断し、半導体製造時に使用されるような
超高純度のアルゴン、窒素ガス等の不活性ガスに置換し
ておこなう。
In order to secure the target purity properties, a method of curing and firing a specially manufactured high-purity raw material resin containing no components other than organic substances in an environment free from external contamination by impurities is usually used. A method of subjecting the glassy carbon material produced according to the method to a secondary purification treatment of heating in a halogen-based gas atmosphere, or a method of combining both of them is used. The high-purity raw material resin is preliminarily subjected to adsorption separation, high-purity distillation, chromatography or the like to remove impurities, and then synthesized in a clean room or an environment equivalent thereto in order to prevent environmental pollution from the outside.
In order to prevent impurity contamination during curing and firing, the processing environment is shut off from the outside and replaced with an inert gas such as ultra-high-purity argon or nitrogen gas used in semiconductor manufacturing.

【0013】[0013]

【作用】本発明の高耐食性ガラス状カーボン材によれ
ば、比重1.5 以上の緻密な組織が材質内部へのガス拡散
を阻止し、総灰分700ppm以下および総硫黄分50ppm 以下
の高純度性が酸化等の腐食反応を促進する鉄、バナジウ
ム、カルシウム、硫黄などの触媒的作用を軽減化するた
めに機能する。結晶面間隔が0.375nm で結晶子の大きさ
が1.3nm 以上の特性は比較的黒鉛化が発達した性状を示
すもので、酸化等に対する抵抗性を高くする作用を営
む。
[Function] According to the highly corrosion-resistant glassy carbon material of the present invention, the dense structure having a specific gravity of 1.5 or more prevents gas diffusion into the material, and the high purity of total ash content of 700 ppm or less and total sulfur content of 50 ppm or less is oxidized. It functions to reduce the catalytic action of iron, vanadium, calcium, sulfur, etc., which promotes corrosion reactions such as. The characteristic that the crystal plane spacing is 0.375 nm and the crystallite size is 1.3 nm or more is a property in which graphitization is relatively developed, and it has the function of increasing the resistance to oxidation and the like.

【0014】このような特定の材質性状による機能が相
乗的に作用して化学的安定性が大幅に改善され、とくに
高温大気中のような苛酷な酸化条件あるいはプラズマス
パッタリングに基づく侵食現象が効果的に防止される。
この耐食性向上効果は、ガラス状カーボン組織中に介在
する含有ポアーの大きさが20μm 未満で、そのポアー含
有率が1%以下の場合には更に助長され、一層高度の耐
食性が付与される。
The functions due to such specific material properties act synergistically and the chemical stability is greatly improved. Particularly, the erosion phenomenon based on severe oxidizing conditions such as high temperature atmosphere or plasma sputtering is effective. To be prevented.
This effect of improving the corrosion resistance is further promoted when the size of the pores contained in the glassy carbon structure is less than 20 μm and the pore content is 1% or less, and higher corrosion resistance is imparted.

【0015】[0015]

【実施例】以下、本発明の実施例を比較例と対比して説
明する。
EXAMPLES Examples of the present invention will be described below in comparison with comparative examples.

【0016】実施例1〜3、比較例1〜3 減圧蒸留により精製したフェノールおよびホルマリンを
原料とし、常法に従い付加縮合反応させてフェノール樹
脂初期縮合物(液状樹脂)を調製した。該フェノール樹
脂初期縮合物をポリエチレン製のバットに流し込んで真
空デシケータに入れ、10torr以下の減圧度で脱気処理を
おこなったのち、電気オーブンに移し180 ℃の温度で硬
化して縦横100mm 、厚さ4mmの板状体の成形した。この
際、減圧度および脱気時間を制御して比重、ポアー状態
を調整した。
Examples 1 to 3 and Comparative Examples 1 to 3 Using phenol and formalin purified by vacuum distillation as raw materials, an addition condensation reaction was carried out by a conventional method to prepare a phenol resin initial condensate (liquid resin). The phenol resin initial condensate is poured into a polyethylene vat, put in a vacuum desiccator, degassed at a reduced pressure of 10 torr or less, then transferred to an electric oven and cured at a temperature of 180 ° C. to a length of 100 mm, a thickness of 100 mm. A 4 mm plate was molded. At this time, the specific gravity and the pore state were adjusted by controlling the degree of pressure reduction and the deaeration time.

【0017】ついで、成形された板状体を不純物5ppm
未満の高純度黒鉛板〔東海カーボン(株)製、G347SS〕
で挟み付けた状態で電気炉に詰め、周囲を総灰分10ppm
以下の高純度黒鉛粉で被包してから1000℃まで昇温して
焼成炭化処理を施した。引き続き、炉内に塩素ガスを導
入しながら2000℃以上の温度域で熱処理した。この工程
において熱処理温度および処理時間を制御することによ
り、純度特性および黒鉛化度合を調整した。
Then, the molded plate-like body is treated with impurities of 5 ppm.
Less than high purity graphite plate [Tokai Carbon Co., Ltd., G347SS]
Packed in an electric furnace in a state of being sandwiched between, and the surrounding ash content is 10 ppm
After encapsulating with the following high-purity graphite powder, the temperature was raised to 1000 ° C. and calcined and carbonized. Subsequently, heat treatment was performed in a temperature range of 2000 ° C. or higher while introducing chlorine gas into the furnace. In this step, the purity characteristics and the degree of graphitization were adjusted by controlling the heat treatment temperature and the treatment time.

【0018】上記のプロセスにより製造された比重、総
灰分、総硫黄分、結晶面間隔、結晶子の大きさ、含有ポ
アーサイズおよびポアー含有率の異なる6種類のガラス
状カーボン材につき、各材料を大気雰囲気下 800℃の温
度に保持された電気炉に入れて重量が10%減少するまで
の時間を測定する評価法により耐食性試験をおこなっ
た。得られた耐食性の評価結果 (酸化時間) を各ガラス
状カーボン材の材質性状と対比させて表1に示した。
Each of the six types of glassy carbon materials having different specific gravities, total ash content, total sulfur content, crystal face spacing, crystallite size, contained pore size, and pore content ratio produced by the above-mentioned process were used. A corrosion resistance test was conducted by an evaluation method in which the sample was placed in an electric furnace maintained at a temperature of 800 ° C in the atmosphere and the time until the weight was reduced by 10% was measured. The evaluation results of corrosion resistance (oxidation time) thus obtained are shown in Table 1 in comparison with the material properties of each glassy carbon material.

【0019】[0019]

【表1】 [Table 1]

【0020】比較例1は比重が 1.5未満、比較例2は総
硫黄分が 50ppm超、比較例3は結晶面間隔が 0.375nm超
であって、いずれも本発明で特定した材質性状の要件を
外れるガラス状カーボン材である。表1の結果から、本
発明の要件を満たす実施例のガラス状カーボン材は前記
比較例に比べて耐食性が大幅に向上していることが認め
られる。とくにポアー径の大きさが20μm 未満で、ポア
ー含有率が1%以下の実施例3において耐食性向上効果
が顕著である。なお、本例では耐食性を耐酸化性の度合
で評価したが、プラズマスパッタリング、電解酸化等の
耐食性評価においても同様の結果が得られた。
Comparative Example 1 has a specific gravity of less than 1.5, Comparative Example 2 has a total sulfur content of more than 50 ppm, and Comparative Example 3 has a crystal plane spacing of more than 0.375 nm, both of which satisfy the material property requirements specified in the present invention. It is a glassy carbon material that comes off. From the results in Table 1, it is recognized that the glassy carbon materials of Examples satisfying the requirements of the present invention have significantly improved corrosion resistance as compared with the Comparative Examples. In particular, in Example 3 in which the pore size was less than 20 μm and the pore content was 1% or less, the corrosion resistance improving effect was remarkable. In this example, the corrosion resistance was evaluated by the degree of oxidation resistance, but similar results were obtained in the evaluation of corrosion resistance such as plasma sputtering and electrolytic oxidation.

【0021】[0021]

【発明の効果】以上のとおり、本発明により提供される
ガラス状カーボン材はその特定された材質性状に基づい
て極めて優れた耐食性能を発揮する。したがって、苛酷
な環境条件下で用いられる用途、とくに半導体分野向け
部材として長期間安定して使用できる効果がもたらされ
る。
INDUSTRIAL APPLICABILITY As described above, the glassy carbon material provided by the present invention exhibits extremely excellent corrosion resistance performance based on the specified material properties. Therefore, there is an effect that it can be stably used for a long period of time as a member used under severe environmental conditions, especially as a member for the semiconductor field.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 比重1.50以上、総灰分700ppm以下、総硫
黄分 50ppm以下、結晶面間隔 0.375nm以下、結晶子の大
きさ 1.3nm以上の材質性状を備えることを特徴とする耐
食性ガラス状カーボン材。
1. A corrosion-resistant glassy carbon material characterized by having a specific gravity of 1.50 or more, a total ash content of 700 ppm or less, a total sulfur content of 50 ppm or less, a crystal face spacing of 0.375 nm or less, and a crystallite size of 1.3 nm or more. ..
【請求項2】 含有ポアーの大きさが20μm 未満で、そ
のポアー含有率が1%以下である請求項1記載の耐食性
ガラス状カーボン材。
2. The corrosion-resistant glassy carbon material according to claim 1, wherein the size of the contained pores is less than 20 μm and the pore content is 1% or less.
JP4038494A 1992-01-28 1992-01-28 Highly corrosive glassy carbon material Pending JPH05208867A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4038494A JPH05208867A (en) 1992-01-28 1992-01-28 Highly corrosive glassy carbon material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4038494A JPH05208867A (en) 1992-01-28 1992-01-28 Highly corrosive glassy carbon material

Publications (1)

Publication Number Publication Date
JPH05208867A true JPH05208867A (en) 1993-08-20

Family

ID=12526823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4038494A Pending JPH05208867A (en) 1992-01-28 1992-01-28 Highly corrosive glassy carbon material

Country Status (1)

Country Link
JP (1) JPH05208867A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0757374A1 (en) * 1995-07-31 1997-02-05 KABUSHIKI KAISHA KOBE SEIKO SHO also known as Kobe Steel Ltd. Etching electrode and manufacturing process thereof
JPH09194821A (en) * 1996-01-17 1997-07-29 Toshiba Tungaloy Co Ltd Sintered friction material containing manganese
EP0791948A2 (en) * 1996-02-15 1997-08-27 Tokai Carbon Company Ltd. Plasma-etching electrode plate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0757374A1 (en) * 1995-07-31 1997-02-05 KABUSHIKI KAISHA KOBE SEIKO SHO also known as Kobe Steel Ltd. Etching electrode and manufacturing process thereof
JPH09194821A (en) * 1996-01-17 1997-07-29 Toshiba Tungaloy Co Ltd Sintered friction material containing manganese
EP0791948A2 (en) * 1996-02-15 1997-08-27 Tokai Carbon Company Ltd. Plasma-etching electrode plate
EP0791948A3 (en) * 1996-02-15 1999-06-23 Tokai Carbon Company Ltd. Plasma-etching electrode plate

Similar Documents

Publication Publication Date Title
JP2005132711A (en) High purity carbonaceous material and ceramic film-coated high purity carbonaceous material
JP2873988B2 (en) Electrode plate for plasma etching
JPH0159703B2 (en)
KR101209791B1 (en) Metal separator of fuel cell and method for treating surface of the same
JPH05208867A (en) Highly corrosive glassy carbon material
JPH0678193B2 (en) Carbon fiber reinforced carbon composite material excellent in thermal shock resistance and method for producing the same
JPS6311589A (en) Heat resistant tool and manufacture
KR101031689B1 (en) High-purity carbon fiber-reinforced carbon composite for semiconductor manufacturing apparatus and method for producing the same
JP2591967B2 (en) Processed carbonaceous felt product and method for producing the same
JPH10172738A (en) Glass like carbon heating element
US20030233977A1 (en) Method for forming semiconductor processing components
JP2777903B2 (en) Heat-resistant and corrosion-resistant inorganic material and method for producing the same
CN111410560A (en) Preparation method of silicified graphite with high-density SiC coating
KR20190064549A (en) A production method of binderless carbon block using reformation of mesocarbon microbeads
JP3434538B2 (en) Method for producing glassy carbon material
KR100216873B1 (en) Method for production of glassy carbon
KR20190030069A (en) A production method of binderless carbon block using reformation of mesocarbon microbeads
JPS61158806A (en) Formed article of impermeable carbon
WO1991004954A1 (en) Carbon fiber-reinforced composite carbon material having excellent thermal shock resistance and production thereof
JPH0797263A (en) Graphite vessel and its production
JPH11310459A (en) Glass-like carbon material excellent in plasma resistance
JPH0718013B2 (en) Method for producing glassy carbon coating
JPH0769730A (en) Production of vitreous carbonaceous material
JPH0368129B2 (en)
JP3342515B2 (en) Method for producing thick glassy carbon material